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Overview:

 Brief overview of air-sea interaction over SST frontal regions.

* A synergistic satellite observational investigation of mesoscale eddy-induced
surface stress and Ekman pumping:

- from SST and air-sea interaction effects.
- from ocean surface current effects.

« Assessment of the relative importance of the two contributions to eddy Ekman
pumping from:
- consideration of the two effects for idealized but realistic eddies.

- analysis of the satellite observations.

- numerical simulations in 3 experiments with the ROMS model run in a nested
configuration with 1/12° grid resolution for the South Indian Ocean.

* Much of the material in the middle and last parts of this presentation is from the PhD thesis
of Peter Gaube, who is now a postdoc at Woods Hole Oceanographic Institution
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Schematic Summary of SST Influence on the Wind Speed Profile

In the Marine Atmospheric Boundary Layer
600

This is similar to diurnal variation of the

400 atmospheric boundary layer over land:

- nocturnal stable boundary layer
from radiative cooling

Height (m)
[

- daytime unstable boundary layer
from solar heating of the land
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Wind Speed (ms1)

This coupling between SST and winds on scales smaller than ~1000 km is
opposite the negative correlation that occurs on basin scales:

- surface winds are positively correlated with SST on oceanic mesoscales.




Wind Stress Vectors and SST, 12 December 2001
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TMI SST and QuikSCAT Wind Stress Curl and Divergence



The Coupling Between SST and Wind Stress in 4 Frontal Regions

(6ulf Stream, Kuroshio Extension, Agulhas Return Current and Brazil-Malvinas Current)

Perturbation QuikSCAT Wind Stress Magnitude and AMSR-E SST

Perturbation QuikSCAT Wind Stress Magnitude and AMSR-E SST

55°N C}IE 0.06 =t bt Ll 50°N 7 )'*’" -t £ 0.06- Pl BT 0 SR B -
50°N < 0.03 Hﬂ 45°N el < 0.03 H}H
@ 0.037 = F IS @ 0.034 il
45°N ’\/—‘# g ] 5 EHH’HHE} . . 9 g . QHM
= %] 0- 40°N 19 w 04
a0 5§ g 5 1 g |
- I -o.os—f@g{ - 3N © T -0.03 W X
5 ] . =0.012 3 ] o =0.014
SOON = 5'0-06 il e Fha ] Rl | i [ 0N' e - ‘6"0.06 T T T LI
80°W  70°W  B0°W  50°W  40°W  30°W Q- 8 0 1 2 140°E 150°E 160°E 170°E 180°W Q- o 0 4 5
B T oaaam  (Nm?) 1 0 4 Nm? i 0
s am s tE e Perturbation SST (°C) 506 gog o oo opn e Perturbation SST (°C)
Perturbation QuikSCAT Wind Stress Magnitude and AMSR-E SST
30°S g / ] : , o 0.06 ! ] ] ]
_____ z ] Ak
40°S - @ 0.03 g&iﬁﬁh -
% & ] F E
Ly 0 04 =
6 ] o ]
50°S 1 -2 ] :
80037 C
= 1.5 o =0.022
" G -0.06 Ty asans
60°S A IO 10 IO .0 L o 2 -1 0 1 2
0 20°E 40°E 60°E 80°E 100°E Perturbation SST (°C)
B (Nm?)
-0.06 -0.0 0 0.03 0.06
Perturbation QuikSCAT Wind Stress Magnitude and AMSR-E SST
SOOS 7 7 : : : (}I,\ I I 1 1
e s e r
=4 ] C
40°S o 0.031 m‘iﬂﬂﬁﬂ‘
@ ] ,—"ﬂﬂ{i E
@ 04
50°s 1/ 5 ] Ip&!p-’
' T .0.034 2
: & 00 e y June 2002 - May 2009
SN 5 . . =0.018
- sy o s S 0.06 Trrrrr e Averages
70°W 60°W 50°W 40°W 30°W 20°W 10°w 0% Q- 3 4 8 1 b
2 ' . .
ae e TS e by Ny Perturbation SST (°C) From O'Neill et al. (2012, J. Clim.)



55°N

The Coupling Between SST and Wind Speed in 4 Frontal Regions

(6ulf Stream, Kuroshio Extension, Agulhas Return Current and Brazil-Malvinas Current)
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Why the SST influence on surface winds matters.....



SST Effects on the Curl and Divergence of Surface Wind and Stress

COOL

NN N N N NN
SST front Vxu, Vx1>0 V-u, V-T>0

N O
NANANTENANN

WARM

Wind vorticity and curl of the Wind divergence and wind
wind stress associated with stress divergence associated
crosswind SST gradients with downwind SST gradients



Divergence (N m=3 x 107)

Curl (N m=3 x 107)

Coupling Between Wind Stress Divergence and Downwind SST Gradient
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A regional example: The California Current System

September 2004

VxT
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A regional example: The California Current System

September 2004

T and SST VxT and Crosswind VT V-1t and Downwind VT
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SST-induced wind stress curl feedback effects
on the large-scale ocean circulation
from empirically coupled models
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Meridional Profiles of Wind Forcing Empirical SST-induced changes in the atmospheric wind stress:
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Small-Scale, SST-Induced Perturbations
of Ekman-Pumping Velocity, w,
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Latitude

Sensitivity of Upper-Layer Streamfunction to the

Coupling Coefficient, o
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A “25-Cent” Empirical Coupled Model:

e Based on:

- the ROMS model of an idealized eastern boundary
current system with a straight coastline.

- QuikSCAT-based empirical coupling coefficients for
the feedback on the ocean.

* The winds are modified at each time step to conform
to the empirical coupled relations among SST
gradients, wind direction, and the local curl and
divergence of the wind stress.

» This leads to an evolving modified wind obtained by
inverting the diagnosed curl and divergence fields,
while maintaining the original wind values on the
open-ocean boundary.
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Mesoscale eddy-induced wind stress curl feedback
on the ocean circulation



Merged TOPEX and ERS-1 Spatially High-Pass Filtered SSH
with contours of eddies with lifetimes > 4 weeks
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There are 2495 eddies in this map
(http://cioss.coas.oregonstate.edu/eddies/)



Animation of Global Altimeter Measurements of Oceanic Eddies
October 1992 - December 2008

Oceanic eddies can trap parcels of water and fransport water properties,
including nutrients and heat, to distant locations. They therefore play
important roles in the global heat budget and ocean biology.



Procedure for Composite Averaging SST, Wind Speed,

Wind Stress Curl and Chlorophyll in Eddy-Centric Coordinates:
Synergy Between 4 Complimentary Satellite Datasets

» Identify mesoscale eddies by altimetry from their SSH signatures.

- Composite average the other satellite datasets in an "eddy-centric”
translating reference frame with (Ax,Ay) coordinates relative to the eddy
centroid normalized by the radius L, of maximum rotational speed at each
location along its trajectory.

- AMSR+AVHRR measurements of SST (Reynolds OI2 analyses)
- QuikSCAT measurements of wind speed and wind stress
- SeaWIiFS estimates of oceanic chlorophyll

* Because the dominant mechanism for eddy-induced SST variability is
horizontal advection by the rotational velocity of the eddy, SST and wind
speed must be composite averaged in a coordinate system that is rotated
by an amount determined from the large-scale background SST gradient.



Schematic of Eddy Influence on SST Showing the Dependence
on Rotational Sense and the Large-Scale SST Gradient
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Trajectories of the ~22,000 Mesoscale Eddies with Lifemes >16 Weeks
During the 7.5 Years of Overlap of the Four Satellite Datasets

1 June 2002 - 30 November 2009
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Trajectories of the ~22,000 Mesoscale Eddies with Lifemes >16 Weeks
During the 7.5 Years of Overlap of the Four Satellite Datasets

1 June 2002 - 30 November 2009
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Mesoscale eddy influence on SST and wind speed



Global Composite Averages of SST in Eddy-Centric Coordinates
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Global Composite Averages of SST in Eddy-Centric Coordinates

Regions of Southward VT
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Global Composite Averages of SST in Eddy-Centric Coordinates
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Global Composite Averages of Wind Speed in Eddy-Centric Coordinates
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Coupling Coefficient Between Wind Speed and SST
over Globally Distributed Mesoscale Eddies
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This wind speed response
to SST over eddies is
consistent with the coupling
deduced previously over
frontal regions by O’Neill et
al. (2010; 2012)
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The Coupling Between SST and Wind Speed in 4 Frontal Regions

(6ulf Stream, Kuroshio Extension, Agulhas Return Current and Brazil-Malvinas Current)
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Eddy-induced SST influence on Ekman pumping



Eddy-Induced Ekman Pumping for an ldealized Anticyclone

From SST influence on Surface Winds at 30°N
for an Eddy-Induced SST Anomaly of 0.3°C and a Wind Speed of 7 m/s
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Mesoscale eddy SST-induced wind stress curl
feedback on the ocean circulation
from an empirically coupled model
(Jin et al., 2009)
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A “25-Cent” Empirical Coupled Model:

e Based on:

- the ROMS model of an idealized eastern boundary
current system with a straight coastline.

- QuikSCAT-based empirical coupling coefficients for
the feedback on the ocean.

* The winds are modified at each time step to conform
to the empirical coupled relations among SST
gradients, wind direction, and the local curl and
divergence of the wind stress.

» This leads to an evolving modified wind obtained by
inverting the diagnosed curl and divergence fields,
while maintaining the original wind values on the
open-ocean boundary.
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Temporal Evolution of the Eddy Field

Sea-Surface Temperature, Day 60
Uncoupled _ Coupled
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Note the weaker cross-shore gradient of SST and the weaker
eddy kinetic energy in the coupled model run.

Jin et al. (2009, J. Phys. Oceanogr.)



Surface Vorticity (Normalized by ) on Day 160

Uncoupled
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In the coupled simulation, cyclonic eddies (red) are weakened and
there is a much greater abundance of anticyclonic eddies (blue).
Jin et al. (2009, J. Phys. Oceanogr.)



Conclusions of the Jin et al. (2009) study:

» The cold upwelled water at the coast causes the nearshore winds to
diminish, generating a nearshore positive wind stress curl that:

- weakens the equatorward surface current.
- Strengthens the poleward undercurrent.
- weakens the alongshore SST front.

- Slows the development of baroclinic instability and weakens the
mesocale eddy field.

- reduces the eddy kinetic energy by about 25%.
» The coupling preferentially disrupts the coherent evolution of cyclonic eddies
because they have stronger SST signatures due to ageostrophic effects.
- this increases the relative abundance of anticyclonic eddies.
» Overall conclusion: All of the salient large-scale and mesoscale features

of eastern boundary current systems are altered by this 2-way ocean-
atmosphere coupling.



Eddy-induced surface current influence on Ekman pumping



Ekman Pumping from Eddy Surface Currents

For an idealized Gaussian anticyclone with 10 cm amplitude and 90 km radius

in 7 ms™" westerly winds at 30°N
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Eddy-Induced Ekman Pumping for an ldealized Anticyclone
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QuikSCAT validation of the dominance of surface current effects
over SST effects on Ekman pumping inferred from idealized eddies

Global composite averages of SSH and the total eddy Ekman pumping
measured by QuikSCAT
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QuikSCAT validation of the dominance of surface current effects
over SST effects on Ekman pumping inferred from idealized eddies

Global composite averages of SSH and the total eddy Ekman pumping
measured by QuikSCAT
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The 1/e attenuation time scale of this Ekman pumping
Is about 1 year
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Eddy Kinetic Energy With and Without Surface Current Effects

on the Surface Stress Field
Eden et al. (2009), J. Geophys. Res.
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Conclusions

Air-sea interaction over SST frontal regions significantly alters the large-scale
and mesoscale ocean circulation.

This air-sea interaction that has been studied extensively over SST frontal
regions also occurs over mesoscale eddies.

- Spatial variability of the eddy-induced SST perturbations generates Ekman
pumping associated primarily with crosswind SST gradients.

Eddy-induced Ekman pumping also occurs from the effects of eddy surface
currents on the surface stress field.

- In most regions of the world ocean, this surface current effect is stronger than
the SST/air-sea interaction influence on Ekman pumping.

Eddy-induced Ekman pumping dramatically alters the mesoscale eddy field.

- It likely also alters the large-scale circulation through eddy-mean flow
interactions. (This is work in progress....)



