
Chapter 3: Dynamics

3.1 Forces and equations of motion.

Up to today, we have discussed the ocean basins, observational methods, observed ocean
circulation and water masses. One important question we will now ask is: why does the
ocean circulation possess the observed features, say subtropical gyres (STG), subpolar gyres
(SPG), and strong western boundary current? In order to provide a theoretical explanation
for the observed ocean circulation, we will first understand the dynamics that govern the
fluid motion.

Although most of you have probably seen the equations of motion for the atmosphere,
or from other GFD classes, it is useful to demonstrate them for the ocean, even though they
are essentially the same as those for the atmosphere. It is always important for us to know
where the equations we use are from, and what approximations were made to obtain them.

In fluid dynamics, we typically confine our attention to the movement of small fluid
elements. To derive the equations of motion for a fluid, we consider the balance of forces
acting on such fluid elements.

Figure 1: Schematic diagram showing the forces acting on a fluid element in the ocean.

Forces. The forces that may act on a rectangular sea water element in Fig 1 are:

• (i) Pressure gradient force (PGF);

• (ii) Gravity, g;

• (iii) Friction, wind forcing, buoyancy forcing, etc.

The fluid element feels the sum of all the forces, and its motion is given by Newton’s
second law of motion.

F = ma, (1)

where F is the net force acting on a body of mass m, and a is the resulting acceleration
of the body. Bold-faced variables represent vectors.

By applying Newton’s second law to a fluid element measured relative to axes that are
fixed in space, relative to the stars (not relative to the earth yet), we obtain the equation of
motion.
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Figure 2: Schematic diagram showing a fluid element in a coordinate fixed in space, which
does not rotate with the earth.
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• (i) Consider first the pressure forces acting on the fluid element as illustrated in Fig 2.

The pressure force on the element in the x-direction will be +pδyδzi on the left, and
−(p + δp)δyδzi on the right.

The net pressure force in the x-direction is:

i(pδyδz − (p + δp)δyδz) = −δpδyδzi = −i( ∂p
∂x

)δxδyδz,

Similarly, the net force in the y-direction is:

−j(∂p
∂y

)δxδyδz,

and in the z-direction:

−k(∂p
∂z

)δxδyδz.

Therefore, the total pressure force acting on the fluid element is:

−∇pδxδyδz,

where ∇ = ∂
∂x

i + ∂
∂y

j + ∂
∂z

k.

• (ii) The gravitational force acting onto fluid element is given by:

ρgδxδyδz = ρgfδxδyδz.

gf is acceleration of gravity relative to a fixed frame, say stars. Its direction is toward
the center of the Earth.

• (iii) Let us denote the effects of friction and other forces as F∗.

The Newton’s law yields, for a unit mass:
a = F

m
= dV′

dt
,

dV′

dt
=

−∇pδxδyδz + ρgfδxδyδz + F∗

ρδxδyδz
= −

1

ρ
∇p + gf + F, (2)

where F = F∗/(ρδxδyδz) is force per unit mass, V′ is velocity relative to a fixed frame.
This is the equation of motion for a fluid element relative to a fixed Cartesian coordinate

system in space.

Now the earth is rotating, so it is more convenient for us as observers on earth to express
the equations of motion in terms of a coordinate system that is rotating with the earth.
(Motion relative to the earth.)

General GFD theory. For a coordinate system that is rotating with the earth, we must
apply the following transformation:

(dV
dt

)e = (dV′

dt
)f − 2Ω ×V −Ω × (Ω × R),

where Ω =angular velocity of the earth. R = vector distance of fluid parcel from center
of earth, V = velocity of fluid parcel relative to the earth.

The above relation is derived as follows.
(dR

dt
)f = (dR

dt
)r + Ω × R. That is:
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V′ = V + Ω × R.
So, (dV′

dt
)f = d

dt
(V + Ω × R)r + Ω × (V + Ω ×R)r = dV

dt
+ 2Ω ×V + Ω ×Ω ×R.

Therefore,
(dV′

dt
)f = (dV

dt
)e + 2Ω×V + Ω×Ω×R. In the above, subscript “f” denotes fixed frame,

and subscript “r” denotes rotating frame.

Figure 3: The fixed Cartesian coordinate sytem.

Substituting for (dV′

dt
)f in equation (2), we have:

(
dV

dt
)e = −

1

ρ
∇p − 2Ω ×V + gf −Ω × (Ω × R) + F. (3)

Each term in the above equation from left to right is:
Acceleration of unit mass (left hand side of the equation), PGF, Coriolis force, Gravity,

centripetal force, friction and other forces. Ω × (Ω × R) is only 0.3% of gf , so it has small
effect and is combined with gf to give g.

Consider a local, rotating, Cartesian coordinate system on the surface of the earth with
origin at latitude φ (see figure on slide 30 of lecture 6 and slide 3 of lecture 7), we can then
write the components of the equations of motion in a rotating frame in which V = ui+vj+wk
and F = Fxi + Fyj + Fzk:

du

dt
= −

1

ρ

∂P

∂x
+ 2Ωsinφv − 2Ωcosφw + Fx, (4a)

dv

dt
= −

1

ρ

∂P

∂y
− 2Ωsinφu + Fy, (4b)

dw

dt
= −

1

ρ

∂P

∂z
+ 2Ωcosφu − g + Fz. (4c)
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In general, as we will show below, the Coriolis terms involving cosφ are small and can
be neglected. The total derivative (Lagrangian form) d

dt
can be expressed in Eulerian form:

d
dt

= ∂
∂t

+ u ∂
∂x

+ v ∂
∂y

+ w ∂
∂z

. The left hand side of the above equations can be written in
Eulerian form.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −

1

ρ

∂P

∂x
+ 2Ωsinφv − 2Ωcosφw + Fx, (5a)

∂v

dt
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −

1

ρ

∂P

∂y
− 2Ωsinφu + Fy, (5b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −

1

ρ

∂P

∂z
+ 2Ωcosφu − g + Fz. (5c)

We also denote f = 2Ωsinφ=Coriolis parameter.

3.2 Frictional effects.

From GFD class ATOC 5400. If molecular viscosity were the only form of dissipation,
the straining rates (associated with the shear rates) acting on the flow are given by:

ν ∂u
∂x

; ν ∂v
∂y

; ν ∂w
∂z

,

where ν is kinematic viscosity, and is in the order of 10−6m2/s. So the rate of change of
momentum per unit mass is given by:

∂
∂x

(ν ∂u
∂x

), ∂
∂y

(ν ∂v
∂y

), and ∂
∂z

(ν ∂w
∂z

).
Since momentum transfer by molecules is very inefficient and takes place only within

centimeters, in physical oceanography we are more interested in momentum transfer by tur-
bulence, which is much more effective. The nonlinear terms in the momentum equations can
amplify small disturbances through the processes of barotropic and baroclinic instabilities,
producing eddies. These eddies dissipate momentum, heat, salinity, and energy.

Following the classic work of Reynolds, the eddies can exert “stresses” and “strains”
on the ocean circulation in much the same way as molecular viscosity. By analogy with
molecular viscosity, we express dissipation by eddies as:

Fx = ∂
∂x

(Ax
∂u
∂x

) + ∂
∂y

(Ay
∂u
∂y

) + ∂
∂z

(Az
∂u
∂z

),

Fy = ∂
∂x

(Ax
∂v
∂x

) + ∂
∂y

(Ay
∂v
∂y

) + ∂
∂z

(Az
∂v
∂z

),
and
Fz = ∂

∂x
(Ax

∂w
∂x

) + ∂
∂y

(Ay
∂w
∂y

) + ∂
∂z

(Az
∂w
∂z

),

where (Ax,Ay) are coefficients of horizontal eddy viscosity. 10–105m2/s.
Az is coefficient of vertical eddy viscosity. 10−5

− 10−1m2/s.
You may have seen these forms in many numerical models.

3.3 Continuity of volume–mass conservation.

In the previous class, we derived the equations of motion for zonal, meridional, and verti-
cal momentum. So we obtained 3 equations for u, v, w but we have 5 unknowns: u, v, w, ρ, p.
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We need two more equations in order to find solutions to the equation set. [In order to find
the solutions, the number of equations should be the same as the number of unknowns.]

Consider the flow through a fixed volume in space as indicated in Fig 5.

Figure 4: Flow through a fixed volume in space.

In x-direction, the rate of mass that flows into the volume is:
ρuδyδz (kg/s).
The mass flows out of the volume is:
(ρ + δρ)(u + δu)δyδz = (ρ + ∂ρ

∂x
δx)(u + ∂u

∂x
δx)δyδz.

To the first order (ignore the second order term), the net mass that flows into the volume
is: Mass in–Mass out:

−[u ∂ρ
∂x

+ ρ∂u
∂x

]δxδyδz = −
∂(ρu)

∂x
δxδyδz.

Similarly, we can derive the net mass that flows out of the box in both y and z directions.
So we obtain the total net mass that flows out of the volume:

−[∂(ρu)
∂x

+ ∂(ρv)
∂y

+ ∂(ρw)
∂z

]δxδyδz.
The net mass in or out must cause mass change in the parcel. That is:
∂ρ
∂t

δxδyδz = −[∂(ρu)
∂x

+ ∂(ρv)
∂y

+ ∂(ρw)
∂z

]δxδyδz,
∂ρ
∂t

δxδyδz + [∂(ρu)
∂x

+ ∂(ρv)
∂y

+ ∂(ρw)
∂z

]δxδyδz = 0.
Thus,

∂ρ

∂t
+ [

∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
] = 0. (6)

This is one form of the mass continuity equation.
Rearranging the above equation and using
∇·V = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
, which is called “divergence”,

V·∇ρ = u ∂ρ
∂x

+ v ∂ρ
∂y

+ w ∂ρ
∂z

, which is referred to as advection of ρ,
we have:
∂ρ
∂t

+ ρ∇·V + V·∇ρ = 0.
Or,
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1

ρ

dρ

dt
+ ∇ · V = 0. (7)

If the fluid is incompressible, then 1
ρ

dρ
dt

= 0, and thus

∇ · V =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (8)

Incompressibility is a useful approximation in oceanography.

Now we have 4 equations but 5 unknowns. We need one more equation to close the
equation group. Equation of state: ρ = ρ(T, S, P ). Then we need to write down the
equations for T and S. We will not discuss the T and S equations here, but will discuss
them later in the thermodynamics section.

3.4 Scaling.

The equations of motion are complicated and nonlinear and do not possess general ana-
lytic solutions. We’ll have to solve them numerically.

For certain motions, however, only a few terms in the equations are important, and others
play a secondary role. In order to understand the underlying physics that causes the motion,
we wish to keep only the important terms and thus simplify the equations.

To do so, we will use observations of the real ocean to estimate the size of each term.
We will consider first, the main body of the ocean away from the surface and side bound-

aries, and this is usually called ocean “interior”. We will see, to the lowest order, what

equations the large-scale motion in the interior ocean satisfy.

Scales: Pacific Ocean width–12,000km across; Atlantic–6000km. So, here we choose
horizontal length scale

L = 1000km = 106m as representative of the large scale ocean circulation.
Current speed in the interior ocean: U = 0.1m/s,
Vertical scale H = 103m.
Scale for time T=L/U=107 (10 days);—(gravity waves have time scales of days–filtered

out by this scaling!)
Scale for w: ∂w

∂z
= −(∂u

∂x
+ ∂v

∂y
) [from continuity equation for incompressible fluid).

Then W
H

−
U
L
, W − UH/L − 10−4. [In fact w scale is much smaller than this scale, since

for large scale motion in the ocean interior, ∂u
∂x

and ∂v
∂y

generally compensates each other,

so that their sum (∂u
∂x

+ ∂v
∂y

) is much smaller than each individual. Additionally, vertical

motions in the ocean have scales much smaller than 1000m]. Since W << U , the interior
ocean circulation is generally horizontal–quasi-two-dimensional.

Now Assume the following scales according to the observations:
L − 106m,
U − 0.1m/s,
H − 103m,
W − 10−4m/s,

vii



T − L/U −−107s,
f = 2Ωsin45◦ − 10−4, [f is Coriolis parameter]
ρ − 103kg/m3,
P : We can let P be undetermined first, since usually there are no direct observations for

P . [Note: The P in CTD cast is used to measure depth.]
Ax, Ay − 105m2/s–upper bound,
Az − 10−1m2/s–upper bound.
Let’s consider w equation first.

∂w

∂t
+u

∂w

∂x
+v

∂w

∂y
+w

∂w

∂z
= −

1

ρ

∂P

∂z
+2Ωcosφu−g+

∂

∂x
(Ax

∂w

∂x
)+

∂

∂y
(Ay

∂w

∂y
)+

∂

∂z
(Az

∂w

∂z
). (9)

In the above equation, the nonlinear, advection terms are often referred to as “inertial

terms”.
The scales for each term are:
W
T

+ UW
L

+ V W
L

+ WW
H

= −
1
ρ

P
H

+ fU − g + Ax
W
LL

+ Ay
W
LL

+ Az
W

HH
,

Substituting the numbers listed above, we have:
10−11 +10−11 +10−11 +10−11 = ??+10−5 +10 +10−11 +10−11 +

10−11 .
So we can see immediately that the pressure gradient term must balance gravity term

since all other terms are a few orders of smaller.
Therefore, we obtain P − ρgH − 107.
Thus, the dominant terms are: pressure gradient force and the gravity.

−
1

ρ

∂P

∂z
− g = 0, (10)

Or:

∂P

∂z
= −ρg. (11)

That is, to the lowest order, the vertical pressure gradient force is balanced by gravity. It

is called “Hydrostatic equation”.

Similarly, we can obtain the scaling for zonal and meridional momentum equations.
Consider the zonal component of the momentum, and assume the eddy coefficients are

constants:

∂u
∂t

+ u∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

= −
1
ρ

∂P
∂x

+ 2Ωsinφv − 2Ωcosφw + Ax
∂2u
∂x2 + Ay

∂2u
∂y2 + Az

∂2u
∂z2 .

If we ignore the mixing, that is, Ax = 0, Ay = 0, and Az = 0, we call the above equation
“inviscid”.

U
T

+ U2

L
+ U2

L
+ WU

H
=?? + fU + 2ΩcosφW + AxU

L2 + AyU
L2 + AzU

H2 ,

10−8 + 10−8 + 10−8 + 10−8 =?? + 10−5 + 10−8 + 10−8 + 10−8 + 10−8
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Obviously, the pressure gradient term must balance the Coriolis term, which is a few
orders larger than all other terms.

To the lowest order, we have:
−

1
ρ

∂P
∂x

+ 2Ωsinφv = 0, or:

fv =
1

ρ

∂P

∂x
. (12)

This is geostrophic balance for meridional current v.
Similarly, we obtain the geostrophic balance for zonal current u by scaling the meridional

momentum equation (assignment #2):

fu = −
1

ρ

∂P

∂y
. (13)

Thus, to the lowest order, the motion in the ocean interior satisfies “geostrophic
balance” and “hydrostatic balance”.

Therefore, if we have the CTD data, we can obtain the “geostrophic” current between
two station pairs, which is a good estimation for the interior oceanic current.

3.5 The Rossby Number, Ekman Number and Reynolds Number.

(a).The Rossby Number.
Given the dominant role played by the Coriolis force in the momentum equations, it

can be used as a measure of the importance for other terms. Consider the ratio of a typical
nonlinear term (so-called “inertial term”) and the Coriolis term in the horizontal momentum
equations,

Inertial
Coriolis

= U2

L
×

1
fU

= U
fL

= Ro.

Ro is a measure of the relative importance of the inertial effects and rotational effects on
the flow, and is called the “Rossby Number”. For the ocean interior,

Ro = 10−1

10−4
×106 = 10−3 << 1. Therefore, rotational effects dominate inertial effects.

(b). The Ekman Number.
Consider now the ratio of the eddy viscosity terms and the Coriolis term, so that:

Frictional
Coriolis

= AxU
L2 ×

1
fU

= Ax

fL2 = Ex.

Or Ey = Ay

fL2 and Ez = Az

fH2 .
Ex and Ey are called the horizontal “Ekman numbers”, and Ez is the “vertical Ekman

number”. For the ocean interior:
Ex −

105

10−4
×1012 − 10−3 << 1,

Ey − 10−3 << 1,
Ez − 10−3 << 1. [Upper bounds used for Ax, Ay, and Az].
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(c). The Reynolds Number.
The Reynolds Number Re, which is the ratio of the nonlinear terms to the viscous terms:

Nonlinearterms
V iscousterms

= U2/L
AxU/L2 = UL

Ax

= Rex.

Rex 1 − 104.
If Re 1 and nonlinear terms are important, eddy viscosity is also important in the ocean.
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