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Abstract

The efficient and accurate representation of two-dimensional turbulent fields is of interest
in the geosciences because the fundamental equations that describe turbulence are difficult to
handle directly. Rather than extract the coherent portion of the image from the background
variation, as in the classical signal plus noise model, we present a statistical model for individual
vortices using the non-decimated discrete wavelet transform. A template image, supplied by the
user, provides the features we want to extract from the observed field. By transforming the
vortex template into the wavelet domain specific characteristics present in the template, such
as size and symmetry, are broken down into components associated with spatial frequencies.
Multivariate multiple linear regression is used to fit the vortex template to the observed vorticity
field in the wavelet domain.
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1 Introduction

The efficient and accurate representation of two-dimensional turbulent fields is of interest in the

geosciences because the fundamental equations that describe turbulence are difficult to handle

directly. Recent advances in computing allow scientists to produce realistic simulations of turbulent

flows. The new emphasis of research in turbulence is on the individual coherent structures in the

flow instead of the signal versus background noise. Our approach to this problem is to develop

a flexible model for a single coherent structure (vortex) using a multiresolution analysis and then

efficiently represent the entire vorticity field through a collection of these structures. Defining the

vortex utilizes specific information from the scientist via a template function, but is flexible enough

to capture a broad range of features associated with observed coherent structures. Modeling the

vorticity field is done using classic regression methodology, allowing the information in the observed

data to dictate what is and what is not a vortex. This paper concentrates on the computational

algorithms used in our methodology and is a companion to Whitcher et al. (2002).

Wavelet-based analysis of two-dimensional turbulence has been performed previously; see, for

example, Farge et al. (1992), Wickerhauser et al. (1994), Wickerhauser et al. (1997) and the

summary article by Farge et al. (1996). The focus of the methodology used in these papers has

a signal processing orientation; that is, the wavelet transform discriminates between “signal” and

“noise” using compression rate as a classifier. The idea being that the coherent structures (vortices)

observed in the turbulent flow will be well represented by a few wavelet coefficients and therefore

most coefficients may be discarded. From one vorticity field, two fields are produced from such

a procedure: one based on the largest wavelet coefficients that is meant to capture the coherent

structures in the original field, and another based on the remaining wavelet coefficients which

captures the filament and background structure. Our methodology differs significantly from the

signal-plus-noise model, in that we formulate a statistical model for an individual coherent structure

and extract a fixed number of isolated vortices from the original field. From these estimates a

completely different set of summary statistics may be calculated; for example, instead of global

summary statistics like the enstrophy spectrum we are able to look at local statistics for each

structure such as the average size, amplitude, circulation and enstrophy.

Previous work in identifying vortices in a turbulent flow has produced a wide variety of methods.

We summarize two of them here. Let ζ(x) define the vorticity at pixel x ∈ R2. A simple approach

to isolating individual structures within the vorticity field is to define a vorticity threshold δ. Any
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Figure 1: Simulated vortex field (512× 512) at time t = 15. The gray scales are artificial and were
converted from the spectrum of visible light. Negative vortices are seen as white with dark gray
centers; while positive vortices are seen as black with light gray centers. Zero vorticity is a uniform
light gray.

observed values such that ζ(x) > |δ| would describe a region of “anomalously high vorticity” and,

hence, a coherent structure.

There are several problems with a thresholding approach. Coherent structures are stripped

of any vorticity beneath the threshold thus introducing bias and reduced variability into vortex

statistics, the threshold must be adjusted a posteriori from time step to time step whereas we

would prefer a method that adapts to the set of coherent structures in each individual image, and

lastly there is no clear way to generalize the technique to more complex problems (e.g., multipole

or noisy structures).

An interesting method developed in the late 1980s is the objective observer approach of McWilliams
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(1990). The method is as follows: determine the pixel with the largest (in magnitude) vorticity,

descend/ascend the peak in vorticity in the positive x-direction until a vortex boundary is encoun-

tered, record this point and search for additional vortex boundary points at the base of this coherent

structure until a closed curve is produced. The set of pixels found in this way define a boundary

for the vortex. Repeat this procedure for all local minima/maxima in the observed vorticity field.

The limitations of this procedure is that it depends too heavily on properly defining what is and

what is not a coherent structure.

A wavelet-packet census algorithm was developed by Siegel and Weiss (1997) where the discrete

wavelet packet transform is applied to simulated turbulent flow. The first step of their procedure is

an iterative denoising method that partitions the wavelet packet coefficients into two groups – large

and small coefficients. The large wavelet packet coefficients correspond to the coherent portion

of the observed vorticity field and the small wavelet coefficients correspond to the disorganized,

background information. On the coherent portion, wavelet coefficients are grouped together through

their ideal support in the spatial domain to form individual coherent structures. The wavelet-based

method presented here is an attempt to replace the ad hoc and iterative schemes of Siegel and Weiss

(1997) with sound statistical procedures.

Section 2 introduces the two-dimensional multiresolution analysis of an image and its decom-

position into unique spatial scales and directions. Section 3 outlines our modeling strategy by

discussing vortex template functions and models for both single and multiple coherent structures.

Section 4 provides the methodology we use to estimate a single coherent structure and also multiple

structures in the vorticity field. Section 5 examines how well the technique performs at estimating

multiple coherent structures in a sample vorticity field.

2 The Two-Dimensional Discrete Wavelet Transform

2.1 Multiresolution Analysis

To simplify the vortex dynamics within a given realization of a vorticity field, we rely on the two-

dimensional discrete wavelet transform (2D DWT) and assume the vorticity field ζ(x) has finite

energy; i.e.,
∫
ζ2(x)dx < ∞. Let φ be a scaling function and ψ be the corresponding wavelet

generating an orthonormal basis on L2(R) and define the three separable wavelets

ψh(x1, x2) = φ(x1)ψ(x2), ψv(x1, x2) = ψ(x1)φ(x2), ψd(x1, x2) = ψ(x1)ψ(x2), (1)
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corresponding to horizontal, vertical and diagonal directions, respectively. More information con-

cerning the interpretation of “spatial directions” captured by the separable wavelet transform may

be found in Section 2.2. The separable scaling function φ(x1, x2) = φ(x1)φ(x2) is associated with

the approximation space. For m ∈ {h, v,d}, let

ψmj,k,l(x1, x2) =
1
2j
ψm

(
x1 − 2jk

2j
,
x2 − 2jl

2j

)
,

such that {
ψh
j,k,l(x1, x2), ψv

j,k,l(x1, x2), ψd
j,k,l(x1, x2)

}
(j,k,l)∈Z3

is an orthonormal basis of L2(R2). The triplet (j, k, l) denotes the jth wavelet scale at the spatial

position (k, l). In practice the depth of the 2D DWT is determined by the finite dimension M×N of

ζ(x), such that 1 ≤ j ≤ J = blog2 min{M,N}c. Efficient implementation of the separable 2D DWT

is performed via a series of convolutions and subsampling (Mallat 1998, Sec. 7.7).

Whereas it would be most efficient to represent the vorticity field using a decimated trans-

form such as the 2D DWT, we find it advantageous to utilize the 2D maximal overlap DWT

(2D MODWT). Unlike the orthonormal 2D DWT, the 2D MODWT produces a redundant non-

orthogonal transform. The reason for this discrepancy is that the 2D MODWT does not subsample

in either dimension, it only filters the original image. The advantages are that the transform is

translation invariant to integer shifts in space and it reduces artifacts caused by the choice of a

specific wavelet filter.

Let φ̄ = φ/
√

2 and ψ̄ = ψ/
√

2 be rescaled versions of the scaling and wavelet functions. The

three separable wavelet functions associated with spatial directions m ∈ {h, v,d} are now

ψ̄mj,k,l(x1, x2) =
1

22j
ψm

(
x1 − k

2j
,
x2 − l

2j

)
.

Hence, each level in the transform will have the same spatial dimension as the original field (M×N)

and represent a redundant set of wavelet coefficients. The 2D MODWT begins with the original

vorticity field ζ(x), and at all scales we denote v̄j(k, l) = 〈ζ, φj,k,l〉 and w̄j(k, l) = 〈ζ, ψmj,k,l〉 for

m ∈ {h, v,d}, where 〈x, y〉 is the two-dimensional inner product of x(·, ·) and y(·, ·). The vorticity

field ζ(x) may now be decomposed into 3J + 1 sub-fields,[{
w̄h
j , w̄

v
j , w̄

d
j

}
1≤j≤J

, v̄J

]
; (2)

three fields of wavelet coefficients corresponding to distinct spatial directions and one field contain-

ing the scaling coefficients at the final level. The scaling (approximation) field for level j may be
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obtained from the four fields at level j + 1 via

v̄j(k, l) = 〈v̄j+1, φ
∗
j,k,l〉+

∑
m

〈w̄mj+1, ψ
m∗
j,k,l〉. (3)

The 2D MODWT multiresolution analysis (MRA) of the vorticity field is an additive decompo-

sition given by recursively applying (3) over all j; i.e.,

ζ(x1, x2) = 〈v̄J , φ∗J,x1,x2
〉+

J∑
j=1

∑
m

〈w̄mj , ψm∗j,x1,x2
〉 = āJ(x1, x2) +

J∑
j=1

∑
m

d̄mj (x1, x2),

where āJ(x1, x2) is the wavelet approximation field and d̄mj (x1, x2) is the wavelet detail field as-

sociated with the spatial direction m ∈ {h, v,d}. The MRA of ζ(x) provides a convenient way of

isolating features at different scales and directions with coefficients in the spatial domain versus

the wavelet domain. This is advantageous since reconstruction is now reduced from the full inverse

2D MODWT to simple addition.

2.2 Spatial Directions of the 2D MRA

Estimating the coefficient associated with a basis function is equivalent to a filtering operation on

the original image. The qualitative features of these filters help to interpret the wavelet coefficients.

Two-dimensional wavelets (denoted by ψh, ψv, and ψd in (1)) are associated with horizontal,

vertical and diagonal features in the vorticity field. This follows from the fact that the two-

dimensional filters are the outer product of two one-dimensional filters, where the scaling filter

averages (smooths) across its spatial direction and the wavelet filter differences across its spatial

direction. The two-dimensional wavelet ψh(x1, x2) = φ(x1)ψ(x2) will therefore smooth across

the first dimension (x1-axis) and difference across the second dimension (x2-axis), thus favoring

horizontal features. The two-dimensional filter ψv(x1, x2) = ψ(x1)φ(x2) differences across the

x1-axis and smooths across the x2-axis, thus favoring vertical features. Finally, the ψd(x1, x2) =

ψ(x1)ψ(x2) differences across both directions and favors non-vertical/non-horizontal (i.e., diagonal)

features.

Figures 2 and 3 display the six scales from a 2D MRA of the sample vorticity field in Figure 1,

only a portion is shown centered at (x1 = 399, x2 = 101). The location of this structure is indicated

by a cross in the vorticity field in Figure 1. Each row displays the wavelet detail fields associated

with the three spatial directions: horizontal, vertical and diagonal. It is clear that each of the

two-dimensional wavelet filters captures distinct spatial directions at a fixed spatial scale. Given
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Figure 2: 2D multiresolution analysis (j = 1, 2, 3) of vorticity field centered at (x1 = 399, x2 = 101).
The Daubechies least asymmetric wavelet filter (L = 8) was used in the computation.

the filaments from this particular vortex are elliptical in shape, it is not surprising to see the detail

coefficients of the filament structures strongest in the northeast-southwest directions.

It is interesting to note that the coherent structure is not seen until the third scale (third row in

Figure 2) and then only in the horizontal and vertical directions. At higher scales, corresponding to

larger spatial areas and lower spatial frequencies, the coherent structure is apparent in all directions.

These figures indicate the usefulness of a multiscale representation in separating stylized features

of a coherent structure.
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Figure 3: 2D multiresolution analysis (j = 4, 5, 6) of vorticity field centered at (x1 = 399, x2 = 101).
The Daubechies least asymmetric wavelet filter (L = 8) was used in the computation.

3 Models for Vorticity Fields

Let ζt(x) denote an observed vorticity field at time t. The spatial locations {x} are assumed to fall

on a regular grid for both the x1 and x2 dimensions, denoted by M rows and N columns, being

dyadic in length (M and N are not required to be equal).

3.1 Selecting the Vortex Template

Our goal in this work is to identify and accurately model individual structures in an observed

vorticity field. Arguably there must be some user-defined information provided in order to attain

this goal, specifically the definition of what a coherent structure should look like from the observed

vorticity field. This provides focus for the regression model and yields scientifically interesting
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results. By framing our modeling technique in terms of a MRA, the influence of this user-defined

information is important but not too restrictive.

One choice of a template function τ(x) is the outer product of two identical Gaussian curves.

This appeared to capture the relevant features of an ideal vortex even if the observed vortices decay

back to zero at a faster rate than a Gaussian curve. Although this template is too simple or naive

for modeling an observed vortex directly, its MRA is strikingly similar to the MRA of individual

structures in the observed vorticity field (Whitcher et al. 2002).

There are obvious differences between the template function and coherent structures in the

observed vorticity field, some of them are handled automatically by the MRA while others require

further discussion. Limitations of the template function that are taken care of by framing our linear

regression model in terms of a MRA include: fixed spatial size, amplitude, and radial symmetry.

The fixed spatial size is taken care of by levels of the MRA being associated with different spatial

ranges. The multivariate multiple linear regression is allowed to pick any spatial size of the template

function and associate it with any spatial size in the observed data. The amplitude of τ(x) is

similarly handled through the magnitude of the regression coefficients. The radial symmetry of

τ(x) is another obvious drawback. This is dealt with through the MRA since within each level of

the decomposition there are three spatial directions (Section 2.2).

3.2 Single Vortex Model

Our statistical model for a single coherent structure, or vortex, in the vorticity field ζ(x) (we drop

the time index to simplify notation) is based on a multivariate multiple linear regression model.

The observational model for a single coherent structure is given by

Y = Zβ + ε, (4)

where β is the (3J + 1)×(3J + 1) matrix of regression coefficients and ε is the length 3J + 1 vector

of errors. The data matrix Y, of dimension (MN)×(3J + 1), is based on a multiresolution analysis

(MRA) of ζ(x); see Section 2.1. The 3J + 1 columns of Y are generated by column-scanning the

2D wavelet detail fields and concatenating each column. The (MN)×(3J + 1) matrix of covariates

(design matrix) Z is generated by column-scanning and concatenating the user-defined template

function τ(x). The template function is the same dimension as the observed vorticity field.

The implied regression model for each response vector Yi (column of Y) is

Yi = β1,iZ1 + β2,iZ2 + β3,iZ3 + · · ·+ β3J+1,iZ3J+1 + εi,
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for i = 1, . . . , 3J+1. By transforming the template function via a MRA, a function that is idealized

and simplistic in nature provides the foundation of our semi-parametric fitting procedure.

3.3 Vortex Field Model

The previous section proposed modeling an isolated coherent structure in the vorticity field ζ(x).

To more accurately model multiple coherent structures that may be spatially correlated, we propose

a vortex field model where the single vortex design matrix is replicated k times (k is assumed to

be known)

Y = Z1β1 + Z2β2 + · · ·+ Zkβk + ε, (5)

where each Zi is of dimension (MN)×(3J + 1), each regression coefficient matrix βi is (3J +

1)×(3J + 1), and ε is defined as before. The significance of having k distinct design matrices is

that each one is centered at the spatial location (x1,k, x2,k). Thus, the model in (5) allows for the

simultaneous estimation of multiple coherent structures that interact in space.

4 Model Estimation

4.1 Multiresolution-Based Census Algorithm

The following algorithm is our implementation of a vortex extraction procedure for an observed

vorticity field of arbitrary finite dimension. The procedure requires at input: a wavelet filter, the

maximum depth of the 2D MODWT, and the template function.

1. Compute single vortex models at each spatial location (x1, x2) using the efficient implemen-

tation in Section 4.2.

2. From the single vortex fits in [1], we compute the distance measure Λ for each spatial location

(x1, x2) and obtain the local maxima (Section 4.3). The pixels associated with these local

maxima constitute our collection of candidate points M.

3. Compute the vortex field model, via backfitting, for spatial locations k ∈M. We order these

candidate points via their distance measure Λk from [2], and use forward stepwise selection

to include coherent structures into the model (Section 4.4).

4. Statistics may be computed from the individual models ζt(x) of the vortex field model, such

as:

9



• # vortices

• Circulation: Γt =
∫
ζt(x) dx

• Enstrophy: Ωt =
∫
ζ2
t (x) dx

• Peak amplitude: αt = maxx ζt(x)

• Size: the area associated with a 2D Gaussian curve-fitting procedure.

These calculations are not provided in this paper, see Whitcher et al. (2002) for more details.

4.2 Fitting the Single-Vortex Model

From the definition of Z in (4), the template does not shift in the horizontal or vertical and a

MRA does not change this fact. Parameters of interest include the spatial position (x1, x2) of each

coherent structure, along with its matrix β of regression coefficients. In order to capture all possible

spatial locations and prepare for the eventual fitting of multiple coherent structures, the estimated

regression matrix

β̂
(x1,x2)

= (Z′Z)−1Z′Y, 1 ≤ x1 ≤M, 1 ≤ x2 ≤ N, (6)

must be performed M ·N times; that is, centered at every spatial location. If a sample vorticity

field is 512×512, that means (6) must be evaluated approximately 2.6 million times. Even using

popular methods for least-squares fitting, such as the QR or singular value decomposition, this is

a daunting computational task.

To fit a multivariate multiple linear regression at each pixel in an observed vorticity field, we

make use of the fact that regression may be viewed as smoothing, and utilize the Fourier transform.

First, let UDV′ = Z be the singular value decomposition of the (MN)× (3J + 1) covariate matrix

in (4) and replace Z with the orthogonal matrix U in (6) to obtain the matrix of regression

coefficients β̂
(x1,x2)

SVD = U′Y. The regression matrix of interest in (6) is recovered by undoing the

SVD via β̂
(x1,x2)

= VD−1β̂
(x1,x2)

SVD . This eliminates the explicit matrix inversion, but does not

replace iterating over MN pixels in the observed vorticity field. If we regard regressing Yi on Uk at

each pixel as just “smoothing,” then the discrete Fourier transform F may be utilized to perform

this convolution; i.e.,

B̂k,i = F−1 {F [image(Uk)] · F∗[image(Yi)]} , 1 ≤ i, k ≤ 3J + 1, (7)

where image(·) reconstructs a matrix from a vector, B̂k,i is of dimension M×N and ∗ denotes the

complex conjugate. Since both dimensions were defined to be dyadic, the two-dimensional fast
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Fourier transform may be used to greatly increase computational efficiency. Perform (7) (3J + 1)×

(3J + 1) times to obtain the alternative regression matrix β̂
(x1,x2)

SVD for all spatial positions (x1, x2);

e.g., letting J = 6 implies iterating (7) 192 = 361 times versus 2.6 million by direct computation.

4.3 Candidate Point Selection

For an observed vorticity field with M = N = 512 and J = 6, the above procedure will produce

approximately 95, 000, 000 regression coefficients. We would like to compute a regression model

where multiple coherent structures are involved. This is not possible when the number of possible

coherent structures is M ·N , so we introduce a simple procedure for discarding a large number of

spatial locations. From the single vortex fits we obtained in (7), we compute

Λk = min
{

tr[(β̂k − I)2], tr[(β̂k + I)2]
}

(8)

for each spatial location (x1, x2). The criterion Λk is small when the regression matrix β̂k is similar

to the identity matrix, and thus, the single-vortex model is similar to the template function. Two

comparisons are made, one to the positive identity matrix and one to the negative identity matrix,

so that positive and negative spinning vortices are favored equally. For specific vorticity fields, the

set of candidate points was well partitioned into coherent and non-coherent structures using Λk.

We denote the eight-member neighborhood around the pixel (x1, x2) by N and look for local

maxima in the Λk field. The collection of candidate points is defined via M = {(a, b) : ‖β̂(a,b)‖2 >

‖β̂(x1,x2)‖2, for all (x1, x2) ∈ N}. When applying this criterion on observed vorticity fields, the

collection of candidate points M not only includes almost all coherent structures in the field but

also additional points. The point being that the size of M is much less, by at least two orders of

magnitude, than the number of pixels in the original field.

4.4 Fitting the Vortex Field Model

Instead of directly calculating β̂ via linear algebra for (5), we utilize backfitting to solve the k

simultaneous linear equations

Y1 − (·+ Ŷ2 + Ŷ3 + · · ·+ Ŷk−1 + Ŷk) = Z1β1

Y2 − (Ŷ1 + ·+ Ŷ3 + · · ·+ Ŷk−1 + Ŷk) = Z2β2

...

Yk − (Ŷ1 + Ŷ2 + · · ·+ Ŷk−1 + ·) = Zkβk.
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The kth vortex model is associated with the spatial location (x1,k, x2,k) in ζ(x), where k ∈ M.

Convergence for this algorithm is achieved by looking at the absolute difference between each

regression coefficient matrix β̂k from iteration i− 1 to i. For any k, if |
∑

m,n β̂
(i)
m,n,k − β̂

(i−1)
m,n,k| > δ,

for some δ > 0, then the backfitting method was applied again. The number of iterations was

found to be small across a wide range of k, usually two or four iterations sufficed. We attribute

the small number of iterations to the fact that the coherent structures in an observed vorticity field

are relatively isolated (Figure 1) and therefore estimation is not seriously affected by fitting them

simultaneously.

To determine the number K of coherent structures in the field we utilize a penalized likelihood

criterion, specifically the generalized cross validation (GCV) function. We would like to search

the entire model space for the best combination of coherent structures (all subset regression), but

this would be too computationally intensive for several hundred candidate points. Instead, an

ordering is imposed on the candidate points and a model for the vorticity field is found by only

searching along the ordering. After single-vortex models are obtained for all candidate points, they

are ranked by their similarity to the identity matrix of dimension (3J + 1)×(3J + 1) via Λk (8).

After the candidate points are ordered according to Λk, additional coherent structures are added

to the vortex-field model one by one when the GCV is reduced. The number of free parameters

associated with a single-vortex model is simply (3J + 1)×(3J + 1). If the added vortex model does

not reduce the GCV it is discarded and the next model is added. This procedure is iterated until

no more candidate models exist.

5 Application to Two-dimensional Turbulent Flows

We return to the observed vorticity field in Figure 1 and compute the vortex statistics using our

multiresolution census algorithm outlined in Section 4.1. This vorticity field provides a reasonable

example of multiple coherent structures embedded within relatively quiescent background structure.

A total number of 53 coherent structures were identified. To illustrate the ability of our procedure

to find coherent structures of varying sizes and shapes, Figure 4 shows the fitted vortex field model

Ŷ and the residuals for the vorticity field. Although the template function is of fixed spatial size

and amplitude, the fitted coherent structures are quite different from the template function and

from each other. Comparing the residual field to the original data (Figure 1), it appears that all

visually obvious structures have been identified. In addition, one spurious structure was included
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Model Fit Residual

Figure 4: Fitted vortex field model Ŷ and residual field for the vorticity field at time t = 15, plotted
on the same color map. The spatial locations of the estimated coherent structures are plotted on
the residual field for ease of comparison.

in the model.

6 Discussion

Using a multiresolution regression model, we have been able to accurately model and extract co-

herent structures from a simulated two-dimensional fluid flow. This technique allows for a fast,

objective analysis of observed turbulent fields. Although these results have been achieved by previ-

ous algorithms, our method provides flexibility to the researcher through the choice of a template

function and modular implementation of the algorithm while stability and precision of the results

are guaranteed by using sound statistical techniques. We plan on applying this method to a variety

of data sets including more realistic simulations, climate model output, and satellite imagery. The

method may also be applied to simulations of three-dimensional quasi-geostrophic turbulence.

13



Acknowledgments

Support for this research was provided by the National Center for Atmospheric Research (NCAR)

Geophysical Statistics Project, sponsored by the National Science Foundation (NSF) under Grants

DMS98-15344 and DMS93-12686.

References

Farge, M., E. Goirand, Y. Meyer, F. Pascal, and M. V. Wickerhauser (1992). Improved pre-

dictability of two-dimensional turbulent flows using wavelet packet compression. Fluid Dy-

namics Research 10, 229–250.

Farge, M., N. Kevlahan, V. Perrier, and E. Goirand (1996). Wavelets and turbulence. Proceedings

of the IEEE 84 (4), 639–669.

Mallat, S. (1998). A Wavelet Tour of Signal Processing (1st ed.). San Diego: Academic Press.

McWilliams, J. C. (1990). The vortices of two-dimensional turbulence. Journal of Fluid Mechan-

ics 219, 361–385.

Siegel, A. and J. B. Weiss (1997). A wavelet-packet census algorithm for calculating vortex

statistics. Physics of Fluids 9 (7), 1988–1999.

Whitcher, B., J. B. Weiss, D. W. Nychka, and T. J. Hoar (2002). A multiresolution census

algorithm for calculating vortex statistics. Geophysical Statistics Project, National Center

for Atmospheric Research.

Wickerhauser, M. V., M. Farge, and E. Goirand (1997). Theoretical dimension and the complex-

ity of simulated turbulence. In W. Dahmen, P. Oswald, and A. J. Kurdila (Eds.), Multiscale

Wavlet Methods for Partial Differential Equations, Volume 6 of Wavelet Analysis and Appli-

cations, pp. 473–492. Boston: Academic Press.

Wickerhauser, M. V., M. Farge, E. Goirand, E. Wesfreid, and E. Cubillo (1994). Efficiency com-

parison of wavelet packet and adapted local cosine bases for compression of a two-dimensional

turbulent flow. In C. K. Chui, L. Montefusco, and L. Puccio (Eds.), Wavelets: Theory, Algo-

rithms, and Applications, pp. 509–531. San Diego, California: Academic Press.

14


