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ABSTRACT

The seasonal dependence of predictability in ENSO manifests itself in the so-called spring barrier found in
the cyclostationary lag autocorrelations, or persistence. This work examines the statistics of persistence, with
particular focus on the phase-of-year-dependent pattern found in ENSO data, the barrier. Simple time series of
one sine wave produce a barrier if the frequency is a biennial cycle or one of its harmonics. Time series of two
sine waves produce a barrier if one frequency is a biennial cycle or a harmonic thereof. They additionally
produce a barrier if their frequencies sum to unity. Time series with continuous but narrow spectral peaks at
barrier-producing frequencies produce barriers only if the phase angles vary slowly or coherently across the
peaks. The shape of the barrier seen in these simple time series is used to construct a model persistence map,
which is a combination of an idealized barrier and the persistence of a red-noise process. A nonlinear least
squares fit of the persistence of a time series to the model persistence provides a quantitative measure of the
properties of the persistence barrier in any time series. Application of the measure to the Southern Oscillation
index and sea surface temperature in the NINO3 region of the equatorial Pacific indicates that the ENSO
persistence barrier is a feature that is statistically distinguishable from the theoretical persistence of a red-noise
process. The ENSO barrier results from phase coherency of the continuum of interannual modes near the biennial
frequency. Measuring the barrier on windowed data shows that there was a weak persistence barrier from
approximately 1915 to 1945, a strong barrier during the 1960s and early 1970s, and a weakening barrier in the
late 1970s.

1. Introduction

The El Niño–Southern Oscillation, or ENSO, is one
of the most readily recognizable forms of interannual
climate variability of the coupled atmosphere–ocean
system. It also has broad human impact, with effects
ranging across the equatorial Pacific basin and telecon-
nections to much of the globe (Bjerknes 1969; Philander
1990). Consequently, there exists a large body of work
examining the basic physics of ENSO (Battisti and Hirst
1989; Bjerknes 1966; Cane and Zebiak 1985; Zebiak
and Cane 1987; Rasmusson and Carpenter 1982; Vallis
1988). Among this work, Troup (1965) and others
(Wright 1979, 1985; Webster and Yang 1992; Webster
1995; Torrence and Webster 1998) have examined the
persistence of ENSO via the Southern Oscillation index
(SOI). Persistence, as defined in these works, is a form
of lag autocorrelation. A map of the persistence of the
SOI, similar to ones shown by Wright (1979, 1985) and
Torrence and Webster (1998), is shown in Fig. 1. Note
the rapid decrease in persistence during the boreal
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spring. Webster and Yang (1992) termed this decrease
a ‘‘predictability barrier,’’ though it is not yet clear how
this decrease in persistence relates to the ability to fore-
cast ENSO. There has been work suggesting that this
decrease in persistence may not necessarily hinder fore-
casting (Chen et al. 1995). Nonetheless, this feature of
ENSO persistence is intriguing. Torrence and Webster
(1998) show that a similar barrier appears in the per-
sistence of another ENSO index, the sea surface tem-
perature in the NINO3 region of the central equatorial
Pacific (Fig. 2). They suggest that such a barrier occurs
as the climate system makes a transition from one state
to another during the boreal spring. Xue et al. (1994)
additionally show that the barrier is associated with low
variance in the data during the spring.

Although there is some controversy over the meaning
of the spring persistence barrier, it is nonetheless a sta-
tistical property of ENSO. As such, it warrants further
investigation, as deeper understanding of persistence
barriers may provide further insight into the causes and
dynamics of ENSO. In addition, statistical features, even
if they are not fully understood, can provide useful
benchmarks for comparing models with data. Thus, in
this paper we study the statistics of persistence from a
primarily mathematical perspective. The results pre-
sented here demonstrate that the persistence barrier in
ENSO is a statistically significant feature that arises
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FIG. 1. Persistence map of the SOI from 1896–1996. Contour in-
tervals are in steps of 1⁄8. Solid contours denote positive values of
persistence, while dotted contours denote negative values. The zero
contour is dashed.

FIG. 2. Persistence map of the NINO3 SST from 1896–1996. The
contours are plotted in the same fashion as in Fig. 1.

from particular features in the ENSO time series. While
we do not in this paper determine the underlying dy-
namical mechanisms that give rise to the necessary
properties of the time series, the results suggest that
these mechanisms are generic and that predictability
barriers should occur in general nonlinear oscillators and
not just ENSO.

The appropriate class of statistics for time series with
an external periodicity, such as an annual cycle, is cy-
clostationary statistics (Huang and North 1996). Section
2 presents a formal definition of cyclostationary statis-
tics, and then calculates the persistence for a progression
of simple but increasingly complex time series. One
simple question is whether the persistence of a time
series depends on phase of year. We find that some time
series have a persistence that is independent of the phase
of the year, others have phase dependence that resembles
the persistence barrier seen in ENSO data, while yet
others have a phase-dependent persistence that looks
completely different than that seen in ENSO data. Our
focus here will be on those phase-dependent patterns
that match the ENSO data. We will refer to these patterns
as barriers. In section 2 we show that a persistence bar-
rier is due to the presence of harmonics in a time series
whose frequencies satisfy certain conditions. In section
3 we develop a method to quantitatively measure the
properties of a persistence barrier. In section 4a, we use
this measure to calculate the properties of the barriers
in the NINO3 SST and the SOI. Section 4b numerically
examines the conditions for producing a barrier, the con-
ditions described analytically in section 2. Finally, in

section 5 we use the measure of barrier properties to
study the interdecadal variability of ENSO.

2. The mathematics of persistence

a. Definition

Common forms of statistical analysis assume that the
data is stationary in time. Most geophysical systems,
however, are characterized by periodic cycles, such as
the annual cycle or the diurnal cycle. It is thus appro-
priate to include this external periodicity in the statistical
analysis; this results in cyclostationary statistics (Huang
and North 1996). Cyclostationary statistics differ from
stationary statistics in that the various quantities, such
as the mean, variance, etc., are periodic functions of the
phase with respect to the external periodic cycle.

In this paper, the relevant external periodicity is the
annual cycle, and we will measure time in units of years.
For the following definitions we consider a time series
x(t) and denote the phase of the year by p, 0 # p , 1.
The cyclostationary mean is defined as

N211
^x(t)&(p) 5 x(y 1 p). (1)O

N y50

Thus, ^ · · ·&(p) represents an average over N years at
fixed phase p. In the case of the ENSO data, Eq. (1) is
merely the mean annual cycle. It will be convenient to
also write the cyclostationary mean as ^x&(t) where the
dependence on t is understood to mean the phase of t.
The cyclostationary variance is defined in terms of the
departure from the annual cycle, that is, the anomaly,
x9(t) 5 x(t) 2 ^x&(t),
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FIG. 3. Persistence map of a single sine wave, Eq. (5), with b 5
0.25. The shaded area denotes a persistence of 11, while the unshaded
area is a persistence of 21.

N211
2 2s (p) 5 [x9(y 1 p)] . (2)Oy N 2 1 y50

The cyclostationary lag autocorrelation, also called per-
sistence, is then

^x9(t)x9(t 2 l)&(p)
C(p, l) 5 . (3)

s (p)s (p 2 l)y y

We will refer to p as the leading phase, or just phase if
there is no confusion. We will focus our attention on
lags of 1 yr or less, l # 1, and will refer to the resulting
field as a persistence map. Note that p is a specific phase
of the year, for example, 1435 UTC 12 February, while
l is a time interval. One could, of course, define the
persistence in terms of its starting and ending phases,
p1 5 p and p2 5 p 1 l. However, since persistence
always depends on l and we are investigating when and
how it depends on p, the above convention makes more
sense.

b. Persistence of one sine wave

One step in understanding the meaning of a statistical
analysis such as persistence is to calculate the statistics
of simple processes. For example, in interpreting a pow-
er spectrum, one compares to the spectrum of a red-
noise process to see if any peaks are distinguishable
from random noise, and compares those peaks with
those of a linear oscillator to see if they can be under-
stood in terms of internal oscillations. In this spirit we
calculate the persistence of several simple deterministic
time series as well as that of red noise in order to in-
vestigate when one finds persistence barriers in simple
systems. Since any complex time series can be decom-
posed into harmonic functions by the Fourier transform,
it is reasonable to consider the persistence of simple
harmonic time series. Note that since persistence is a
nonlinear function of a time series, simply superposing
the persistence of many pure harmonic functions does
not suffice. However, proceeding through a sequence of
increasingly complex time series does provide insight
into the properties that a time series must possess to
produce a persistence barrier. In all the cases below,
persistence is calculated with respect to an annual cycle,
that is, period of 1 yr, while the frequencies in the time
series vary.

First, consider a single, deterministic, sinusoidal pe-
riodic oscillation,

x(t) 5 a sin(2pnt 1 f ), (4)

where n . 0 (negative frequencies are equivalent to
redefining f ). The calculation of the persistence map
for a single sine wave is presented in appendix A; here
we describe the results.

The persistence of a simple sine wave divides into
three cases depending on whether 1) n is an integer n
[Eq. (A2)], 2) n is a half-integer (2n 1 1)/2 [Eq. (A3)],
or 3) neither [Eq. (A4)]. A time series with n 5 n cor-

responds to an annual cycle or a harmonic of an annual
cycle. Since the persistence is calculated from the de-
parture from the annual cycle, it is undefined in this
case. If n is neither an integer nor a half-integer, then
the persistence does not depend on leading phase.

The remaining case, where n is a half-integer, cor-
responds to a biennial cycle or one of its harmonics. In
this case, the persistence C(p, l) can be written in the
form

C(p, l) 5 Q (p 2 b)Q (p 2 b 2 l), (5)

where b [ 2f /2pn, Q(x) 5 (21)Int(x) is a periodic step
function (i.e., a square wave) and Int(x) denotes the
integer part of x. Thus, C depends on both leading phase
and lag and consists of two discrete steps: one step
independent of l at phase p 5 b, and one at l 5 p 2
b. A contour plot of Eq. (5) for n 5 ½ appears in Fig.
3. Note the similarities to the persistence maps of the
SOI and NINO3 sea surface temperature, Figs. 1 and
2. The parameter b determines the position of the tran-
sition in the map from positive to negative persistence.
Note that b is also the time at which x(t) crosses zero.

We have also examined the persistence of a single
harmonic of the biennial cycle, n 5 n/2, n ± 1. The
persistence still depends on leading phase and contains
discrete steps; however, the steps now repeat multiple
times in both p and l.

c. Persistence of two sine waves

We now turn to a time series composed of two sine
waves:
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FIG. 4. Persistence maps of time series composed of two harmonics,
Eq. (6), with a1 5 1.0, a2 5 0.75, and f 1 5 p/3, f 2 5 p/2, and
with a biennial cycle present. Contour intervals are in steps of ¼,
with the contour lines drawn as described in Fig. 1. (a) n1 5 1⁄2 and
n2 5 3⁄10; (b) n1 5 4⁄5; and n2 5 3⁄2.

x(t) 5 a1 sin(2pn1t 1 f1) 1 a2 sin(2pn2t 1 f 2), (6)

where n1 and n2 are positive numbers. Appendix B con-
tains the derivations and results of the persistence of
(6). Again, the persistence breaks into three cases: 1)
n1 or n2 are integers, 2) neither n1 nor n2 are integers
and at least one is a half-integer, and 3) n1 and n2 are
neither integers nor half-integer.

When either n1 or n2 is an integer, that Fourier mode
corresponds to an annual cycle. Computing the anomaly
removes that harmonic of the time series and the per-
sistence is identical to that of the single remaining sine
wave.

For the case where at least one of the frequencies is
an odd half-integer, one might expect that the persis-
tence resembles that of a single biennial sine wave [i.e.,
Eq. (5)]. Such a resemblance does indeed exist, as seen
in Fig. 4. Only when both frequencies are half-integers,
however, does C(p, l) have discrete steps. When only
one of the two modes is a biennial cycle, the drop in
correlation is continuous, as for the ENSO data.

We have additionally explored the behavior of the
persistence C(p, l) for values of a1, a2, f 1, and f 2

different than those used in Fig. 4. The phases f 1 and
f 2 determine the position of any leading-phase-depen-
dent features. When C(p, l) is continuous, (i.e., only
one harmonic is biennial in nature), the values of a1 and
a2 control the strength of the gradients of the continuous
features. For example, decreasing |a1 2 a2| would nar-
row the transition region between positive and negative
persistence. Furthermore, if a1 k a2, then x(t) . a1

cos(2pn1t 1 f 1) and the persistence changes accord-
ingly.

Figure 4 illustrates forms of phase dependence other
than that found in the persistence of the SOI and NINO3
SST. In this work, we shall use the term ‘‘barrier’’ to
denote those phase-dependent patterns in the persistence
map that are qualitatively similar to the pattern seen in
the SOI and NINO3 SST.

In the final case, where n1 and n2 are neither integers
nor half-integers, one might expect the persistence to
be independent of p. Such behavior would be consistent
with the corresponding case for the single sine wave.
Surprisingly, C(p, l) is only a function of lag if n1 6
n2 ± m, where m is an integer. Figure 5 contains plots
of the persistence for the n1 6 n2 5 m case. (The math-
ematics behind these figures can be found in appendix
B.) Note how different values of m correspond to dif-
ferent forms of leading-phase dependence.

The discussion of Eq. (B5) in appendix B reveals
some additional characteristics of the persistence map
for the case n1 6 n2 5 m. The values of n1, n2, m, and
whether the two frequencies sum to or differ by m all
control the shape of any leading-phase-dependent fea-
tures. The phases f 1 and f 2 determine the position of
the features. Finally, the difference of the Fourier am-
plitudes, a1 and a2, controls the gradients of the tran-
sition regions between different features in the persis-

tence map. Smaller |a1 2 a2| correspond to stronger
gradients, with a1 5 a2 yielding a step function.

The special case of n1 6 n2 5 an integer has impli-
cations for the persistence of time series beyond the
sum of two sine waves. We will therefore denote any
pair of harmonics with frequencies ni and nj that satisfy
ni 6 nj 5 m as m6 complementary. From Fig. 5a, one
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FIG. 5. Persistence maps of time series composed of two harmonics,
Eq. (6), with a1 5 1.0, a2 5 0.5, f 1 5 p/3, f 2 5 p/2, and n1 6 n2

5 m ∈ Z. Contours are drawn as described in Fig. 4. (a) n1 5 2⁄5, n2

5 3⁄5, n1 1 n2 5 1; (b) n1 5 7⁄5, n2 5 8⁄5, n1 1 n2 5 3.

sees that ni 1 nj 5 1 results in a barrier-like feature,
while other m6-complementary harmonics produce oth-
er forms of phase dependence. We will refer to har-
monics with this relationship, ni 1 nj 5 1, as unit com-
plementary. Note that both frequencies, ni and nj, in a
unit-complementary pair must be less than 1, since both
frequencies are also positive.

Summarizing the results of the previous two sections,

Table 1 describes those cases where the persistence con-
tains some form of phase dependence. Persistence takes
the form of a barrier for a single biennial mode, the sum
of a biennial and nonbiennial mode, or for the sum of
a unit-complementary pair of harmonics. Other forms
of phase dependence occur for a biennial harmonic or
other m6-complementary pairs.

d. Persistence of a general time series

A general time series is described by a continuous
Fourier transform,

`

x(t) 5 da(n) sin[2pn t 1 f(n)], (7)E
0

and the amplitudes and phase angles are now functions
of the frequency. For the general case, calculating the
persistence in closed analytic form appears intractable.

There are a few special cases, however, where the
persistence can be calculated. Consider a time series,
x(t), whose spectrum consists of either a single biennial
peak or two unit-complementary peaks. Assume the
peaks are sufficiently narrow and, in the case of two
unit-complementary peaks, do not overlap. The persis-
tence of x can then be calculated in certain limits. The
derivation is lengthy and not straightforward. One can
find its more pertinent points in appendix C. Note that
the calculation requires the power spectrum of x(t) to
have a certain distribution, not x itself.

In these cases the persistence has two different limits.
If the phase angle f (n) is rapidly varying over the width
of a peak, then the persistence depends only on lag [Eq.
(C3)]. This holds not only for the single biennial peak,
but for a pair of unit-complementary peaks as well. It
can be generalized to multiple sets of unit-complemen-
tary harmonics: if the phase varies rapidly over all of
the peaks, then the resulting persistence map is inde-
pendent of the phase of year.

On the other hand, in the limit of slowly varying f (n),
the persistence does contain a barrier [Eqs. (C4) and
(C5)]. Figure 6 contains a plot of the persistence in this
limit. It shows a strong similarity to the single mode
cases of sections 2b and 2c. For both a single biennial
peak and two unit-complementary peaks, broadening
the peaks broadens the transition region.

Note that the assumptions used in appendix C to com-
pute the persistence for these cases do not strictly require
slowly varying f (n). The assumptions are also satisfied
by O(1) slopes in the Fourier phase, provided the slopes
are similar at the two peaks. Thus, Eqs. (C4) and (C5)
are valid when the phases of the two spectral peaks vary
coherently.

We can generalize these results by the following hy-
pothesis. A time series with a continuous power spec-
trum will contain a barrier provided that 1) barrier-gen-
erating modes, that is, a biennial mode or pairs of unit-
complementary modes, have significant amounts of
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TABLE 1. Summary of phase-dependent persistence maps for time series of a single sine wave with frequency n [Eq. (4)] and the sum of
two sine waves with frequencies n1 and n2 [Eq. (6)].

Persistence pattern n n1, n2

Barrier

Other phase dependence

Biennial [Eq. (5)]

Biennial harmonic (Eq. (5)]

Biennial 1 nonbiennial [Eq. (B3)]
Unit complementary n1 1 n2 5 1 [Eq. (B5)]
Biennial 1 any biennial harmonic [Eq. (A5)]
Two biennial harmonics [Eq. (A5)]
m6 complementary with n1 1 n2 ± 1 [Eq. (B5)]

FIG. 6. Persistence map calculated for a time series whose spectrum
contains two narrow peaks with coherently varying phase angles, Eq.
(C4), with a 5 2, 5 20.2, b 5 0.5, D 5 0.1, and e2 5 e4 5 0.05.n̂

power; and 2) the Fourier phases of the barrier-gener-
ating modes vary coherently. The first requirement im-
plies that the time series has strong interannual vari-
ability, while the second requirement is a particular form
of phase locking. We shall examine whether this hy-
pothesis holds for the ENSO datasets in section 4b.

e. Persistence of a stochastic time series

When one is asking whether a statistical feature is
significant, one must compare it with a null hypothesis.
Typically, in the geophysical sciences the null hypoth-
esis is a random noise process with a red power spec-
trum. Since a red-noise process is stationary, not just
cyclostationary, its persistence is independent of leading
phase and is equal to its lagged autocorrelation.

The red-noise process we consider is the first-order
Markov process known as the Ornstein–Uhlenbeck pro-
cess,

x
ẋ 5 2 1 j(t), (8)

t

where j(t) is Gaussian white noise with zero mean and

unit variance. The noise process is described by the
parameter t , the timescale of the deterministic part. Us-
ing standard techniques of stochastic calculus (Gardiner
1990), it is straightforward to show that the ensemble
average persistence is simply

^C(p, l)&ensemble 5 e2l/t . (9)

The parameter t , therefore, is also the decorrelation time
for the persistence.

3. A measure for persistence barriers

a. Definition and properties

In order to further study the barrier in a time series
one needs to quantify its properties. Once a statistical
feature is quantified, one can ask about its statistical
significance, its temporal variability, and how it is af-
fected by changing the dynamics of the system, such as
adding noise, increasing resolution, or coupling to an-
other system. Further, one can quantify how well a nu-
merical model reproduces the feature seen in the data.
Thus, in this section, we develop a means to quantita-
tively measure the persistence barrier in a time series.

A persistence map is a two-dimensional field. Cre-
ating a measure of a persistence barrier necessarily in-
volves some form of pattern recognition, one that re-
duces said field down to one or a few numbers. Typi-
cally, pattern recognition requires comparing data with
some idealization of the pattern one wants to find. Thus,
we construct a theoretical persistence barrier, T(p, l),
which can be used to measure the barrier in the persis-
tence map, C(p, l), from a time series x(t). The model
barrier should be described by a small number of pa-
rameters. To determine the properties of the barrier in
x, one then performs a least squares fit of T to C. The
values of the parameters at the best fit provide the barrier
measure.

From the results of the previous section, it is clear
that an idealized persistence barrier should consist of
two jumps in persistence, one independent of lag at a
phase p 5 pb, and one at lag l 5 p 2 pb. We shall call
pb the barrier position. Further, the jumps in persistence
can be either sharp or broad. Thus, the barrier should
be characterized by a barrier width, Dp. We also wish
to allow the possibility that the persistence map does
not have a barrier at all but rather arises from a red-
noise process. Thus, we introduce an amplitude, A, that
measures the strength of the barrier. Finally, since we
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include a red-noise component, we need to include the
decorrelation time of the stochastic process, t . Thus,
the simplest barrier that suits our needs requires four
parameters: an amplitude, A; a width, Dp; a position,
pb; and a decorrelation time, t . We note that the model
barrier we construct is chosen merely because it is sim-
ply described and has the appropriate shape.

The model persistence map is thus the sum of two
terms:

T(p, l) 5 AB(p, l) 1 (1 2 A)e2l/t , (10)

a barrier, B(p, l), with amplitude A, and the persistence
of the Ornstein–Uhlenbeck stochastic process [Eq. (8)]
with amplitude 1 2 A. To complete the model we must
define B(p, l). One could define B using the persistence
of the two-mode case with m6-complementary frequen-
cies [Eq. (B5)]. However, the parameters in Eq. (B5)
are difficult to interpret, and fitting to the equation is
computationally prohibitive. Instead, we use a model
barrier that has a simpler form.

The jumps in the barrier should be smooth transitions
from 21 to 11 at a particular location. A simple func-
tion that achieves this is tanh(p/Dp), where Dp measures
the width of the transition region. Since persistence must
be periodic in phase, we construct the function

` p 1 n
h(p, Dp) 5 tanh , (11)O 1 2Dpn52`

which has transitions at p, p 6 1 yr, p 6 2 yr, etc. Since
we want two transitions, one at l 5 p 2 pb and one
with opposite sign at p 5 pb, we choose

B(p, l) 5 h(p 2 pb 2 l, Dp) 2 h(p 2 pb, Dp) 1 1,

(12)

where the final term places B in [21, 11]. Computa-
tionally, we truncate the sum in Eq. (11) at 20/Dp, re-
sulting in errors on the order of machine precision. We
now have a theoretical barrier, T, that is completely
described by a vector of four parameters, a 5
(A, t , Dp, pb).

Because T models a correlation function, it must sat-
isfy the conditions 21 # T(p, l) # 1 and T(p, l) 5 1
at l 5 0. This leads to the following requirements on
the parameters: 0 # A # 1, Dp $ 0, and t $ 0. By
construction, T is periodic in pb with unit period. The
parameters pb, Dp, and t all have units of time, while
A is unitless. The mean of B is

1 1

B 5 dl dpB(p, l) 5 0, (13)E E
0 0

and thus the mean of T, T , is given by the mean of the
stochastic part, T 5 (1 2 A)t(1 2 e21/t ).

To interpret the parameters, it is useful to first in-
vestigate the asymptotic behavior of T for large t and
Dp. We only consider lags restricted to 0 # l # 1. For
large t , T ; AB 1 (1 2 A) 1 O(t21); large decorrelation

times thus result in the stochastic portion providing a
constant background to the persistence map. For large
Dp, B ; (1 2 2l) 1 O(Dp23), and the barrier reduces
to a phase-independent, linear decay with lag. Numer-
ically, these asymptotic results prove to be good ap-
proximations when t . 10 yr or Dp . 1 yr.

The model barrier T contains a rich variety of be-
haviors, reflected in the physical interpretation of its
parameters. In particular, the three parameters A, t , and
Dp occasionally have different implications depending
on their joint values. We will now discuss some of the
different behavior regimes of the model and the values
of A, t , and Dp associated with them.

When A is nearly one, that is, 1 2 A K 1, the per-
sistence describes a deterministic process. The model
contains regions of high positive and negative corre-
lation, separated by a transition region whose width is
determined by Dp. Thus, any loss of correlation is tem-
porary and the barrier represents only a transition from
correlation to anticorrelation instead of a loss of pre-
dictability. An example is shown in Fig. 7a. In the limit
A → 1, the decorrelation time t has no meaning.

If the barrier amplitude is small, A K 1, the persis-
tence map is that of a random process, that is, a decaying
exponential, modified by a small phase dependence. In
this regime, the decorrelation time t determines how
rapidly correlation is lost. In the limit A → 0, the barrier
position pb and barrier width Dp have no meaning.

For large barrier width, Dp $ 1, the persistence be-
comes independent of phase. The values of A and t
together determine the decorrelation rate. In this regime,
the deterministic part of the model has a linear decor-
relation, which combines with the exponential decay
from the stochastic portion.

When the decorrelation time becomes large, t k 1,
the stochastic component of the model is approximately
constant. The full model thus has regions containing
high positive correlation and regions containing corre-
lation with a value of 1 2 2A. Thus, for appropriate
values of A, the model varies from regions of high cor-
relation to regions of correlation near zero. The tran-
sition region separating the two has a width determined
by Dp. One can also think of Dp as the rate of decor-
relation with respect to phase. Thus larger values of Dp
indicate weaker barriers. An example of this case is
shown in Fig. 7b for A 5 0.6.

b. Computation

The parameters describing the persistence map,
C(p, l), of a time series can now be found by fitting T
to C. For a time series with finite resolution, C will be
only available on a discrete grid of points in (p, l). The
fit is accomplished by minimizing the error function,

2 2E (a) 5 [T(p, l; a) 2 C(p, l)] . (14)O
p,l

This nonlinear fit suffers from the usual problem of
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FIG. 7. The quantity T(p, l ) at various parameter values. For all
plots, pb 5 ¼ yr. (a) A 5 1, Dp 5 0.06 yr, t 5 0.25 yr ; (b) A 5
0.6, Dp 5 ¼ yr, t 5 10 yr.

multiple local minima in E 2. To handle this difficulty,
we use a custom genetic algorithm (Goldberg 1989) to
locate the neighborhood near the global minimum, and
then use a nonlinear least squares fit to find the actual
minimum. The genetic algorithm utilizes some standard
techniques such as elitism; however, it also encodes the
parameters of T as a vector of real numbers while uti-
lizing a high mutation rate (Haupt and Haupt 1998).

The least squares fit uses a Levenberg–Marquardt al-
gorithm implemented by the routine ‘‘lmder.f’’ from the
Minpack library (Moré et al. 1980).

The uncertainty in the fitted parameters is found using
standard techniques (Ryan 1997; Press et al. 1992). De-
note the value of the parameters that minimizes E 2 as
a0. Then the standard estimate of the confidence interval
on the kth parameter at the qth percentile is

1/2
2 21 2E (a )D x (q)0 kk 1da (q) 5 , (15)k [ ]N

where Dij [ is the curvature matrix of2(] ] E (a ))/2a a 0i j

the error function at a0, is the kth diagonal element21Dkk

of the inverse of the curvature matrix, N is the number
of data points in the map, and (q) is the percentile2x1

value of a one degree of freedom chi-square distributed
variable at the qth percentile. For q 5 68.3%, 95.4%,
or 99.7%, (q) is simply 1, 4, or 9, respectively.2x1

There is one complication to calculating the confi-
dence intervals. The above equation assumes that the
local curvature, obtained from the second derivative of
E 2, is a good approximation to the average curvature
over the width dak. In certain cases, however, the E 2

surface is much flatter at the minimum than farther
away. The curvature matrix obtained from the second
derivative is then ill conditioned or singular. An example
is the case where the width of the barrier is much less
than the resolution of the data. In this case, infinitesimal
changes in the barrier position barely affect the error
and the associated derivative is zero. Changes in posi-
tion on the order of the data resolution, however, do
cause significant changes in the error. Thus, rather than
use analytic derivatives of E 2, which are necessarily
local, we use finite difference derivatives to compute
an average curvature. The resulting curvature matrix
only becomes ill conditioned when A is near 0 or 1,
where some of the parameters become ill defined. For
this special case, we directly assign a large value to the
dak of the ill-defined parameters. We then calculate the
confidence intervals of the remaining parameters by in-
verting the submatrix of the curvature matrix that cor-
responds to the well-defined parameters. We can then
calculate the confidence as usual.

While one can always find a fit that minimizes the
error, we would like to know whether the fit is any good.
One measure of how well two datasets are linearly cor-
related is the familiar correlation coefficient. Here, how-
ever, T is a nonlinear fit and the usual correlation co-
efficient is a rather poor goodness-of-fit criterion. Kvål-
seth (1985) discusses the issues surrounding several
forms of nonlinear correlation coefficient, R2, and rec-
ommends using a particular form in most cases. Applied
to persistence maps, this form is

2E (a )02R 5 1 2 , (16)
2s C( p,l)

where a0 represents the best-fit parameters of the model,
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TABLE 2. Results of the various Monte Carlos performed on the NINO3 SST. Entries are either the median values plus or minus the 68%
confidence interval of the distribution for the Monte Carlo, or the actual measure plus or minus the estimated 68% confidence interval. The
labels for each type of Monte Carlo are explained in the text.

Type A pb Dp t

Data
OU
FPS
UCPS
NCPS

0.312 6 0.018
0.048 6 0.037
0.263 6 0.012
0.268 6 0.013
0.312 6 0.021

0.258 6 0.005
0.501 6 0.337
0.509 6 0.337
0.492 6 0.354
0.279 6 0.011

0.137 6 0.011
0.136 6 0.131
0.345 6 0.086
0.349 6 0.087
0.148 6 0.017

1.072 6 0.081
1.113 6 0.219
0.793 6 0.028
0.803 6 0.029
1.029 6 0.078

TABLE 3. Results of the various Monte Carlos performed on the SOI. The notation is identical to that used in Table 2.

Type A pb Dp t

Data
OU
FPS
UCPS
NCPS

0.095 6 0.012
0.049 6 0.036
0.037 6 0.018
0.038 6 0.019
0.084 6 0.013

0.275 6 0.012
0.500 6 0.336
0.503 6 0.338
0.460 6 0.396
0.313 6 0.032

0.031 6 0.029
0.072 6 0.091
0.007 6 0.042
0.007 6 0.042
0.068 6 0.046

0.398 6 0.016
0.418 6 0.060
0.357 6 0.010
0.361 6 0.010
0.381 6 0.007

and is the variance of the persistence map being2s C(p,l)

measured. Note that this is the standard variance, com-
puted over all points in C(p, l).

In general, there may be cases where Eq. (16) returns
a value of R2 , 0. This situation is due either to a
complete lack of fit between the data and the model, or
to outliers in the data. Data outliers are clearly not an
issue for the fit of T to C, two bounded quantities. Other
studies, however, may not be so fortunate. Those re-
searchers requiring a nonlinear correlation coefficient
insensitive to outliers should consult Kvålseth for a
more appropriate definition of R2.

4. ENSO barriers

a. The data

We now use the aforementioned technique to measure
the properties of the persistence barrier in ENSO. The
two sets of data we use are the SOI, and the SST from
the NINO3 region of the equatorial Pacific, 58N–58S by
1508–908W. Both datasets contain monthly mean values
for the period 1896–1996. The NINO3 SST data from
1950 to the present is available from the National Oce-
anic and Atmospheric Administration Climate Predic-
tion Center. The historical NINO3 SST data, from 1896–
1949, is based on a spatial average of data from the
Comprehensive Ocean–Atmosphere Data Set SST anal-
ysis (Oort et al. 1987). The SOI is a standardized dif-
ference in the sea level pressure between Tahiti, at
17.68S, 149.68W, and Darwin, Australia, at 12.48S,
130.98E. The pressure at each location has been stan-
dardized by removing its cyclostationary mean and nor-
malizing by its overall standard deviation. The SOI is
then computed by taking the difference in the two stan-
dardized pressures and normalizing that difference by
its overall standard deviation. To fill the gaps that exist
in the Tahiti sea level pressure record before 1950, Torr-
ence and Webster (1998) perform a least squares re-

gression using sea level pressure and sea surface tem-
perature from other locations in the equatorial Pacific.
The contiguous SOI data for 1896–1950 produced by
this analysis is used in this work.

The results of fitting the model persistence barrier to
the NINO3 SST and the SOI are shown in Tables 2 and
3, respectively, in the row labeled ‘‘data.’’ The reported-
uncertainty is the 68.3% confidence interval estimated
using Eq. (15). The NINO3 SST barrier has a strength,
A, roughly three times larger than that of the SOI barrier,
is about four times wider, and has a longer stochastic
decorrelation time. The barriers in both datasets have
positions at approximately the same time of year, middle
to late March. The 68.3% confidence intervals are at
most about 1⁄10 of the parameter values, indicating that
the parameters are relatively well defined. The sole ex-
ception is the SOI barrier width whose uncertainty is
relatively large because the barrier is so narrow. Since
A is bounded away from zero, both the NINO3 SST and
the SOI have statistically significant barriers. The short-
er decorrelation time in the SOI is understood in terms
of the faster typical timescale for atmospheric fluctua-
tions, and the fact that the atmosphere is often thought
of as the more random component of the coupled sys-
tem.

For the NINO3 SST and SOI barriers, the goodness-
of-fit descriptors (defined in section 3b) are R2 5 0.966
and 0.841, respectively. Evidently, it is not unusual for
R2 to have values greater than 0.9 (Kvålseth 1985).
Thus, the persistence barrier of the SOI does not match
the model too well, indicating the possible presence of
other forms of phase dependence in its persistence map.

Let us now investigate whether the measured persis-
tence barriers can be explained by random fluctuations
due to the finite size of the data sampling. This is done
by integrating the Ornstein–Uhlenbeck (OU) process of
Eq. (8). An infinitely long OU time series produces a
persistence map with pure exponential decay. The
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FIG. 8. Power spectrum of the NINO3 SST with the mean annual
cycle removed. The power of each mode is normalized by the total
power of the time series. The dotted line indicates the biennial har-
monic.

FIG. 9. Power spectrum of the SOI, plotted as in Fig. 8.

ENSO data, however, is not infinite, but is approxi-
mately 100 years of monthly mean data. To investigate
the uncertainty associated with finite-sized time series,
we integrated 10 000 realizations of the OU process for
100 yr, using appropriate techniques for the numerical
integration of stochastic differential equations (Gardiner
1990). For each realization, we then calculated the best-
fit parameters for the persistence map obtained from
monthly mean data. Two such experiments were per-
formed: one with t 5 1 yr to compare with the NINO3
SST, and one with t 5 0.4 yr to compare with the SOI.
The rows labeled ‘‘OU’’ in Tables 2 and 3 show the
median best-fit parameters and the confidence intervals
that account for 68.3% of the data from the 10 000
realizations.

This experiment shows that a red-noise time series
with length similar to the ENSO datasets has a typical
barrier strength of 0.05, independent of the other pa-
rameters. In both runs, pb . ½ with a confidence interval
of about ⅓, similar to the statistics of a flat, uniform
distribution. The width Dp has a confidence interval that
encloses zero. Regardless, neither pb nor Dp are well
defined at the small value of A found in these experi-
ments. Lastly, to 68% confidence, t is at the value used
in the given Monte Carlo experiment.

Let us now compare the Monte Carlo experiments
performed on the OU process with the ENSO data. For
the NINO3 SST barrier, such a comparison shows that
the barrier strength is statistically different from that of
the OU experiment. The NINO3 SST barrier thus cannot
be explained by the finite length of the data record. In

contrast, the confidence intervals of the OU experiment
and the SOI barrier strength do overlap, indicating that
there is some possibility that the SOI barrier is explained
by a short red-noise time series.

The goodness of fit for both Monte Carlo experiments
is R2 ø 0.99 with a 68% confidence on R2 of øO(1023).
Therefore, the results of the OU experiment match the
stochastic portion of the barrier model very well. Recall,
however, that R2 5 0.841 for the SOI. Thus, the overlap
between the measures of the SOI and the OU experiment
is most likely due to the poorer fit between the SOI
persistence and the barrier model.

b. Barrier-generating harmonics

In section 2, we examined the persistence of several
simple time series and hypothesized that a time series
must satisfy certain criteria for it to produce a persis-
tence barrier. First, a time series must either contain a
dominant biennial mode, that is, n 5 ½ yr21, or it must
have dominant interannual modes that form unit-com-
plementary pairs, that is, n1 1 n2 5 1 yr21. Second, the
phase angles of the unit-complementary and biennial
modes must be slowly varying or mutually coherent. In
this section, we will explore whether this hypothesis is
true for the ENSO data.

Figures 8 and 9 contain the power spectra of the
anomalous NINO3 SST and of the SOI, respectively.
The dotted line marks the biennial mode, n 5 ½ yr21.
There are several features to note. Both spectra display
a broad peak in the range of 0.1–0.5 yr21 (periods of
2–10 yr), which is the usual timescale for ENSO. The
spectra do not have narrow peaks at the biennial mode,
indicating that the barrier is not due to a single biennial
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peak. Finally, intra-annual modes, that is, those with
frequencies greater than 1 yr21, are typically an order
of magnitude weaker in power than the dominant in-
terannual modes.

To test which modes most strongly affect the barrier,
we perform three filtering experiments on the ENSO
data. Each experiment has a similar form: after calcu-
lating the Fourier transform of the data, the amplitudes
of certain harmonics are set to zero, the modified trans-
form is then inverted, the persistence is calculated, and
the barrier is measured. The first experiment asks wheth-
er the most powerful unit-complementary modes pro-
duce the barrier: first the mode with the largest power
is selected, its unit complement is located, both modes
are removed, and the process is repeated. The second
experiment asks whether unit-complementary modes
nearest the biennial mode are most important: all har-
monics between the frequencies ½ 2 dn yr21 and ½ 1
dn yr21 are filtered and the barrier is measured as a
function of dn. The third experiment investigates the
effects of the non-barrier-producing modes: all intra-
annual harmonics, n $ 1 yr21, are removed, leaving
only the interannual harmonics, all of which form unit-
complementary pairs.

The five panels of Fig. 10 summarize the results of
the three filtering experiments on the NINO3 SST. The
solid lines indicate the experiment where unit-comple-
mentary pairs are removed in order of decreasing power.
The dashed lines display the results of filtering out
modes as a function of distance from n 5 ½ yr21. The
dotted line in Fig. 10a denotes the percentage of the
total spectral power contained in the harmonics with n
$ 1 yr21, that is, the non-unit-complementary harmon-
ics. Thus, the unit-complementary modes of the NINO3
SST contain 85% of the power.

Figures 10b–e show the change in the barrier mea-
sures of the NINO3 SST as a function of power lost in
the filtering. The bars labeled ‘‘error’’ indicate the 68%
confidence interval averaged over all plotted data points.
Values of A, pb, and Dp with confidence intervals below
0 and larger than 1 are not plotted. The barrier strength
A decreases as the power in the unit-complementary
modes decreases. The other measures also change as
power is lost, with the decorrelation time t decreasing,
and the barrier width and position, Dp and pb, changing
more and more drastically as A nears zero (we have
truncated the plots of Dp and pb at A 5 0, where the
latter two measures are ill defined).

Most striking is the difference in behavior of the two
different methods of filtering out harmonics, especially
on A and t . The barrier strength decreases much more
rapidly when the harmonics are removed as a function
of distance from the biennial mode, while the converse
is true for t . Compare these results to those for the case
in which all intra-annual harmonics are filtered out, in-
dicated in the plots by the diamond: the barrier strength
increases to ½, accompanied by an increase to large t
(because t k 1 yr, the diamond is absent from Fig.

10c), a slight increase in Dp, and very little change in
the barrier position.

The drastic increase in t , seen when the intra-annual
modes are removed from the NINO3 SST, reveals a
quirk of the fitting method described in section 3b.
When the strength becomes large, the stochastic portion
of the barrier model is small, and its parameter t is
poorly characterized. Further, if t is also large, then the
stochastic term becomes a small constant independent
of t . In practice, we find that when A * 0.5, the fit
algorithm often seeks large decorrelation times, with t
greater than 106 yr.

The selective filtering experiments performed on the
NINO3 SST indicate two results. First, the intra-annual
modes act to weaken the persistence barrier. This is
perhaps not surprising: since the harmonics with n $ 1
yr21 cannot form unit-complementary pairs they cannot
produce a barrier themselves, and since they are fast
modes they act somewhat as random noise and weaken
the barrier. Second, the unit-complementary modes that
have the strongest effect on the barrier strength are those
nearest the biennial mode, not those with the most pow-
er.

The same three selective filtering experiments were
performed on the SOI. In the SOI, the unit-comple-
mentary modes contain only 60% of the power. The
behavior of the measures of the SOI barrier under the
filtering experiments is similar to that of the NINO3
SST. Removing modes via distance from n 5 ½ yr21

has a strong effect on A (and therefore on Dp and pb,
as well), stronger than that seen for the NINO3 SST.
The decorrelation time remains fairly constant until
most of the power in the unit-complementary modes is
gone. Filtering in order of decreasing power has a less
pronounced effect; A varies about its initial value until
about 50% of the power is removed, when it drops to
zero. This again indicates that the barrier is not produced
by the most powerful modes, but rather by barrier-pro-
ducing modes near the biennial mode. The decorrelation
time decreases monotonically, while the width and po-
sition, as appears typical, follow the behavior of the
barrier strength. Filtering the intra-annual harmonics
strengthens the barrier to A 5 ½, increases t to large
values, widens the barrier greatly, with Dp 5 0.3 yr,
but has little effect on the barrier position.

There are several similarities between the results of
the selective filtering experiments for the SOI and those
for the NINO3 SST. Removing the non-unit-comple-
mentary harmonics acts to strengthen and widen the
barrier. It also increases the decorrelation time t to a
value larger than 10 yr, where the stochastic portion of
the model is approximately constant. A second simi-
larity is the more rapid decrease in barrier strength when
the near-biennial modes, rather than the most powerful
modes, are removed. However, the barrier strength in
the SOI falls off more rapidly than in the NINO3 SST,
indicating less phase coherence in the SOI.
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FIG. 10. Plot of barrier measures for the NINO3
SST vs fractional power remaining after filtering
particular unit-complementary modes. The solid
lines describe filtering in order of decreasing power.
The dashed line indicates filtering via distance from
n 5 ½ yr21. The dotted line and diamonds display
filtering out all non-unit-complementary harmon-
ics. The bars labeled error indicate a typical value
of the 68% confidence interval. (a) The fraction of
power remaining vs the filtered harmonics, (b) the
strength A, (c) the decorrelation time t , (d) the
barrier width Dp, and (e) the barrier position pb.
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c. Dependence on Fourier phase angles

We next examine the effect of the Fourier phase an-
gles of the unit-complementary modes of the barrier.
While the amplitude of a Fourier mode describes the
power in a given mode, the corresponding phase angle
describes when a mode changes sign. If the dominant
modes have coherent phases, their sum will approach
zero in a periodic fashion at a point described by the
phase information. The work of Xue et al. (1994)
showed that the persistence barrier in ENSO data is
related to low cyclostationary variance. Their work thus
supports a connection between coherent phases and the
persistence barrier.

We begin our exploration of the relationship between
phase angles and persistence barriers with a phase-
scrambling Monte Carlo experiment. To phase scramble
a time series, one first performs a Fourier transform on
the data. One then replaces the phase angles with a
realization of uniformly distributed independent random
numbers. Inverting this modified Fourier transform
completes the phase scrambling. Using 1000 realiza-
tions of phase-scrambled data, we calculate the persis-
tence map and measures; the results are in Tables 2 and
3 in the row labeled ‘‘FPS.’’ Because the distributions
of the measures are not symmetric, we report the median
of the distribution and the 68% confidence interval
about the median.

Phase scrambling the NINO3 SST alters all four of
the measures (Table 2). The position pb is comparable
to that found in the Ornstein–Uhlenbeck Monte Carlo
experiment, indicating a uniform distribution of pb. The
goodness of fit R2 (not reported in Tables 2 and 3),
differs little from the values reported in section 4a for
the unaltered datasets.

For the other measures, the confidence intervals over-
lap neither those of the OU experiment nor the original
data. There is a decrease in the barrier strength A and
a doubling of the width Dp compared to the unaltered
data. Additionally, the decorrelation time t decreases.
Both the increase in width and drop in strength suggest
a weakening of the barrier.

Phase scrambling the SOI renders the barrier statis-
tically indistinguishable from a stochastic process. As
seen in Table 3, the median values of A and t are smaller
than those of the OU experiments, while Dp is statis-
tically close to zero for both experiments. The confi-
dence intervals of the strength and decorrelation time
are narrow for FPS, but do overlap those of the OU
experiment. Additionally, the confidence intervals of the
strength and decorrelation time do not overlap those of
the unaltered data. The measures of the original data are
therefore statistically different from the results of phase
scrambling.

The phase-scrambling Monte Carlo experiments on
the NINO3 SST and SOI reveal the importance of phase
coherency to the generation of persistence barriers. In
a time series with a moderately strong barrier, for ex-

ample, the NINO3 SST, removing the phase coherency
weakens and broadens the barrier. When phase coher-
ency is removed from a time series with a weak barrier,
such as the SOI, the persistence becomes statistically
identical to that of red noise.

As an additional test, we perform two modified phase-
scrambling Monte Carlo experiments. Instead of re-
placing all phase angles with random numbers, we re-
place only a specific set of phase angles. The rows la-
beled ‘‘UCPS’’ in Tables 2 and 3 are the results of
randomizing only the phases of the unit-complementary
modes. The complementary experiment, where one
phase scrambles all modes that are not unit comple-
mentary, is labeled ‘‘NCPS’’ in the tables.

The results of these two Monte Carlo experiments
confirm the role of unit-complementary harmonics in
generating a persistence barrier. The measures found in
the UCPS experiment for both datasets are nearly iden-
tical to those of the FPS. Similarly, the measures of the
NCPS experiment and those of the original data also
overlap. The sole exception is the barrier position. In
both datasets, pb for the NCPS is later in the year than
for the original barrier position.

5. Persistence in different decades

An ideal use for the four measures of persistence
barriers is investigating interdecadal variability in the
NINO3 SST and SOI. Using a window of fixed length,
we calculate the persistence map for a windowed seg-
ment of the dataset. We then change the starting point
of the window in yearly increments. The four measures,
A, t , Dp, and pb, then become a function of time and
describe the interdecadal variability of the persistence
barrier. The window should be just large enough to pro-
vide sufficient data for calculating the persistence. Too
small of a window makes the fit sensitive to the small
amount of data in the window and moving the window
can change the best-fit measures drastically. On the other
hand, one cannot describe changes on timescales smaller
than the window size. We have found that a window of
20 yr works best for the ENSO data.

Figure 11 contains plots of each measure of the
NINO3 SST applied to the persistence of a running 20-
yr window of the data. The bars labeled error indicate
the 68% confidence interval averaged over all plotted
data points. The time axis of each plot, varying from
1906 to 1987, describes the center of the window. The
dashed line indicates the value of each measure for the
full time series. Due to the nonlinearity of the persis-
tence itself, the measures from the full time series are
not the same as the time average of the windowed mea-
sures.

The interdecadal variation in the NINO3 SST mea-
sures contains four regimes of behavior (Fig. 11). Dotted
lines mark the edges of the four intervals. Because the
measures are calculated from a running window, we
have fixed these boundaries at convenient dates. They
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FIG. 11. Interdecadal variation of NINO3 SST as exhibited by A, t , Dp, and pb, using a 20-yr running window. The bars labeled error
indicate a typical value of the 68% confidence interval. The dashed line is the value of the measure for the full time series. The dotted lines
mark the boundaries between regions of qualitatively different behavior. (a) The strength A, (b) the decorrelation time t , (c) the barrier width
Dp, and (d) the barrier position pb.

can readily be moved a few years in either direction and
the conclusions will remain the same.

The first interval of interest in the NINO3 SST, from
1906 to 1915, contains a transition period. The barrier
strength A decreases from 0.4 to 0.2 during this time

period. The stochastic decorrelation time t and width
Dp experience similar decreases. Here t drops from near
2 yr to 0.4 yr, while Dp ranges from 0.12 yr to near
zero. In contrast, the barrier position pb increases from
0.3 to 0.38 yr, or from mid-April to late May.
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FIG. 12. Persistence map of the NINO3 SST for a 20-yr window
centered at 1906. (a) Persistence map of the data; (b) the best-fit
model barrier. The goodness of fit is R2 5 0.927, compared to R2 5
0.966 for the full time series.

FIG. 13. Persistence map of the NINO3 SST for a 20-yr window
centered at 1920. (a) Persistence map of the data; (b) the best-fit
model barrier. The goodness of fit is R2 5 0.638.

The next regime of interdecadal behavior is from
1916 to 1945. The strength and decorrelation time both
remain low, with typical values of A . 0.25 and t .
0.4 yr. For most of the interval the width is around 0.1
yr, though it does later drop to near zero. The position
remains in the late boreal spring, with pb gradually de-
creasing from 0.38 to 0.3 yr.

One can see the difference between the 1906–15 and

1916–45 intervals in Figs. 12 and 13. Figures 12a and
13a contain the persistence maps of the windowed data
centered at 1906 and 1920, respectively. Figures 12b
and 13b show the model [Eq. (10)] at the best-fit mea-
sures for the 1906 and 1920 maps, respectively. Also
listed is the goodness of fit, R2, for each best-fit model.
In addition to having a poorer goodness of fit, the 1920
map looks noisier than the 1906 map. The weakening
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FIG. 14. Persistence map of the NINO3 SST for a 20-yr window
centered at 1970. (a) Persistence map of the data; (b) the best-fit
model barrier. The goodness of fit is R2 5 0.975.

of barrier strength thus appears connected to the drop
in stochastic decorrelation time as the noise in the barrier
increases.

Between 1946 and 1975, there is a transition to a
strong barrier, as exhibited by the large increase in A
(Fig. 11). Here t also increases, becoming large after
1960, when A reaches its largest value. Recall from
section 4b that the stochastic term in the model barrier
becomes constant at large t , which is, in turn, connected
to values of A $ 0.5. The width remains near Dp .
0.13 yr, the value for the full NINO3 SST dataset. The
position, however, drops below 0.2; that is, the barrier
is now located in March.

Figure 14 contains an example of the 1946–75 period.
The persistence map looks very much like the model
barrier and has a large R2. This supports our interpre-
tation of a strong persistence barrier during the 1946–
75 interval.

During the final regime of interdecadal variation in
the NINO3 SST measures, the barrier weakens. There
is a drop in strength during 1976–87 to A . 0.5. The
decorrelation time varies widely but is always larger
than t 5 2 yr. Although the large A and t indicate a
strong barrier, the width increases throughout the inter-
val, from Dp . 0.13 yr to nearly triple that value by
1987. Last, the barrier position shifts back to May, with
typically pb . 0.3 yr.

Figures 15 and 16 exemplify the weakening persis-
tence barrier in the NINO3 SST between 1976 and 1987.
The persistence map from the window centered at 1980
(Fig. 15) shows a decrease in goodness of fit compared
to the 1970 window (Fig. 14). The barrier for the 1987
window is wider still (Fig. 16) and also exhibits a slight
decrease in R2 relative to the 1980 window. The barrier
is therefore currently very weak.

In summary, the interdecadal variations in the mea-
sures of the NINO3 SST persistence indicate four in-
tervals of behavior in the barrier. From 1906 to 1915,
the barrier is in decline, entering a period of weakness
during 1916–45. In 1946–75, the persistence barrier
grows strong. During the present interval, 1976–87, the
barrier grows wide and weak.

Unlike the NINO3 SST, the windowed measures of
the SOI contain no consistent intervals of behavior. Fig-
ure 17 shows the measures of the SOI for a 20-yr win-
dow, plotted in the same fashion as Fig. 11. The strength
does increase after 1965, peaking at A ; 0.3 near 1975,
then decreasing down to 0.2 by 1987. Prior to 1965,
however, A is simply noisy. The decorrelation time does
have some consistent regimes of behavior, as seen in
Fig. 17b. However, there is no overlap of these intervals
with intervals of behavior in the other measures. For
example, t is at its lowest during 1925–45. However,
the width Dp is near zero except between 1920 and 1935
and from 1955 to 1987.

Though we cannot draw many conclusions about bar-
rier strength from Fig. 17, we do see interesting behavior
on the barrier position. Prior to 1935, the SOI barrier

has a position sometime in May (pb . 0.35 yr). It then
shifts to pb ; 0.1 yr, or mid-February. After 1960, the
barrier has a position in April, with pb . 0.25 yr.

Part of the difficulty of interpreting the interdecadal
variability of the SOI measures comes from the strong
presence of noise in the persistence maps. One sees this
in the persistence maps for the SOI windows centered
at 1931 and 1933, Figs. 18a and 19a, respectively. Both
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FIG. 15. Persistence map of the NINO3 SST for a 20-yr window
centered at 1980. (a) Persistence map of the data; (b) The best-fit
model barrier. The goodness of fit is R2 5 0.944.

FIG. 16. Persistence map of the NINO3 SST for a 20-yr window
centered at 1987. (a) Persistence map of the data; (b) the best-fit
model barrier. The goodness of fit is R2 5 0.930.

of these maps are similar to each other, as should be
the case since the two windows differ only by four years
of data. The best-fit models, however, differ drastically
(Figs. 18b and 19b). For both data windows, the good-
ness of fit is poor, with R2 well below its value for the
full SOI. Thus, moving the data window in the SOI can
cause drastic changes in the best-fit measures, making
interpretation of the measures difficult.

Not all of the SOI data windows produce noisy bar-

riers that fit poorly to the model. The window centered
at 1975, shown in Fig. 20, contains a strong barrier.
Though still somewhat noisy, the persistence map vi-
sually resembles the best-fit barrier and the goodness of
fit is near its value for the full time series. Note, too,
that A reaches a maximum at 1975, with a decorrelation
time of 0.6 yr. We therefore interpret the increase in A
from 1965 to 1975 as a strengthening of the SOI per-
sistence barrier.
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FIG. 17. Interdecadal variation of the SOI as exhibited by A, t , Dp, and pb, using a 20-yr running window. The data is graphed in the
same manner as in Fig. 11. (a) The strength A, (b) the decorrelation time t , (c) the barrier width Dp, and (d) the barrier position pb.

Contrasting Fig. 20, Fig. 21 shows the persistence
map for the SOI window centered at 1987. The goodness
of fit, R2, exhibits a decrease relative to the 1975 win-
dow, though it is not as low as R2 for the 1931 and
1933 windows. The decrease in A between 1976 and
1987 thus heralds a weakening of the SOI persistence
barrier. This coincides with the present weakening of
the NINO3 SST barrier.

Several other works have examined the interdecadal
variability of ENSO, with particular focus on the regime
transition in the 1970s (Fig. 11). Balmaseda et al. (1995)
found a strong spring decay in SST prediction skill in
the 1970s, and a very weak seasonal dependence in
prediction skill in the 1980s. They attributed this dif-
ference to strong phase locking of ENSO to the seasonal
cycle in the 1970s, and weaker phase locking thereafter.
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FIG. 18. Persistence map of the SOI for a 20-yr window centered
at 1931. (a) Persistence map of the data; (b) the best-fit model barrier.
The goodness of fit is R2 5 0.748, compared to R2 5 0.841 for the
full time series.

FIG. 19. Persistence map of the SOI for a 20-yr window centered
at 1933. (a) Persistence map of the data; (b) the best-fit model barrier.
The goodness of fit is R2 5 0.684.

A transition in the characteristics of the onset of El Niño
in the late 1970s was noted by Wang (1995) and was
attributed to an interdecadal change in the basic state
of the SST. In their study of NINO3 SST, Torrence and
Webster (1998) also found a transition in the late 1970s,
with a strong persistence barrier before 1977 and a
weaker one after.

Torrence and Webster (1998) also found transitions

similar to the 1915 and 1945 transitions found here (Fig.
11). Balmaseda et al. (1995) noted several transitions
throughout the early part of the century, some of which
correspond to the transitions found here.

It is interesting to note that in their study of changes
in the period of the Southern Oscillation, Wang and
Wang (1996) find no significant transition in the 1970s.
This is consistent with our finding that interdecadal var-
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FIG. 20. Persistence map of the SOI for a 20-yr window centered
at 1975. (a) Persistence map of the data; (b) the best-fit model barrier.
The goodness of fit is R2 5 0.846.

FIG. 21. Persistence map of the SOI for a 20-yr window centered
at 1987. (a) Persistence map of the data; (b) the best-fit model barrier.
The goodness of fit is R2 5 0.796.

iability in the NINO3 SST barrier does not necessarily
correspond with that in the SOI. Wang and Wang (1996)
do, however, find two significant changes, one in the
early 1910s in which the period lengthens from 3–4 yr
to 5–7 yr, and one in the mid-1960s, in which the period
falls to about 5 yr. These transitions do not seem to
correspond to any particular feature in the interdecadal
variability of the barrier in the SOI (Fig. 17), but they

do correspond roughly to the midpoints of the two re-
gimes in the NINO3 SST where the barrier amplitude
is changing significantly.

6. Summary

In this paper, we have analyzed the cyclostationary
lag autocorrelation, or persistence, of a range of time
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series with the goal of gaining insight into the causes
and meaning of the persistence barrier seen in ENSO
data. In some time series, the persistence is found to be
a function of the phase of the year. We have focused
our attention on one particular pattern of phase depen-
dence, the pattern found in ENSO data, which we call
a ‘‘persistence barrier.’’

A time series composed of a single sine wave only
produces a phase-dependent persistence map if the fre-
quency of the wave is a biennial cycle or one of its
harmonics, n 5 (2n 1 1)/2. The phase dependence
takes the form of a single discontinuous barrier if the
wave is a biennial cycle, that is, n 5 0. Otherwise,
there are multiple discontinuous barriers in a single
year.

A time series composed of two sine waves produces
phase-dependent persistence maps under several cir-
cumstances. As expected, the persistence map is phase
dependent when one or both frequencies are harmonics
of the biennial cycle. However, phase dependence also
results when neither frequency is a biennial harmonic,
provided the frequencies are m6 complementary; that
is, their sum or difference is an integer, m. Unit-com-
plementary frequencies, frequencies whose sum is 1,
produce an ENSO-like barrier, suggesting that barrier-
producing harmonics are either biennial cycles or unit-
complementary pairs of harmonics.

Time series with narrow continuous peaks can pro-
duce barriers when the peaks are centered on barrier-
producing harmonics. If the phase angles of the har-
monics vary rapidly, cancellation results in a persistence
depending only on lag. A barrier is produced if the phase
angles vary coherently.

Thus, in the time series considered here, the existence
of a barrier depends on barrier-producing harmonics
having coherent phase angles. The phase angles also
determine the barrier position. This suggests that an
arbitrary time series will only have a barrier if its dom-
inant harmonics are barrier producing and have coherent
phases.

Based on these results, we constructed a ‘‘model per-
sistence barrier’’ to quantitatively measure the barrier.
The model is a combination of an idealized barrier and
the persistence of a red-noise, Ornstein–Uhlenbeck pro-
cess. The barrier is described by four parameters: the
barrier position, strength, and width, and the stochastic
decorrelation time. The barrier in any time series is mea-
sured by a nonlinear least squares fit of the time series’
persistence to the model.

The measures show that the persistence of both the
SOI and NINO3 SST datasets contains barriers that are
statistically significant compared with the barrier pro-
duced by red noise. The predictability barrier is there-
fore an intrinsic, statistically significant property of the
ENSO data.

Selective filtering experiments performed on these da-
tasets demonstrate that the unit-complementary modes
are the primary cause of the barrier, the modes nearest

the biennial mode being most important, and that the
intraannual modes weaken the barrier. Phase-scrambling
Monte Carlo experiments demonstrate that barrier-gen-
erating modes must also have coherent phase angles to
produce a barrier.

The importance of phase coherency in the forma-
tion of a persistence barrier is also demonstrated in
other work (Xue et al. 1994; Torrence and Webster
1998). Xue et al. (1994) show that the barrier is re-
lated to low cyclostationary variance. One can only
have low cyclostationary variance, however, if the
dominant harmonics of a time series have coherent or
slowly varying phases. Only then will their super-
position approach zero in a periodic fashion. Addi-
tionally, Torrence and Webster (1998) demonstrate a
connection between changes in the ENSO persistence
barrier and changes in whether ENSO phase locks to
the annual cycle. It is likely that this phase locking
to the annual cycle generates the necessary coherency
between the unit-complementary harmonics in the
SOI and NINO3 SST.

This paper concludes with a study of interdecadal
variability of ENSO. The NINO3 SST persistence shows
a weak barrier from 1915 to 1945 and another decline
in the barrier after 1975. In contrast, the 1960s and
1970s show a strong barrier. This is consistent with other
investigations of ENSO interdecadal variability (Bal-
maseda et al. 1995; Wang and Wang 1996; Torrence and
Webster 1998). Additionally, the barrier appears to have
shifted location, ranging from late April to mid-May
during the first half of the century, shifting to late Feb-
ruary to mid-March during the 1950s, 1960s, and 1970s,
and returning to May recently.

Overall, the barrier in the SOI is quite different than
that in the NINO3 SST. The SOI barrier is weaker, is
less statistically significant, has a shorter stochastic
decorrelation time, and, unlike the NINO3 SST, has no
clear-cut interdecadal regimes. This is explained by the
fact that the atmospheric component of the tropical
climate system is noisier than the ocean and has shorter
correlations. Thus, this result provides further support
for the common practice of treating the atmosphere as
a rapidly fluctuating random forcing of the ocean.

ENSO is commonly thought to be driven by a mode
with a roughly 2–7-yr period. The existence of such a
strong broad interannual mode is necessary for a bar-
rier, but as indicated above, the time series must have
other features as well. Thus, the existence and inter-
decadal variability of the ENSO persistence barrier
puts stronger restrictions on ENSO dynamics than the
mere existence of an ENSO mode. However, a detailed
understanding of the connection between barriers and
the underlying dynamics has not been achieved and is
left for future work. Further, the persistence barrier has
often been called a predictability barrier ; without a
detailed understanding of how the error-growth char-
acteristics of the dynamics are related to barrier prop-
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erties, it is unclear whether barriers truly indicate lim-
ited prediction.
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APPENDIX A

Persistence of a Sine Wave

We first compute the persistence of Eq. (4), a single
sinusoidal periodic oscillation. An important identity
needed to analytically calculate the persistence in this
and the other appendices is

0 n ± n,
6i2pn t^e &(p) 5 (A1)

6i2pnp5e n 5 n,

where n is an integer. Letting b [ 2f /2pn, one can
now compute the persistence:

undefined, n 5 n ; (A2)

sin[2pn(p 2 b)] sin[2pn(p 2 b 2 l)] 2n 1 1
C(p, l) 5 , n 5 ; (A3)|sin[2pn(p 2 b)] sin[2pn(p 2 b 2 l)]| 2

ncos(2pnl), n ± . (A4)
2

Note that in the second case, where n is a half-integer,
C(p, l) can be written as

x(p)x(p 2 l)
C(p, l) 5 , (A5)

|x(p)x(p 2 l)|

a quantity divided by its absolute value. It is thus either
11 or 21, indicating perfect correlation or anticorre-
lation. This can, in turn, be rewritten in the form of Eq.
(5):

C(p, l) 5 Q(p 2 b)Q(p 2 b 2 l),

(A6)

where Q(x) 5 (21)Int(x) and Int(x) is the integer part of x.

APPENDIX B

Persistence of Two Sine Waves

For the persistence of a time series composed of two
sine waves,

x(t) 5 a1 sin(2pn1t 1 f 1) 1 a2 sin(2pn2t 1 f 2),

(B1)

there are again multiple cases, depending on the value
of n. Several of the results are too complex to express
on a single line. To facilitate the discussion of these

results, note that persistence can be expressed in the
form

V(p, l)
C(p, l) 5 , (B2)

1/2[V(p, 0)V(p 2 l, 0)]

where the function V(p, l) is, apart from a constant
factor, the cyclostationary covariance, ^x(t)x(t2l)&(p).
We shall therefore state only V(p, l) in place of the full
persistence.

If either n1 or n2 is an integer, then that Fourier mode
of the time series is removed by computing the anomaly.
The persistence is then determined from Eqs. (A2)–(A4)
applied to the remaining mode. When neither frequency
is an integer, the persistence can still be found in closed
form. For the case where n1 5 n/2 and n2 ± n/2, V(p, l)
has the form

V(p, l) 5 Ĉ 1 a2 cos[2pn(p 2 b 2 l/2)], (B3)

where a 5 a1/a2 is the ratio of amplitudes, Ĉ 5 a2

cos(2pn1l) 1 cos(2pn2l), and b 5 2f 1/pn. When both
frequencies are half-integers, one can write C in the
same form as the single-frequency, biennial case [Eq.
(A5)]. It cannot, however, be reduced to Eq. (5).

The final case, where n1 and n2 are neither integers
nor half-integers, falls into two subcases:

Ĉ, n 6 n ± m; (B4)1 2V(p, l) 5 ˆ5C 1 2a cos(pn̂l) cos[2pm(p 2 b 2 l/2)], n 6 n 5 m; (B5)1 2
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where m is an integer, b 5 2(f 1 6 f 2)/2pm, 5 n1n̂
7 n2, and a and Ĉ are defined as in Eq. (B3). Note that
one can demonstrate relationships between negative val-
ues of m and phase shifts of various types. We shall
ignore those in this paper.

The values of a and determine how strong the gra-n̂
dients are in the persistence map. Specifically, as a nears
1, and nears 0, the gradients of the continuous featuresn̂
grow stronger, becoming infinite at a 5 1. As might be
expected, if a k 1 or a K 1, C(p, l) loses phase
dependence. When the amplitudes are equal, that is, a
5 1, the persistence defined by Eq. (B5) simplifies to

C(p, l) 5 (p 2 b)]Q[m(p 2 b 2 l)],cos(pn̂l)Q[m

(B6)

which is the barrier of a single biennial harmonic mod-
ified by a phase-independent factor that oscillates with
lag. Here controls the ‘‘slope’’ of the steps. The stepsn̂
are still discontinuous regardless of or m. When then̂
two frequencies are equal, n1 5 n2 5 m/2, then 5 0,n̂
and the biennial result, Eq. (5), is exactly recovered.

APPENDIX C

Persistence of Narrow Peaks

Here we examine the persistence of Eq. (7),

`

x(t) 5 dna(n) sin[2pn t 1 f(n)], (C1)E
0

under certain simplifying assumptions. Let a(n) 5 a1h(n
2 n1) 1 a2h(n 2 n2), where h(x) is a symmetric, pos-
itive-definite function with its maximum at zero and a
width determined by a parameter, D. If n1 and n2 are
unit complementary, n1 1 n2 5 1, there is now a con-
tinuum of unit-complementary harmonics contained in
the two peaks. Similarly, in the case of a single peak
at n1 5 n2 5 ½, there is a continuum of unit-comple-
mentary harmonics surrounding this one peak.

We assume that the peaks are narrow, D K 1, and
that their shape is Gaussian, h(n) 5 / 2pD2.2 22n /2De Ï
The latter assumption merely simplifies the form of the
final result; any narrow distribution will suffice. We also
assume that n1 , n2, n1 . D, n2 , 1 2 D, and n1 1
D , n2 2 D. In other words, the two peaks neither
overlap each other nor extend beyond the frequencies
0 and 1. Using these assumptions, one can show that
the cyclostationary mean of Eq. (7) is approximately
zero.

Deriving the cyclostationary covariance, ^x(t)x(t 2
l)&y(p) is lengthy and not straightforward. We therefore
wish to describe some of its more pertinent points. The
covariance contains a product of two integrals. We com-
mute these integrals with the cyclostationary average
and perform the cyclostationary mean on the integrand
first. Using Eq. (A1) and trigonometric identities, one
can then reduce one of the two integrals to a discrete

sum. We then make use of the symmetry and narrowness
of the peaks to approximate the integral of the sum to
a single integral from 2` to `. After some additional
reductions, one can compute V(p, l) [Eq. (B2)]. One
finds

`
2 2 222p l DˆV(p, l) ù Ce 2 a dnE

2`

22(n /D)3 e [cos(p 1 f ) 1 cos(p 1 f )], (C2)1 12 2 21

where a 5 a1/a2 is the ratio of amplitudes, Ĉ 5 a2

cos(2pn1l) 1 cos(2pn2l), pi 5 2p[p 2 l(ni 2 n)], and
f ij 5 f (ni 1 n) 1 f (nj 2 n). This equation can also
be used for the case of a single biennial peak, n1 5 n2

5 ½, by setting a1 5 a2.
The persistence can be further simplified in two dif-

ferent limits. If the phase angle f (n) is rapidly varying
over the width of a peak, then cos(pi 1 f ij) acts like
a random variable and the integral in Eq. (C2) vanishes.
The persistence then becomes

Ĉ2 2 222p l DC(p, l) ù e . (C3)
2a 1 1

This is the persistence of the two-mode noncomple-
mentary frequency case, Eq. (B4), multiplied by an ex-
ponential decay in lag, a decay whose rate is governed
by the width of the peak, D.

One can also simplify the persistence in the limit of
slowly varying phase differences. Assuming f0(ni) D2

K 1, and f9(n1) 2 f9(n2) K 1, where prime denotes
differentiation with respect to n, we Taylor expand the
cosine terms in Eq. (C2) around n 5 0. If one keeps
terms up to O(D2), Eq. (C2) reduces further to

V(p, l)
2 2 222p l D ˆù e 3C 2 2a cos(pn̂l){cos[2p(p 2 b 2 l/2)]

2 e sin[2p(p 2 b 2 l/2)]}4, (C4)2

where 5 n1 2 n2, e2 5 [f0(n1) 1 f0(n2)]D2/4, andn̂
b 5 2[f (n1) 1 f (n2)]/2p. This expression is similar
to the two-mode unit-complementary case, Eq. (B5),
and reduces to it in the limit D → 0.

In the case of a single biennial peak, n1 5 n2 5 ½
and a1 5 a2, Eq. (C2) again simplifies via a Taylor
expansion around n 5 0. However, we must now keep
terms up to O(D4), resulting in

2 2 222p l DV(p, l) ù e 2 sin[p(p 2 b)] sin[p(p 2 b 2 l)]5
2 2 22 [e (1 2 2p l D ) 1 e ]2 4

3 sin[2p(p 2 b 2 l/2)]

3
21 e cos[2p(p 2 b 2 l/2)] , (C5)2 62

where e4 5 [f00(n1) 1 f00(n2)]D4/32. As in the unit-
complementary case, Eq. (C5) bears a strong resem-



2760 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

blance to the persistence from a single biennial mode,
Eq. (A3), and reduces to (A3) when D 5 0.

Note that the assumptions used to obtain Eqs. (C4)
and (C5) do not strictly require slowly varying phase.
The sole requirement is that f9(n1) 2 f9(n2) K 1.
While this is certainly satisfied by slow variations,
f9(ni) K 1, it is also satisfied by O(1) slopes in the
phase, provided the slopes are similar at the two peaks.
Thus, Eqs. (C4) and (C5) are valid when the phases of
the two spectral peaks vary coherently.
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