ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 19 (Chp 6)

- **Objectives of Today's Class: The Cryosphere**
- [1] Components, time scales;
- [2] Seasonal snow cover, permafrost, river and lake ice, ;
- [3]Glaciers and ice sheets;
- [4] Sea ice and Climate.

1. Components of the Cryosphere, time scales

Primarily components: (1) **Continental ice sheets**, ice shelves, mountain glaciers; (2) Sea ice, river and lake ice, snow cover; and (3) permafrost (frozen ground).

Cryosphere: interacts with the climate system

- Melting of continent ice sheets, glaciers affect global sea level;
- Mountain snow cover and glaciers are an important source of freshwater; (~75% of western USA)
- Melting of permafrost releases greenhouse gases, etc;
- Changes in the distribution of sea ice and snow cover change the albedo and feedback to regional and global temperatures;
- Sea-ice formation increases sea surface salinity at high latitudes, affects ocean density, bottom-water formation and thus thermohaline circulation.

Area, volume, and sea level equivalent of the cryosphere

TABLE 6-1 Area, Volume, and Sea Level Equivalent (SLE) of the Cryosphere

Cryosphere Component	Area (10 ⁶ km²)	Ice Volume (10 ⁶ km ³)	Potential Sea-Level Rise (SLE) (m)
Snow on land (NH*)	1.9–45.2	0.0005-0.005	0.001-0.01
Sea ice	19–27	0.019-0.025	~0
Glaciers and small ice caps			
Smallest estimate	0.51	0.05	0.15
Largest estimate	0.54	0.13	0.37
Ice shelves	1.5	0.7	~0
Ice sheets	14.0	27.6	63.9
Greenland	1.7	2.9	7.3
Antarctica	12.3	24.7	56.6
Seasonally frozen ground (NH)	5.9-48.1	0.006-0.065	~0
Permafrost (NH)	22.8	0.011-0.037	0.03–0.10

*Northern Hemisphere

Source: Lemke, P., J. Ren, R. B. Alley, I. Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R. H. Thomas, and T. Zhang, 2007: "Observations: Changes in Snow, Ice and Frozen Ground." In: *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I* to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B.

Averyt, M. Tignor, and H. L. Miller [eds.]). Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.

© 2010 Pearson Education, Inc.

Clicker's question 1

Choose the most complete statement:

- A. Cryosphere includes continental ice sheet, mountain glaciers, sea ice and clouds;
- B. Cryosphere includes continental ice sheet, mountain glaciers, sea ice and permafrost;
- C. Melting of sea ice will increase sea level by few meters;
- D. Melting of Greenland and Atarctica ice sheets will increase sea level by less than 10 meters;
- E. Both B and D.

2. Seasonal snow cover, permafrost, river and lake ice

• Snow cover – seasonal variations - possible effects

on interannual climate; Seasonal freezing/thawing of lakes, rivers – important local ecosystems and human activities; but not so much on global scales - only brief discussion.

Increased snow cover

- increase albedo (reflectivity)
- cools the earth's surface.

(Warms the underlying surface)

North American snow cover, feb 2-9, 2002.

Permafrost:

- Permafrost is considered to be present if the ground remains at or below 0°C for 2 or more years.
- Warmer air (to a lesser degree, increased snow insolation) decreases permafrost;
 IPCC AR4 – indicates some degree of permafrost warming during the 2nd

half of the 20th century.

Effects of permafrost melting

- a) Potential increase of methane an important greenhouse gas. Its near-surface Melting – low oxygen in Lakes & water-logged soil – methane
 Producing organism can flourish.
- b) Affect local ecosystems, construction and infrastructure development

Clicker question 2

Choose the most complete statement.

- A. Reduced snow cover will increase the Earth's surface albedo and thus reduce its temperature;
- B. Reduced snow cover will reduce the Earth's surface albedo and thus increase its temperature;
- C. Reduction of permafrost can potentially increase methane emission to the atmosphere;
- D. Both A and C.
- E. Both B and C.

3. Glaciers and ice sheets

- Snow cover persists through the summer, accumulates over time, thickens, compacts and transforms into glacier ice.
- In cold glaciers, T<<0C, takes hundreds to thousands of years to transform (say central Antarctica). The process can be speeded up in regions where surface can melt and refreeze: the melt water can percolate down through the pack and refreeze. – may take a few years...(fresh snow density 50-70 kg/m³; firn (between snow and glacier ice): 400-800 kg/m³; glacier ice 850-900kg/m³)

Mountain glaciers

 found in mountainous
 regions, valleys

(European Alps, the

Himalaya, and the Andes);

Continental glaciers:
Greenland and Antarctica
97% surface land ice area,

~99.6% of the ice volume.

Greenland icesheet

Glacier flow

• Glaciers: are moving.

Deeper – higher stress (due to weight); Ice frozen to the bed;

Surface (<50m), stress Small: being carried by deeper flow;

Bottom, sides – friction - Slow down.

Not frozen to the beg.

Fig. 6-7.

© 2010 Pearson Education, Inc

Clicker's question 3

- A. The Greenland and Antarctic icesheets together accounts for ~97% surface ice-covered land area, and ~99.7% of the ice volume;
- B. Mountain Glaciers move as glacier flows, but continental glaciers (Greenland & Antarctic icesheets) do not move;
- C. Glacier flows are fastest at the bottom;
- D. All of the above.

• Implications of moving glaciers:

a) ice core data: data back – reconstruct past climate. – should choose a dome region where moving is small or negligible.

ce Core

(moving affects the "age dating")

b) Glacier Accumulation and Ablation Zones:

c) Icesheet Dynamics:
unstable, Calving effects
– large uncertainty to sea level change.
This is a large uncertain part in IPCC AR4
when estimating the continental Ice
melting effects on sea level change.

Clicker's question 4

- There won't be ablation zone if the glaciers are not moving;
- When obtaining ice core data, we should choose the region where glacier flow is small or negligible;
- Unstable motion, or calving effects of glaciers cause large uncertainties in estimating sea level change due to continental ice melting;
- All of the above.

[4] Sea ice and climate

Seasonal distribution of Sea ice:

Northern hemisphere sea ice

Southern hemisphere sea ice

Winds¤ts: Ice floes

Collide; Break: leads or Polynyii;

=>important: Open water, new ice; Open water,energy transfer with atmosphere more efficient than ice.

Copyright © 2004 Pearson Prentice Hall, Inc.

Ice-Climate interactions

Copyright © 2004 Pearson Prentice Hall, Inc.

Clicker question 5

Increased sea ice formation in North Atlantic region

- [a] decreases sea surface salinity and thus weakens global thermohaline circulation;
- [b] increases sea surface salinity and thus enhances global thermohaline circulation;
- [c] increases albedo and reduces ocean to atmosphere heat flux, therefore cools the earth and its atmosphere;
- [d] does not affect salinity and thus does not change thermohaline circulation;
- [e] both [b] and [c].