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Manifest and Subtle Cyclic Behavior in

Nonequilibrium Steady States

R K P Zia1,2, Jeffrey B Weiss3, Dibyendu Mandal3,4 and Baylor
Fox-Kemper5

Abstract. Many interesting phenomena in nature are described by stochastic processes
with irreversible dynamics. To model these phenomena, we focus on a master equation
or a Fokker-Planck equation with rates which violate detailed balance. When the system
settles in a stationary state, it will be a nonequilibrium steady state (NESS), with time
independent probability distribution as well as persistent probability current loops. The
observable consequences of the latter are explored. In particular, cyclic behavior of some
form must be present: some are prominent and manifest, while others are more obscure and
subtle. We present a theoretical framework to analyze such properties, introducing the notion
of “probability angular momentum” and its distribution. Using several examples, we illustrate
the manifest and subtle categories and how best to distinguish between them. These techniques
can be applied to reveal the NESS nature of a wide range of systems in a large variety of areas.
We illustrate with one application: variability of ocean heat content in our climate system.
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1. Introduction
In the standard Boltzmann-Gibbs formulation of equilibrium statistical mechanics, time plays
no role. Once {q}, the set of configurations (or microstates) of the system of interest is chosen,
the energy functional (Hamiltonian) H (q) is provided, and the conditions for equilibrium are
specified, then P (q), the probability for finding the system in q is known. This structure is built
on Boltzmann’s fundamental hypothesis: P (q) ∝ δ (E −H (q)) for an isolated system with total
energy E. From here, various other ensembles and their associated P ’s follow. The main task
is to compute averages of various observable quantities O (q), 〈O〉 ≡ ΣqO (q)P (q).

The Boltzmann-Gibbs paradigm is clearly inadequate to describe many stochastic processes
in nature. In addition to a need to describe time dependent phenomena (e.g., autocorrelations),
there are many systems which interact with the environment in a manner that violates time
reversal. In particular, all biological systems consume nutrients and discard waste, with
processes that clearly cannot be reversed in time. In this case, the system settles into
non-equilibrium steady states (NESS), with characteristics absent from systems in thermal
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equilibrium. Chief among these are the presence of probability currents and loops [1], much
like those in magnetostatics. In this brief note, we report some observable consequences of these
current loops, in both manifestly cyclic behavior and more subtle realizations. We will also point
to the notion of “probability angular momentum” and relate it to a more familiar quantity: the
two point correlation at unequal times.

For the simplest stochastic process that leads to NESS, we may start with a master equation
for the time dependent P (q, t), with rates that violate detailed balance (DB). In general, this
equation takes the form

∂tP (q, t) =
∑
q′

[
W
(
q′ → q

)
P
(
q′, t
)
−W

(
q → q′

)
P (q, t)

]
≡
∑
q′

K(q′ → q), (1)

where W (q′ → q) is the transition rate for the system in q′ to become one in q and K(q′ → q) is
the net probability current from q′ to q. Now, DB is often displayed as W (q′ → q) /W (q → q′) =
expβ [H (q′)−H (q)], so that, for a system in thermal equilibrium with stationary P ∗ ∝ e−βH ,
the currents K∗ vanish identically. (Note that quantities in the stationary state are associated
with ∗.) By contrast, for processes modeled by W ’s that violate DB, some K∗’s in the NESS
must be non-zero and must form closed loops.

Though the master equation is the most general formulation for this class of stochastic
processes, we will restrict ourselves, for simplicity, to configuration spaces described by
continuous variables, ξα (or just ~ξ) in arbitrary dimensions, and evolution controlled by the
Fokker-Planck equation (FPE): 1

∂tP
(
~ξ, t
)

= ∂α
{
∂βDαβP − VαP

}
≡ −∂αKα. (2)

Here, D and V represent the diffusive and drift aspects, respectively. A more intuitive
description, as well as rules for coding simulations, is the Langevin equation

∂t~ξ = ~V + ~η, (3)

where ~η is a Gaussian noise with 〈~η〉 = 0 and 〈ηα(t)ηβ(t′)〉 = Dαβδ(t− t′). As the FPE is just a
continuity equation, we can identify the probability current here as Kα = −

{
∂βDαβP − VαP

}
.

Of course, the stationary distribution, P ∗, satisfies ∂tP
∗ = 0, i.e., ~∇ · ~K∗ = 0. In this approach,

the dynamics satisfies DB provided
[
D−1

]γα (
∂βDαβ − Vα

)
is the gradient of some scalar function

s
(
~ξ
)

, i.e., ∂γs. Then, it is straightforward to show that ~K∗ ≡ 0 with P ∗ ∝ e−s. Our interest

here are processes which violate this condition, when ~K∗ is non-trivial. Being divergenceless, it
can be expressed (in 3 dimensions) as curl of ~ψ∗, the stream function (in the language of fluid

dynamics), while ~∇× ~K∗ is known as the vorticity, ~ω∗.

2. Mass/fluid vs. probability angular momenta; two point correlation functions
Angular momentum, a familiar concept from textbooks on classical mechanics and fluid

dynamics, is associated with mass in motion: ~L = ~r × m~v,
∫

d~r~r × ~vρ (~r), and
∫

d~r
(
~r × ~J

)
(where ~J = ρ~v is the fluid current). We transfer this fluids concept to probability by considering

the mapping {~r, ρ, ~J} → {~ξ, P, ~K}, so that
∫

d~ξ
(
~ξ × ~K

)
is a quantity of interest and naturally

named “probability angular momentum.” Of course, in arbitrary dimensions, rotations and

1 The Einstein summation convention is used here.
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angular momenta are not vectors, but pseudo tensors. Thus, instead of a vector ~L, we should
consider a matrix L, with elements Lαβ = −Lβα and

Lαβ =

∫
d~ξ (ξαKβ − ξβKα) . (4)

Note that, due to the normalization condition
∫

d~ξ P = 1, our “mass” is unity, so that the unit
of L is just ξ2/t, precisely that of diffusion. This remarkable feature is not coincidental, as the
intimate connection between them will be shown in the next section. We further note that,
in a NESS, we have

∫
d~ξ ~K∗ = 0, so that L∗ is independent of the choice of the origin of ~ξ

(and is just the total vorticity). Other familiar concepts such as angular velocity ~Ω and inertia
tensor, I, also have analogs. Specifically, we see that

∫
rirjρ maps to the two point correlation

〈ξαξβ〉 ≡
∫
ξαξβP . Meanwhile, in analog with ~v = ~Ω× ~r, we can define our angular velocity via

Kα = Ωβ
αξβP [2] and come up with the equivalent of ~L = I~Ω.

We end this section with a not-so-familiar generalization of angular momentum. If the
trajectory of a point mass ~r (t) is known, then we may consider the quantity ~a ≡ ~r (t)×~r (t′), the
magnitude of which is just the area of the parallelogram spanned by the two vectors. Clearly,
it is related to the angular momentum by ~L = m∂t′~a|t′=t. The analogous generalization to Lαβ
here is a special two point correlation function:

C̃αβ
(
t, t′
)
≡
∫

d~ξ

∫
d~ξ′ P

(
~ξ, t; ~ξ′, t′

) [
ξαξ
′
β − ξβξ′α

]
, (5)

where P is the joint probability. If t′ > t, then P is the product of the conditional probability,

G
(
~ξ′, t′|~ξ, t

)
, and P

(
~ξ, t
)

. Regarding the FPE (Eq. 2) as a Schrödinger equation, G is the

familiar propagator in quantum mechanics. As in the point mass case, we have

Lαβ = ∂t′C̃αβ

∣∣∣
t′=t

. (6)

Meanwhile, we see that C̃αβ (t, t′) is just twice the antisymmetric part of the two point correlation
at arbitrary times, 〈ξαξβ〉tt′ . Being antisymmetric, it is necessarily odd under exchange t ⇔ t′.

In the stationary state, translation invariance prevails and so, C̃∗ depends only on the difference
τ ≡ t′− t. Since it is odd under time reversal, C̃∗ 6= 0 is a concrete measure of DB violation and
irreversibility in a stationary state.

While the framework presented above is valid for all stochastic processes, it is valuable to
illustrate these ideas in an explicitly solvable system: the Linear Gaussian Model (LGM) [3, 2, 1].

In an LGM, Dαβ (elements of D) are constants, while ~V is linear in ~ξ, as in generalized simple

harmonic oscillators (SHO): ~V = A~ξ. (Refer to Eqs. 2 and 3.) Thus, the model is completely
defined by two matrices, D and A. Of course, D must be positive symmetric, while the real
parts of the eigenvalues of A must be negative (for the stability of the process). If D−1A is

symmetric, then DB is satisfied and the scalar s is −~ξ · D−1A~ξ/2. If not, then the stationary

P ∗ is still a Gaussian[3]: P ∗ ∝ exp
{
−~ξ · C−1~ξ/2

}
, where C is fixed by [2] S [AC] = −D and S

stands for “the symmetric part of.” Clearly, C is the covariance matrix in the steady state, i.e.,
the equal time two point function. (Note that C is not the same as C̃!) Meanwhile, we have
~ξP ∗ = −C~∇P ∗, which leads to ~K∗ = −

{
D~∇− A~ξ

}
P ∗ = − [AC + D] ~∇P ∗. Since D = −S [AC],

the sum [AC + D] is A [AC], the antisymmetric part of AC. Thus, ~K∗ is manifestly divergence
free while the stream function (a matrix here) can be identified as − [AC + D]P ∗. Moreover, it
is straightforward to obtain an explicit expression for L∗:

L∗ = −2A [AC] (7)
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Figure 1. Short trajectories and distributions p (L) for two simple stochastic processes: noisy
Lotka-Volterra (upper panels) and SHO’s coupled to thermal baths at different temperatures
(lower panels). In the former, cyclic behavior is manifest, associated with a “one-sided”p (L).
By contrast, this behavior is quite subtle in the latter system, with a distribution that is almost
symmetric (around L = 0).

and its generalization:

C̃∗ (τ) = −2A
[
eAτC

]
(8)

In this setting, we see that diffusion (D) and angular momentum (L∗/2) are just the symmetric
and antisymmetric parts of one matrix: −AC. Thus, they must have the same units, and play
complementary roles in any stochastic process. Finally, note that the angular velocity matrix is
given by Ω∗ = DC−1 + A [2], while L∗ = 2CΩ∗ is the analog of ~L = I~Ω.

3. Distributions of L
Having established that there must be some cyclic behavior in any NESS, we ask if this feature
is displayed (a) prominently and manifestly, or (b) in some obscure and subtle way. To answer
which category a system belongs to, we must go beyond the average values of angular momenta
(Eqs. 4 and 7) and study the full distribution: p (Lαβ) ≡

∫
δ (Lαβ − [ξαKβ − ξβKα]). For

simplicity, let us consider a two-dimensional ~ξ-space, so that there is only one independent
component in any antisymmetric matrix, e.g., 〈L〉 ≡ L∗12. Then, our task simplifies to the study

of p (L). From simulations, it can be obtained by computing L (t) from a long trajectory ~ξ (t)
(in the steady state), and compiling a histogram.

Clearly, the most extreme example in category (a) is a deterministic orbit (e.g., Keplerian)
which yields a fixed angular momentum: p = δ (L − const). More common, stochastic systems
of this type will display broader p’s. To illustrate, we consider a stochastic Lotka-Volterra model
[4] for the population of hares and lynx, ξh and ξl respectively. A specific example, 2 associated
with the upper panels of Fig. 1, is:

ξ̇h = ξh [2− ξl] , ξ̇l = ξl [−4 + ξh] (9)

plus noise. The figure shows a typical trajectory in the space of hare/lynx populations from
a simple simulation run, as well as the associated distribution p (L). Clearly, the latter is the

2 We caution that this model is designed to illustrate properties in category (a) systems. It is too simplistic to
provide a good description of the full complexity of predator-prey behavior. See [5] for a good treatment. For a
recent review on stochastic LV systems, see, e.g., [6].
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Figure 2. A short trajectory and distribution p (L) for the ocean heat content anomalies found
in the tropical and polar regions (in a millennium long run with the Community Earth System
Model). The units of h is ZJ = 1021 Joules. The units for L is ZJ2 per season. The distribution
indicates that cyclic behavior in these two variables is very subtle.

result of noise on a δ distribution. Since the dynamics of such models manifestly violate time
reversal symmetry and DB, a distribution dominated by one sign of L is expected. Turning to
the subtler NESS in category (b), the average 〈L〉 can be quite small, the result of a broad p (L)
with only a slight asymmetry in L. Let us illustrate with two SHO’s coupled to thermal baths at

different T ’s [7]. Starting with the standard Hamiltonian H =
[
k1ξ

2
1 + k2ξ

2
2 + k× (ξ1 − ξ2)2

]
/2,

we model the effects of the thermal baths by

ξ̇α = −λα (∂H/∂ξα) + ηα, (10)

with 〈η〉 = 0 and 〈ηα(t)ηβ(t′)〉 = 2λαTαδαβδ(t − t′). Since this system is precisely an LGM,
we find 〈L〉 ∝ k× (T1 − T2), which shows that it settles into a NESS only when k× 6= 0 and
T1 6= T2. In the lower left panel of Fig. 1, we show a typical trajectory, which displays no obvious
preferential rotation. The right panel shows a nearly symmetric p (L), with barely discernible
asymmetry. As a result, the average 〈L〉 ∼ 4.70 × 10−3 is much smaller than the standard
deviation ∆L ∼ 32.41 × 10−3. Here, we find 〈L〉 to be entirely consistent with the theoretical
prediction of 4.66× 10−3. Finally, we note that the large L behaviors are exponential, governed
by different decay constants. These can also be computed, since we can obtain analytically the
full p (L) of Gaussian models (details to be published elsewhere [8]).

Apart from these simple examples, we have recently studied other systems in NESS, including
an epidemic model with asymmetric infection rates [9] and a heterogeneous non-linear q-voter
model [10]. Both settle into NESS that display only very subtle cyclic behavior. Here, let us
present preliminary results concerning a much larger and complex system: variations in the heat
content of our oceans. As a stochastic process, the oceans are heated in the tropical regions
and suffer loss mostly from the polar regions, forming clearly a non-equilibrium system. Over
long periods, it appears quasi-stationary and may be regarded as a NESS. Unfortunately, high
quality data for these anomalies in the real oceans form only a small set and date from about
half a century ago [11]. Nevertheless, we can combine the data into two time series, htropics (t)
and hpolar (t), and study both 〈L〉 and p (L). The results are very similar to those of the SHO’s
in Fig. 1. The details are quite complicated and will be published elsewhere [8]. Here, we turn
to a much longer (about a millennium) data set, created using the state-of-the-art Community
Earth System Model [12]. Though non-trivial complications concerning the analysis also exist
here [8], the results are consistent with the those from real data. Illustrating with a small
portion of this trajectory and showing the p (L) in Fig. 2, we recognize that these NESS aspects
are similar to those in the two-temperature SHO case. However, there is a subtle difference:
〈L〉 ∼ −5.4 ZJ2/season is negative, a sign naively opposite to that in the SHO’s. This difference
indicates that temperature difference is not the only controlling factor for the sign of 〈L〉. The
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more significant factor is the level of the noise associated with each degree of freedom. Details
of this kind of analysis and understanding will be presented elsewhere [8].

4. Summary and Outlook
We have shown that the angular momenta L∗ and the two point correlation at unequal times
C̃∗ (τ) are, for any NESS, excellent measures of the underlying time-reversal and DB violating
dynamics. Beyond these simplest quantities, any multipoint correlation functions at unequal
times will provide a platform for measuring such characteristics.

We have also shown that, for certain systems in NESS, DB violation is so patently obvious
that the irreversible nature is prominent and manifest. For example, hares do not prey on
lynxes! On the other hand, many NESS do not display such clear behavior, as the time-reversal
violating aspects are more obscure and subtle. Clearly, it is desirable to understand more deeply
the mechanisms which control the outcomes of a system. What are the parameters which, when
varied continuously, will take a system from category (a) to (b)? Is the “transition” abrupt and
discontinuous? or smooth and continuous? Is it possible that p (L) displays a combination of
both “components”? We believe this is a promising and rich avenue for future research, both
as a novel measure to characterize different systems in NESS and as a possible step towards a
overarching framework for the foundations of non-equilibrium statistical mechanics.
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