Langmuir Turbulence in the Oceanic Mixed Layer

Peter E. Hamlington Turbulence and Energy Systems Laboratory (TESLa) Department of Mechanical Engineering University of Colorado, Boulder

October 28, 2013

Turbulent Flows

Spatial and Temporal Scale Ranges

The Energy Cascade

Three dimensional turbulent eddies are stretched and torn by nonlinear inertial processes, creating smaller and smaller scales until velocity gradients become large enough and viscous dissipation becomes strong enough for kinetic energy to be transferred into heat.

Reynolds number:

Re = Nonlinear Inertial Processes / Viscous Processes = UL/v

Spatial and temporal scale ranges ~ $Re^{3/4}$

Turbulence and Reynolds Number

Geophysical Scale Ranges

Largest scale motions ~ 1×10^{6} m Smallest scale motions ~ 1×10^{-3} m

Nine orders of magnitude!

Computational Simulations of Turbulence

The wide range of scales is a big problem for computational simulations of turbulent flows

Computational Simulations of Turbulence

The Computational Challenge

Earth surface area ~ $5 \times 10^{14} \text{ m}^2$ Atmosphere height ~ $1 \times 10^3 \text{ m}$ Ocean depth ~ $1 \times 10^3 \text{ m}$

Total simulation volume ~ 1 x 10^{18} m³ Grid cell volume ~ 1 x 10^{-9} m³

Total number of grid cells ~ 1 x 10²⁷

1 day simulation ~ 1 x 10⁵ s Time step ~ 0.1 s

Total number of time steps ~ 1 x 10⁶

The Computational Challenge Continued

Total number of grid cells ~ 1×10^{27} Total number of time steps ~ 1×10^{6}

Consider a "quantum" computer that can calculate one cell at one step in the time it takes for light to cross a hydrogen atom (~1 x 10^{-19} s)

Total simulation time ~ 1×10^6 years!

Turbulence Modeling

Direct numerical simulation (DNS): Solve all scales, high cost, high fidelity Large eddy simulation (LES): Resolve only large scales, intermediate cost and fidelity

Model Development

Develop subgrid scale models based on physics, exact governing equations, and simulations of reduced scale ranges

The Oceanic Mixed Layer

Langmuir Turbulence

Langmuir-Submesoscale Interactions

What are the interactions between Langmuir cells and large submesoscale (~1-10 km) eddies?

Submesoscale eddies form from fronts and filaments and restratify boundary layer; associated with symmetric instability Small-scale turbulence mixes and destratifies boundary layer

Stokes Drift and Langmuir Cells

wave phase : t / T+ 0.000

Turbulence and Energy Systems Laboratory

The Craik-Leibovich Equations

The Craik-Leibovich Boussinesq (CLB) equation is the wave or phaseaveraged Boussinesq equation

$$egin{aligned} &rac{\partial oldsymbol{u}}{\partial t} + (oldsymbol{\omega} + oldsymbol{f}) imes oldsymbol{u}_L &= -
abla \left(egin{aligned} &p + rac{1}{2} \left|oldsymbol{u}_L
ight|^2
ight) + b \hat{oldsymbol{z}} \ &rac{\partial b}{\partial t} + oldsymbol{u}_L \cdot
abla b = 0 \ &
abla \cdot oldsymbol{u} = 0 \end{aligned}$$

The Lagrangian velocity replaces the Eulerian velocity

$$oldsymbol{u}_L \equiv oldsymbol{u} + oldsymbol{u}_s \qquad oldsymbol{u}_s = u_s(z) \left[\cos(artheta_s) \hat{f x} + \sin(artheta_s) \hat{f y}
ight]$$

Simulations of Langmuir Turbulence

	LT	ST
Physical domain size, $L_x \times L_y \times L_z$	20km×20km×-160m	20km×20km×-160m
Computational grid size, $N_x \times N_y \times N_z$	$4096 \times 4096 \times 128$	$4125 \times 4125 \times 128$
Grid resolution, $\Delta_x \times \Delta_y \times \Delta_z$	4.9m×4.9m×1.25m	$4.9m \times 4.9m \times 1.25m$
Reference temperature, θ_0	290.16K	290.16K
Reference density, ρ_0	$1000 kg/m^{3}$	$1000 kg/m^{3}$
Coriolis parameter, f	$0.729 \times 10^{-4} \mathrm{s}^{-1} \hat{\mathbf{z}}$	$0.729 \times 10^{-4} \mathrm{s}^{-1} \hat{\mathbf{z}}$
Initial mixed layer depth, $H_{ML,0}$	50m	50m
Friction velocity, u^*	$5.46 \times 10^{-3} m/s$	$5.46 \times 10^{-3} m/s$
Surface wind stress magnitude, τ	0.025 N m^{-2}	0.025 N m^{-2}
Surface wind angle, ϑ_w	30°	30°
Initial surface temperature cooling, $\overline{w'\theta'}(z=0)$	$-5W/m^2$	$-5W/m^2$
Horizontal buoyancy gradient, $M^2 = \partial b/\partial y $	$4f^2 = 2.1 \times 10^{-8} \mathrm{s}^{-2}$	$4f^2 = 2.1 \times 10^{-8} \mathrm{s}^{-2}$
Thermocline stratification, $N^2 = \partial b / \partial z$	$5.3 \times 10^{-9} s^{-2}$	$5.3 \times 10^{-9} s^{-2}$
Surface stokes drift, $U_s(z=0m)$	0.063m/s	_
Stokes drift angle, ϑ_s	30°	(<u></u>)
Turbulent Langmuir number, $La_t = \sqrt{u^*/U_s(0)}$	0.29	-

Initial Condition

Submesoscale Evolution

Small-Scale Evolution

Small-Scale Evolution

Temperature

Vertical Velocity

A Closer Look at Vertical Velocity

Kinetic Energy Spectra

Momentum and Temperature Fluxes

Turbulence and Energy Systems Laboratory

Mixed Layer Depth

Instabilities

Langmuir Turbulence

Shear-Only Turbulence

Turbulence and Energy Systems Laboratory

Summary and Conclusions

- Turbulent flows are enormously difficult to understand and simulate computationally
- In geophysical flows we attempt to reduce the computational load through subgrid scale modeling
- There are weak effects of Langmuir turbulence on submesoscale motions
- Submesoscale motions themselves have a substantial effect on Langmuir turbulence
- Langmuir turbulence should be parameterized in larger scale climate and weather simulations

Collaborators: Baylor Fox-Kemper, Keith Julien, Greg Chini, Luke Van Roekel, Sean Haney

Funding: NSF

