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Summary. The fundamental equations that model turbulent flow do not provide much insight
into the size and shape of observed turbulent structures. We investigate the efficient and accu-
rate representation of structures in two-dimensional turbulence by applying statistical models
directly to the simulated vorticity field. Rather than extract the coherent portion of the image from
the background variation, as in the classical signal-plus-noise model, we present a model for
individual vortices using the non-decimated discrete wavelet transform.A template image, which
is supplied by the user, provides the features to be extracted from the vorticity field. By trans-
forming the vortex template into the wavelet domain, specific characteristics that are present in
the template, such as size and symmetry, are broken down into components that are associated
with spatial frequencies. Multivariate multiple linear regression is used to fit the vortex template
to the vorticity field in the wavelet domain. Since all levels of the template decomposition may be
used to model each level in the field decomposition, the resulting model need not be identical to
the template. Application to a vortex census algorithm that records quantities of interest (such
as size, peak amplitude and circulation) as the vorticity field evolves is given. The multiresolu-
tion census algorithm extracts coherent structures of all shapes and sizes in simulated vorticity
fields and can reproduce known physical scaling laws when processing a set of vorticity fields
that evolve over time.

Keywords: Multivariate multiple linear regression; Non-decimated discrete wavelet transform;
Penalized likelihood; Turbulence; Vorticity

1. Introduction

The large-scale fluid motion of planetary atmospheres and oceans is extremely turbulent and is
strongly influenced by the planetary rotation and the planet’s gravitational field. The planetary
rotation and gravitation render the resulting fluid motion primarily horizontal. For example,
in the Earth’s atmosphere, vertical motion is typically at speeds of several centimetres per

Address for correspondence: Thomas C. M. Lee, Department of Statistics, Chinese University of Hong Kong,
Shatin, Hong Kong, People’s Republic of China.
E-mail: tlee@sta.cuhk.edu.hk



294 B. Whitcher, T. C. M. Lee, J. B. Weiss, T. J. Hoar and D. W. Nychka

second, whereas strong horizontal motions such as the jetstream can exceed speeds of 100
m s−1. Turbulent fluids are characterized by having a wide range of spatial scales with complex
non-linear interactions between the scales. One noteworthy feature of turbulent fluids is that
they self-organize into coherent features. The two main categories of large-scale coherent struc-
tures are vortices, such as hurricanes, tornados, oceanic vortices and Jupiter’s Great Red Spot,
and jets, such as the Earth’s atmospheric jetstream and the Gulf Stream in the north Atlantic
Ocean. With respect to the scope of this paper we are interested only in identifying vortices, so
the term coherent structure will be synonymous with vortex.

The reason for the formation of coherent structures is poorly understood. Owing to the
quasi-horizontal nature of atmospheres and oceans, the energy cascades from small to large
scales, and the accumulation of energy at large scales is associated with large-scale coherent
structures (McWilliams and Weiss, 1994). Structures may also be formed from the growth of
instabilities in the flow, with the scale of the structure determined by the scale of the instability.
Regardless of their mechanism of formation, accepting that such structures exist in turbulent
flows and analysing their behaviour and effect has led to significant advances in understanding
turbulence.

In many instances we wish to know the statistics of vortex properties. Whereas traditional
theories of turbulence are framed in terms of energy spectra, more recent theories are based
around the statistics of the vortex population (Carnevale et al., 1991; McWilliams and Weiss,
1994). Coherent vortices in the ocean with spatial scales of tens of kilometers can live for
more than a year and travel across the ocean, affecting the energetics, salinity and biology of
the ocean. The number and strength of such vortices are often determined by manually iden-
tifying vortices. One method of validating atmospheric models is to determine whether they
capture the statistics of atmospheric vortices such as storms and hurricanes. In all these
areas, a robust efficient method to calculate the vortex statistics would represent a major
advance.

Fig. 1, which displays observations from a numerical simulation of turbulent flow, pro-
vides examples of such vortices. A vortex is a spinning turbulent flow that has anomalously
high (in absolute value) vorticity. Following the definition that is common for the northern
hemisphere, positive vorticity (lighter shades in the images) corresponds to spinning in the
counter-clockwise direction and negative vorticity (darker shades in the images) corresponds
to spinning in a clockwise direction. Regions of high vorticity exhibit a peak near its cen-
tre and decays back to zero vorticity in all directions from that centre. The self-organization
of a fluid into vortices is an emergent phenomenon that can only be partially understood by
analysis of the governing partial differential equations. Determining the details of a vortex popu-
lation requires analysing a time-evolved field, either from numerical simulations, laboratory
experiments or observations of natural systems, and requires a pattern recognition (or census)
algorithm.

To determine the statistics of the vortices, we must first identify individual vortices and mea-
sure their properties. In two-dimensional turbulence the structure of the vortices is relatively
simple and a broad variety of census algorithms have been successful (McWilliams, 1990; Farge
and Philipovitch, 1993; Siegel and Weiss, 1997). However, we would like to develop methods of
structure identification that work in more realistic fluid situations ranging from three-dimen-
sional idealized planetary turbulence to the most realistic general circulation model. In these
situations, the structures include jets as well as vortices, and these structures exist in a more
complex fluctuating environment. The goal of the current work is to develop a census algorithm
for identifying vortices in two-dimensional turbulence that is sufficiently general to handle, with
modifications, these more realistic situations.
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Fig. 1. Observed vorticity fields (512�512 pixels) from a numerical simulation at times t (a) 15 s, (b) 16 s,
(c) 17 s and (d) 18 s: negative vorticity is seen as darker shades of grey approaching black whereas positive
vorticity is seen as lighter shades of grey approaching white; the background, roughly zero vorticity, is a
medium grey; the white square in the lower right-hand corner of the vorticity field in (a) is centred at the
largest coherent structure, in peak absolute vorticity

The ‘data mining’ of turbulent fluid flow, both simulated and observed, can be thought of as
a statistical problem of feature extraction. In this work we focus on the detection of coherent
structures from a simulated scalar field of rotational motion. The reason that we focus on sim-
ulated fields is that real data at the required resolution are difficult to obtain in practice. Our
approach to this problem consists of two parts. The first step is to develop a flexible model for
a single coherent ‘template’ structure (vortex) by using multi-resolution analysis (MRA) and the
second identifies individual vortices through a stepwise model selection procedure. Although the
model for the template function embodies prior information from the scientist, it is sufficiently
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flexible to capture a broad range of features that are associated with coherent structures that
we might observe in a fluid. Once a suitable template has been chosen, the second step provides
an objective approach to identifying features of interest through classic statistical methodol-
ogy, allowing the information in the vorticity field to dictate what is and what is not a vortex.
With individual coherent structures efficiently summarized through a set of parameters, such as
diameters and centroid locations, the next step of modelling movement and vortex interaction
may take place, e.g. Storlie et al. (2004). This has the potential to advance our understanding
of many complex natural systems, such as hurricane formation and storm evolution.

In the past, coherent structures have been quantified by simply decomposing the flow into
signal and background noise by using wavelet-based techniques; see, for example, Farge et al.
(1992, 1996) and Wickerhauser et al. (1994, 1997). The focus of the methodology that was used
in those references has an engineering orientation, i.e. the wavelet transform is used to discrim-
inate between signal and noise by using the compression rate as a classifier, the idea being that
the coherent structures (vortices) that are observed in the turbulent flow will be well represented
by only a few wavelet coefficients and therefore most coefficients may be discarded. From one
vorticity field, two fields are produced from such a procedure: one based on the largest wavelet
coefficients that is meant to capture the largest coherent structures in the original field; and
another, based on the remaining wavelet coefficients, is a mixture of background structures (i.e.
filaments) and noise.

Siegel and Weiss (1997) developed a wavelet-based census algorithm for two-dimensional
turbulence that relied on specific attributes of coherent structures. First, the vorticity field was
separated into coherent and background fields by using an iterative wavelet thresholding tech-
nique; then the surviving wavelet coefficients in the coherent part are grouped according to
the spatial support of the Haar basis. Luo and Jameson (2001) investigated a wavelet-based
technique for identifying, labelling and tracking ocean vortices and a database was built of
wavelet signatures based on the amount of energy that is contained at each scale. They found
that Gaussian densities were adequate to model observed vortices.

Our methodology differs significantly from the signal-plus-noise model and other wavelet-
based techniques. Our main scientific contribution is the development and efficient implementa-
tion of a statistical method to extract a wide variety of coherent structures from two-dimensional
turbulent fluid flow. We achieve this through the formulation of a flexible statistical model for
individual coherent structures (vortices) and obtain a fixed number of isolated vortices from
the original field via regression methodology. From these models a completely different set of
summary statistics may be calculated; for example, instead of global summary statistics like the
enstrophy spectrum over the entire image we can look at local statistics for each structure such
as the average size, amplitude, circulation and enstrophy of the individual vortices.

This work has led to new models for two-dimensional multiscale features. Although this
work concentrates on vortices, the methodology proposed is quite generic and can be trans-
ferred to model other types of coherent structures. The adaptation of model selection methods
for segmenting images is made possible by formulating our model in terms of multiple linear
regression. Finally, we note that this work also depends on the development of computing algo-
rithms whereby we fit many local regressions simultaneously by using equivalences with image
convolution filtering. The statistical computing aspects of this problem are important to analyse
large problems that are of scientific interest. As a test of these ideas we can carry out a census
of vortices from a high resolution simulation of two-dimensional turbulence.

The next section provides a brief introduction to two-dimensional turbulence and the numer-
ical simulation that was used. Section 3 outlines how we model individual coherent structures
and the entire vorticity field. The two-dimensional MRA approach to images is introduced and
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the user-defined vortex template function is also discussed. Section 4 provides the methodology
to estimate a single coherent structure and also multiple structures in the vorticity field. Section
5 looks at how well the technique performs at estimating multiple coherent structures and at
the temporal scaling of vortex statistics.

2. Two-dimensional fluid turbulence

Turbulence in atmospheres and oceans occurs in many forms and at many scales. Two-dimen-
sional turbulent flow is an idealization that captures many of the features of planetary tur-
bulence and, in particular, has vortex behaviour that is common to many atmospheric and
oceanic phenomena. Thus, two-dimensional turbulence often serves as a laboratory to study
aspects of planetary turbulence and as a test bed for developing theories and algorithms. Here
we follow this strategy and use two-dimensional turbulence to develop and test a new multi-
resolution census algorithm for vortex statistics. Although there are experimental fluid systems
that approximate two-dimensional fluid flow, numerical simulations are the most effective way
to develop and test such algorithms. Treating the output of numerical simulations as data which
are analysed just as we would with observations or laboratory experiments is routine in the field
of turbulence and we follow this route.

Two-dimensional fluid dynamics has a long history and many aspects are well understood
(Kraichnan and Montgomery, 1980; Frisch, 1995; Lesieur, 1997). The equations of motion for
two-dimensional turbulence are written in terms of the fluid velocity u = .ux, uy/ and its scalar
vorticity

ζ.u/= .∇ ×u/ · ẑ,

where ∇ is the gradient operator and ẑ is a unit vector in the direction perpendicular to the
plane containing the two-dimensional velocity u. In general the curl of a vector field is given
by ∇ × u and, hence, vorticity is the curl of the velocity field. Following the ‘right-hand rule’
vorticity is positive when the flow is rotating anticlockwise and negative otherwise. A related
concept is circulation which is related to vorticity by Stoke’s theorem

Γ.u/=
∫

S

ζ.u/dS,

where S is a surface in two dimensions. The units of circulation are length squared over time
and vorticity is the circulation per unit area. Enstrophy is given by

E.u/= 1
A

∫
S

|ζ.u/|2 dS,

where A is the area of the fluid, and is a measure of the mean-square vorticity. Enstrophy is a
quantity that is similar to energy (which is the mean-square velocity) and plays an important
role in turbulence theory despite being somewhat non-intuitive.

It is important to understand fluid flow at a macroscopic scale and, in particular, to create
more accurate models for the flow of the atmosphere and ocean. Recent advances in computing
have allowed scientists to produce more realistic simulations of turbulent flows (Ferziger, 1996;
Moin and Mahesh, 1998). Numerical simulations of two-dimensional turbulence show that
random initial conditions will self-organize into a collection of coherent vortices which sub-
sequently dominate the dynamics (McWilliams, 1984, 1990). Owing to this self-organization,
traditional scaling theories of turbulence fail to describe the dynamics correctly, whereas scaling
theories that are based on the statistics of the vortices are much more successful (Carnevale
et al., 1991; Weiss and McWilliams, 1993; Bracco et al., 2000).
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2.1. Description of the data
The equations of motion for two-dimensional fluid flow are

@ζ

@t
+ .u ·∇/ζ=D,

ζ= .∇ ×u/ · ẑ,

where D is a general dissipation operator. Despite being small, dissipation is an important
component of turbulence and is necessary for numerical simulations. Owing to the nature of
two-dimensional turbulence, energy cascades to large scales and is not dissipated in the limit
of small dissipation, whereas enstrophy cascades to small scales and has finite dissipation in
the limit of small dissipation. The dissipation of enstrophy is governed by the evolution of the
vortex population. These equations are simulated with doubly periodic boundary conditions
by using a pseudospectral algorithm, using a hyperviscous diffusion operator D=−ν∇4ζ on a
512 × 512 grid. The simulations start from small-scale random initial conditions.

As time proceeds, the random initial conditions self-organize into coherent vortices. The ini-
tial scale of the vortices is governed by the scale of the initial conditions. Subsequently, vortices
grow through vortex mergers until a final end state is reached with two vortices, one of each
sign. During the time period after self-organization but before the number of vortices becomes
too small, the turbulence can be modelled as a population of interacting coherent vortices. We
emphasize that the vortices are not introduced into the flow by any external forcing, but rather
they arise through the natural self-organizing nature of two-dimensional turbulence.

Here we apply our algorithm solely to data from numerical experiments. The equations of
motion and the methods for solving them are firmly established and previous work in fluid
dynamics has shown that numerical simulations, laboratory experiments and observations of
natural systems all produce vortices with similar properties. Numerical simulations provide
the most complete and accurate representation of vortex dynamics and thus provide the most
stringent test for the algorithm proposed.

3. Models for vorticity fields

The goal of our multi-resolution census algorithm is to identify all coherent structures (vortices)
from a given vorticity field and then to compute summary statistics from each structure iden-
tified. As discussed in Section 1, this approach differs from previous approaches in that we are
not interested in merely separating the coherent portion of the field from the background, as in
the traditional signal-plus-noise model, but instead isolate individual coherent structures in the
image for further analysis. For the simple vortex fields that are considered here, our proposed
method performs similarly to previous methods. This is quantitatively demonstrated by the
scaling relationships that are shown in Fig. 8 later. However, previous methods are not easily
extended to flows with more complex structure. The general statistical framework of the current
approach provides a flexible modelling framework in which to implement generalizations in a
relatively straightforward manner.

For clarity we first outline a continuous version of the problem and then follow with a more
practical discrete approximation. Let ζt.x/ denote an observed vorticity field at time t and
location x ∈R2. Given S vortices, ζt.x/ can be decomposed as

ζt.x/=
S∑

s=1
vs.x/+ et.x/ .1/

where vs is the localized vorticity that is associated with each coherent structure and et is the
background variation from other types of structure. Given the dominance of vortices in our
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application, it is useful to assume a stochastic character for the residual component et . The
statistical problem is, given the observed field ζt , estimate S and {vs}.

The main modelling component in this work is to expand the individual vortex field in a finite
basis

vs =
M∑

i=1
αs,i zi.x −μs/ .2/

where μs approximates the centre of the vortex and the (linear) coefficients {αs,i} determine the
shape. Estimation procedures for μs and {αs,i} are discussed in Section 4. The basis functions
{zi} are designed to provide a multiscale representation of coherent structures and build in prior
knowledge of the shape of the vortex. Their specification is motivated in the next two sections.

3.1. Multi-resolution analysis
The use of wavelets for two-dimensional image analysis and compression has a large literature
and at its heart is the decomposition of an image into different scales or levels of resolution
(Vetterli and Kovačević, 1995; Mallat, 1998). In our work we assume the scale to be in powers
of 2 and within a scale consider a further decomposition that divides features into three orien-
tations: vertical, horizontal and diagonal. The net result is that, for a given initial vorticity field
ζt and J levels of resolution (J =6 is used when applying the model in practice), we decompose
the field into the sum of 3J +1 distinct components: three different orientations for each level
of resolution and a smoothed field. Heuristically, as the levels increase, the main features at
each level will increase in size by a factor of 2. Strong horizontal features at a given scale are
represented by the horizontal component whereas similar correspondences hold for the vertical
and diagonal components. Later, it will be exploited that some of these level-specific features
may correspond to features at (possibly different) levels of the decomposition of the vorticity
field.

We assume that the vorticity field ζ.x/ has finite energy, i.e.
∫

x ζ
2.x/<∞, and letφ be a scaling

function andψ be the corresponding wavelet generating an orthonormal basis on L2.R/. Define
the three separable two-dimensional wavelets

ψh.x1, x2/=φ.x1/ ψ.x2/,

ψv.x1, x2/=ψ.x1/ φ.x2/,

ψd.x1, x2/=ψ.x1/ ψ.x2/,

corresponding to the horizontal, vertical and diagonal directions respectively. This follows from
the fact that the two-dimensional wavelets are the outer product of two one-dimensional wavelet
and scaling functions, where the scaling function averages (smooths) across its spatial direc-
tion whereas the wavelet function differences across its spatial direction. The two-dimensional
wavelet ψh.x1, x2/=φ.x1/ ψ.x2/ will therefore smooth across the first dimension (x1-axis) and
difference across the second dimension (x2-axis), thus favouring horizontal features. The two-
dimensional wavelet basis function ψv.x1, x2/ =ψ.x1/ φ.x2/ differences across the x1-axis and
smooths across the x2-axis, thus favouring vertical features, and ψd.x1, x2/=ψ.x1/ ψ.x2/ differ-
ences across both directions and favours non-vertical–non-horizontal (i.e. diagonal) features.
The separable scaling function φ.x1, x2/ = φ.x1/ φ.x2/ is associated with the approximation
space.

Although the two-dimensional discrete wavelet transform (DWT), as a decimated ortho-
normal transform, would be a more efficient representation of the vorticity field we find it
advantageous to utilize the two-dimensional maximal overlap DWT (MODWT). Unlike the
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orthonormal transform, the two-dimensional MODWT produces a redundant non-orthogo-
nal transform. The reason for this discrepancy is that the two-dimensional MODWT does not
subsample in either dimension; it only filters the original image. The advantages are that the
transform is translation invariant to integer shifts in space and it reduces potential artefacts that
are caused by how the wavelet filter represents abrupt changes in the image.

Assume that both ψ and φ have been rescaled so that the squared norm of the wavelet coeffi-
cients equals the squared norm of the original observations. The separable wavelet functions
that are associated with specific scale and spatial directions D∈{h, v, d} are given by

ψD
j,k,l.x1, x2/= 1

22j
ψD

(
x1 −k

2j
,
x2 − l

2j

)
, j =1, . . . , J , k =1, . . . , M, l=1, . . . , N:

The separable scaling function φj,k,l is defined similarly. Hence, each level in the transform will
have the same spatial dimension as the original field .M ×N/ and represent a redundant set of
wavelet coefficients. The two-dimensional MODWT begins with the original vorticity field ζ
(the spatial location will be omitted when implied), and at all scales we denote ωφj =〈ζ,φj,k,l〉
and ωD

j =〈ζ,ψD
j,k,l〉 for D∈{h, v, d}, where 〈x, y〉 is the two-dimensional inner product. The vor-

ticity field ζ.x/ may now be decomposed into 3J +1 subfields: three fields of wavelet coefficients
at each level of resolution corresponding to distinct spatial directions and one field containing
the scaling coefficients at the final level. The scaling (approximation) field for level j may be
obtained from the four fields at level j +1 via

ω
φ
j .x/=ω

φ
j+1Åφj,k,l +

∑
D

ωD
j+1ÅψD

j,k,l, .3/

where the asterisk denotes the convolution operator.
The two-dimensional MRA of the vorticity field is an additive decomposition that is given

by recursively applying equation (3) over all j, i.e.

ζ.x/=ω
φ
J ÅφJ ,k,l +

J∑
j=1

∑
D

ωD
j ÅψD

j,k,l =α
φ
J .x/+

J∑
j=1

∑
D

αD
j .x/,

where αφJ is the wavelet approximation field and αD
j is the wavelet detail field that is associ-

ated with the spatial direction D ∈ {h, v, d}. The MRA of ζ.x/ provides a convenient way of
isolating features at different scales and directions with coefficients in the spatial domain
versus the wavelet domain. This is advantageous since reconstruction is now reduced from
the full inverse two-dimensional MODWT to simple addition and potential phase adjustments
are eliminated.

Figs 2 and 3 display the six scales from a two-dimensional MRA of the sample vorticity field
in Fig. 1 (at t =15), defined by a 100×100 pixel section centred at .x, y/= .399, 101/. Each row
displays the wavelet detail fields that are associated with the three spatial directions: horizon-
tal, vertical and diagonal. It is clear that each of the two-dimensional wavelet filters captures
distinct spatial directions at a fixed spatial scale. Given that the filaments from this particular
vortex are elliptical in shape, it is not surprising to see the detail coefficients of the filament
structures strongest in the north-east–south-west directions. It is interesting to note that the
coherent structure (i.e. the dark region in the centre of the image) is not seen until the third
scale (Figs 2(g)–2(i)) and then only in the horizontal and vertical directions. At higher scales,
corresponding to larger spatial areas and lower spatial frequencies, the coherent structure is
apparent in all three directions. This is most probably due to the spatial extent (size) of the
structure at time t =15 in the simulation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Two-dimensional MRA .j D 1, 2, 3/ of a 100 � 100 pixel section of the vorticity field centred at
.x, y/ D .399,101/ by using the Daubechies least asymmetric wavelet filter .L D 8/ (LH corresponds to hori-
zontal, HL to vertical and HH to diagonal wavelet coefficients; this pixel section is the area that is highlighted
by the white square in Fig. 1(a)): (a) LH1; (b) HL1; (c) HH1; (d) LH2; (e) HL2; (f) HH2; (g) LH3; (h) HL3; (i)
HH3

3.2. Single-vortex model
Recall that a vortex may be loosely described as a concentration of anomalously high (in abso-
lute value) vorticity. As a simple outline of a vortex we consider the Gaussian kernel. If we
translate a single vortex to the origin, then τ .x/=η exp.−‖x‖2=σ2/ is our vortex template func-
tion where η is the maximum vorticity at its centre. This choice for τ .x/ visually appears to
capture the relevant features of an idealized vortex even when the observed vortices decay back
to zero at a different rate from that of Gaussian tails. For illustration in Fig. 4, η and σ2 were
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Two-dimensional MRA .j D 4, 5, 6/ of a 100 � 100 pixel section of the vorticity field centred at
.x, y/ D .399,101/ by using the Daubechies least asymmetric wavelet filter .L D 8/ (LH corresponds to hori-
zontal, HL to vertical and HH to diagonal wavelet coefficients): (a) LH4; (b) HL4; (c) HH4; (d) LH5; (e) HL5;
(f) HH5; (g) LH6; (h) HL6; (i) HH6

chosen to coincide with the peak value and spread of the specific coherent structure. How-
ever, when used in the multi-resolution census algorithm the template function will have a fixed
magnitude and spread—any modifications to fit the vortex will be induced by the multiscale
representation of τ .x/. Thus, a perfect fit is not required since deviations from Gaussianity will
be captured through the model fitting procedure.

Figs 5 and 6 show an MRA .J = 6/ of τ .x/ that is derived from the outer product of two
zero-mean Gaussian kernels with the same variance. The rows correspond to wavelet scales and
the columns correspond to spatial directions within each scale. Although the Gaussian kernel is
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Fig. 4. Vortex cross-sections ( ) and normalized Gaussian kernels (- - - - - - - ) from the observed vorticity
field at time t D15

too simple for modelling an observed vortex directly, the components of its MRA are strikingly
similar to the MRA of individual coherent structures in the observed vorticity field (Figs 2 and
3). This observation identifies the basic components for building a template basis and is key
to our methodology. We propose to represent each matrix of vorticity coefficients as a linear
combination of the matrices that are derived from the MRA of the Gaussian kernel. A straight-
forward way to relate the MRA of an observed coherent structure to the template function is
through a series of simple linear regression models relating the multi-resolution coefficients from
the observed vorticity field α with the multi-resolution coefficients from the template function
z via

αD
j,k,l =βD

j zD
j,k,l + "D

j,k,l, k =1, . . . , M, l=1, . . . , N, for all j and D,

α
φ
J ,k,l = ξ

φ
J +β

φ
J z

φ
J ,k,l + "

φ
J ,k,l, k =1, . . . , M, l=1, . . . , N:

.4/

At each spatial scale and direction there is only one final parameter to be fitted, since each image
from the MRA is guaranteed to be mean 0 except for the smoothed field αφ. The implied linear
relationship between the multi-resolution components of the data and template function allows
for differences in the magnitude and direction of vorticity through the regression coefficients,
i.e. once τ .x/ has been defined (by using fixed parameters η and σ2) we shall use it to model all
possible coherent structures in the vorticity field. The MRA decomposes the template function
into spatial scales and directions, but the model in equation (4) is limited because each spatial
scale and direction from ζ.x/ is tied to the same spatial scale and direction of τ .x/. To make
full use of the MRA, we propose to estimate every spatial scale and direction of the observed
vorticity field by using all possible spatial scales and directions from the template function. This
suggests the multiple linear regression model

αD
j,k,l =βh

1 zh
1,k,l +βv

1zv
1,k,l +βd

1 zd
1,k,l + . . . +βh

J zh
J ,k,l

+βv
J zv

J ,k,l +βd
J zd

J ,k,l +β
φ
J z

φ
J ,k,l + "D

j,k,l, .5/

k = 1, . . . , M, l = 1, . . . , N, for all j and D. The linear regression model for the field of wavelet
smooth coefficients in equation (4) does not change. The intercept is included to account for
potential low frequency oscillations that may not be provided by the template function. At each
spatial scale and direction from the observed vorticity field there are 3J + 1 parameters to be
fitted. The full multivariate multiple linear regression model for a single vortex may now be
formulated as

Y =Zβ+ε, .6/
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Two-dimensional MRA .j D 1, 2, 3/ of a 100 � 100 pixel section of the template function (the rows
correspond to the scale j and the columns correspond to spatial directions; LH is horizontal, HL is vertical
and HH is diagonal): (a) LH1; (b) HL1; (c) HH1; (d) LH2; (e) HL2; (f) HH2; (g) LH3; (h) HL3; (i) HH3

where Y is the MN × .3J +1/ response matrix from the MRA of the observed vorticity field, Z
is the MN × .3J +1/ design matrix whose columns consist of the MRA of the template function
that is centred at the location μ and β is the .3J +1/× .3J +1/ regression coefficient matrix for
a given coherent structure.

There are several differences between the Gaussian kernel τ .x/ and the observed vorticity field
ζ.x/ that are handled automatically through the multivariate multiple linear regression model
in equation (5); these include fixed spatial size, amplitude and radial symmetry. The fixed spatial
size of τ .x/ is taken care of by the fact that all spatial scales from its MRA are associated with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Two-dimensional MRA .j D 4, 5, 6/ of a 100 � 100 pixel section of the template function (the rows
correspond to the scale j and the columns correspond to spatial directions; LH is horizontal; HL is vertical
and HH is diagonal): (a) LH4; (b) HL4; (c) HH4; (d) LH5; (e) HL5; (f) HH5; (g) LH6; (h) HL6; (i) HH6

each spatial scale in the observed vorticity field. The scale-dependent multiple linear regression,
equation (5), may represent any particular spatial scale of ζ.x/ and associate it with any spa-
tial scale of τ .x/. Thus, larger spatial scales may be either favoured or penalized through the
individual regression coefficients. The amplitude of the template function is similarly handled
through the magnitude of these regression coefficients.

An initial impression may be that the radial symmetry of τ .x/ will restrict the model to radially
symmetric vortices. However, asymmetry is accommodated through the multivariate multiple
linear regression by decoupling the three unique spatial directions. Each spatial direction is
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manipulated through its own regression coefficient, thus allowing for eccentric vortex shapes by
favouring one or two of the three possible spatial directions at each scale (Figs 5 and 6).

The level of association that is needed between the template function and feature of interest
to model the vorticity field is currently unknown. We have found that small pixel shapes, such
as a Gaussian or triangular function, work well in the problem that is presented here. However,
we believe that this algorithm is quite adaptive through the user-defined template function τ .x/.
For example, if the filament structures were deemed interesting in this problem, an effective
template function to pick out these features could consist of nothing more than a collection of
concentric circles.

4. Model estimation

4.1. A linear model framework
On the basis of the previous development of the template function and the final step of discret-
ization we are led to the following model for a vortex field at a single time point:

Y =Z1β1 +Z2β2 + . . . +ZSβS +ε, .7/

where Y is the MN × .3J + 1/ response matrix from the MRA of the observed vorticity field
(the columns index the spatial scales and direction where each column vector is the result of
unwrapping the M ×N image matrix into a vector of length MN), Zs is the MN × .3J +1/ design
matrix whose columns consist of the MRA of the template function centred at the location μs

and βs is the .3J + 1/ × .3J + 1/ regression coefficient matrix for the kth coherent structure.
Note that this model parallels the continuous versions in equations (1) and (2), but for fixed
S and {μs} is a linear model. Given this framework, the main statistical challenge is model
selection, determining the number of coherent structures S and their locations {μs}.

4.2. Coherent feature extraction
We choose to implement our procedure for coherent structure extraction in a modular fashion
so that we may modify specific steps without jeopardizing the integrity of the entire method.
For this, the first major step is to produce a set of vortex candidate points C (co-ordinates in two
dimensions), i.e. a subset of all possible spatial locations in the observed vorticity field. Our goal
at this point is not to generate the exact locations of all coherent structures in the field, but we
want C to contain all possible coherent structures and additional spatial locations that are not
vortices; i.e. MN � #C > S. Although the number of elements in C is large, their refinement is
amenable to more conventional statistical analysis. Vortices are selected from C by using classic
likelihood procedures to obtain a final model. The first step is a rough screening of the model
space and should be done with computational efficiency in mind. The second step devotes more
computing resources on a much smaller set of models.

4.2.1. Candidate point selection
Instead of relying on specific features in the vorticity field that are present in our current data set
and may or may not be present in future applications, we propose a model-based approach to
extracting the set of vortex candidate points C. After selecting an appropriate template function
τ .x/, we fit a single-vortex model (Section 3.2) to every M × N spatial location. This is done
in a computationally efficient manner by first performing an orthogonal decomposition on the
design matrix Z and using a discrete Fourier transform to perform the matrix multiplications
(Whitcher et al., 2003). The result is that the multivariate multiple linear regression model in
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equation (7) can be fitted to all M × N grid points in the image without the need for a mas-
sive computing environment. The reason for fitting the single-vortex model everywhere is that
we may now use the regression coefficient matrix β̂s to indicate the presence or absence of a
coherent structure at μs. This technique has the inherent flexibility of the template function. If
a different feature were to be extracted from the vorticity field, we would simply fit a different
template function and use its regression coefficients.

With a regression coefficient matrix for each location, a distance measure is computed between
β̂ and the identity matrix IJ , of dimension 3J +1, by using

Λ=min[tr{.β̂− IJ /2}, tr{.β̂+ IJ /2}]:

The idea is that Λ measures the feasibility that a vortex is centred at this location. The value
of Λ is small when the regression matrix β̂ is similar to the identity matrix and, thus, the sin-
gle-vortex model is similar to the template function. Two comparisons are made, one to the
positive identity matrix and one to the negative identity matrix, so that positive and negative
spinning vortices are favoured equally. The parametric image of Λ-values is smoothed by using a
nine-point nearest neighbour kernel with weights that are based on Euclidean distance. A local
minimum search is performed on the smoothed image to obtain the set of candidate points C.
We found that this technique captures all coherent structures that we can identify visually in the
vorticity field along with additional features that may or may not be vortices.

4.2.2. Model selection for the vortex field
A final selection of coherent structures from the set of candidate points C is achieved through
forward subset selection by minimizing the generalized cross-validation function

GCV.S/= RSS.S/=MN

{1−p.S/=MN}2 ,

for a given choice of S vortex locations. Here RSS.S/ is the residual sum of squares and p.S/

is the total number of effective parameters in equation (7). The following simple method was
adopted to count the total number of effective parameters. For each estimated βs in equation
(7), which are denoted as β̂s = .β̂1, . . . , β̂.3J+1/×.3J+1//, its effective number of parameters is
defined as the number of β̂js whose absolute value is greater than twice the sample standard
deviation of the β̂js. Then the overall total effective number of parameters in equation (7) is
calculated as the sum of the effective number of parameters of β̂s for all s.

Because of the size of this problem, it is not possible to compute β̂ via exact linear algebra. For
an observed vorticity field with M =N =512 and J =6, model fitting will produce approximately
95 million regression coefficients. Instead we use an iterative method, backfitting (Friedman and
Stuetzle, 1981), to find an approximate solution to the S.3J +1/2 simultaneous linear equations
that are associated with equation (7). Convergence for this algorithm is achieved by looking at
the absolute difference between each regression coefficient matrix β̂ from step i − 1 to i. The
number of iterations was found to be small across a wide range of S: usually 2–4 iterations
sufficed. We attribute the small number of iterations to the fact that most coherent structures
in ζ.x/ are spatially isolated; see, for example, Fig. 1.

5. Application to two-dimensional turbulent flows

Now we return to the simulated vorticity field in Fig. 1 and compute the vortex statistics by
using our multi-resolution census algorithm that was outlined in Section 4.2.
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5.1. Isolated and multiple coherent structures
The vorticity field at time step t =15 from the numerical simulation provides a reasonable exam-
ple of multiple coherent structures that are embedded within a quiescent background. Summary
statistics for this vorticity field include an average circulation given by ζ̄= 384:10, an average
enstrophy of Ē =397:4×103 and an average maximum peak amplitude of 25.63.

To illustrate the ability of our procedure to find coherent structures of varying sizes and shapes,
Fig. 7 shows the results from the two stages of our census algorithm: coherent structures that
were identified from our candidate procedure, the vortex field model fitted and the residual

(a)

(b) (c)

Fig. 7. (a) Candidate vortex locations, (b) vortex field model and (c) residual field for the observed vorticity
field at time t D15, plotted on the same grey scale: the spatial locations of the estimated coherent structures
from the vortex field model are plotted on the residual field for comparison; changes in colour in the locations
of the candidate points are artificial and meant only to visualize points in areas of large negative vorticity
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Fig. 8. Temporal scaling of vortex statistics from the multi-resolution-based census algorithm (all four quan-
tities are expected to follow a scaling relationship in time and are thus plotted on a log–log-scale; ,
best fitting regression line): (a) number of vortices; (b) average circulation; (c) average enstrophy; (d) average
maximum amplitude

field (t =15). The set of candidate points, roughly 200, appears to capture all potential vortices
that are apparent through visual inspection along with other locations that do not appear to
contain a substantial accumulation of vorticity. After model selection, a total number of 54
coherent structures were identified. Although the template function has fixed spatial size and
amplitude, the coherent structures fitted are distinct from it and from each other, and exhibit a
wide variation in both size and amplitude.

A limitation of the current vortex field model is that elliptical structures, such as structures
being warped by others in their local neighbourhood, are not well modelled. Although the DWT
decomposes two-dimensional structures into horizontal, vertical and diagonal features, warped
vortices do not follow both diagonal directions simultaneously. Hence, the diagonal elements
from the template function are not heavily utilized in the modelling process. Alternative wavelet



310 B. Whitcher, T. C. M. Lee, J. B. Weiss, T. J. Hoar and D. W. Nychka

transforms, such as the complex wavelet transform (Kingsbury, 1999, 2001), produce coeffi-
cients that are associated with several directions and have been more successful in representing
structures in images when compared with common orthogonal wavelet filters. One could also
apply other types of multiscale transforms that are more efficient in representing and extracting
other features of interest, e.g. the curvelet transform of Starck et al. (2002).

5.2. Application to temporal scaling
One scientific end point for studying a turbulence experiment is quantifying how coherent
structures and their related statistics scale over time. Some examples of the analysis of two-
dimensional turbulent flow are Siegel and Weiss (1997), who used a wavelet-based procedure,
and the ‘objective observer’ approach of McWilliams (1990). We applied our new method to
identify the vortices in all the vorticity fields at time t �7. Fig. 8 displays the number of vortices,
average circulation, average enstrophy and average maximum peak amplitude.

Weiss and McWilliams (1993) investigated the temporal scaling of vortex statistics by using
two techniques: long time integration of the fluid equations and from a modified point vortex
model that describes turbulence as a set of interacting coherent structures. The two systems
gave the same scaling exponent ξ≈0:72. The scaling exponent measures the rate of decay of the
turbulence and is governed by the dynamics of the vortex population. In addition, it provides a
quantitative measure to test our algorithm. Bracco et al. (2000) studied the evolution of vortex
statistics from very high resolution numerical simulations. The results of the numerical simu-
lation at low Reynolds number found ξ≈0:72, whereas the vortex decay rate at high Reynolds
number was ξ≈0:76. The Reynolds number is the ratio of inertial forces to viscous forces. Low
Reynolds numbers correspond to laminar flow where viscous forces dominate and is character-
ized by smooth fluid motion and high Reynolds numbers are dominated by inertial forces and
contain vortices and jets. The evolution of other vortex statistics can be expressed in terms of
ξ (Carnevale et al., 1991). The slopes with standard errors of the best fitting regression lines in
Fig. 8 are −0:739 (0.0127), 0.346 (0.0242), −0:452 (0.0232) and −0:0337 (0.0112) respectively
for Figs 8(a)–8(d). These values agree with those given in Weiss and McWilliams (1993).

6. Discussion

Using a multi-resolution multivariate regression model, we have been able to model accurately
and to extract coherent structures from a simulated two-dimensional fluid flow at high Reynolds
number. The vortex statistics from analysing each time step individually reproduces well-known
empirical scaling behaviour. This technique allows for an efficient, objective analysis of observed
turbulent fields. Although these results have been achieved by previous algorithms, our method is
not limited to simple accumulations of positive or negative vorticity. Through straightforward
specification of the template function a variety of features may be extracted from turbulent
flow. The modular implementation of our algorithm ensures flexibility across applications and
precision of the results is guaranteed by using sound statistical techniques.

The methodology that is presented here can be directly transferred to a three-dimensional
setting. For freely decaying, homogeneous geostrophic turbulence, coherent structures are com-
pact regions of large vorticity that is organized in the vertical direction (so-called tubes); see,
for example, Farge et al. (2001a, b). Previous studies have only implemented a vortex census
algorithm by adapting the ‘objective observer’ approach of McWilliams (1990). For the multi-
resolution approach, software implementations for the DWT and maximal overlap DWT are
already available that extend computations to three dimensions. Further collaboration with
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experts in turbulence would be necessary, but a reasonable template function to try would be
a three-dimensional Gaussian kernel or possibly a cylinder of fixed radius in .x, y/ and fixed
height in the vertical direction.

Storlie et al. (2004) recently proposed a novel statistical model for object tracking using an
elliptical model for coherent structures. A distinct feature of this tracking model is that it allows
splitting and merging of objects, and at the same time it also allows imperfect detection of objects
at each time step (e.g. false positive results). This tracking model has been, with preliminary
success, applied to track the time evolution of coherent structures in turbulence. We see an
opportunity to merge this technique with the methodology that is presented here to track the
time evolution of the turbulent fluid by using the regression coefficient matrix as a concise
description of the coherent structure.
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Vetterli, M. and Kovačević, J. (1995) Wavelets and Subband Coding. Englewood Cliffs: Prentice Hall.
Weiss, J. B. and McWilliams, J. C. (1993) Temporal scaling behavior of decaying two-dimensional turbulence.

Phys. Fluids, 5, 608–621.
Whitcher, B., Weiss, J. B., Nychka, D. W. and Hoar, T. J. (2003) Stochastic multiresolution models for turbulence.

In Recent Advances and Trends in Nonparametric Statistics (eds M. G. Akritis and D. N. Politis), pp. 497–509.
New York: Elsevier.

Wickerhauser, M. V., Farge, M. and Goirand, E. (1997) Theoretical dimension and the complexity of simulated
turbulence. In Multiscale Wavelet Methods for Partial Differential Equations (eds W. Dahmen, P. Oswald and
A. J. Kurdila), pp. 473–492. Boston: Academic Press.

Wickerhauser, M. V., Farge, M., Goirand, E., Wesfreid, E. and Cubillo, E. (1994) Efficiency comparison of wave-
let packet and adapted local cosine bases for compression of a two-dimensional turbulent flow. In Wavelets:
Theory, Algorithms, and Applications (eds C. K. Chui, L. Montefusco and L. Puccio), pp. 509–531. San Diego:
Academic Press.


