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Decaying two-dimensional turbulence is characterized by the emergence of coherent vortices, 
which’subsequently dominate the evolution. The temporal scaling behavior of the flow 
is analyzed using a scaling theory, a long-time integration of the fluid equations, and a 
dissipative, modified point-vortex model that represents the turbulence as a system of 
interacting coherent structures. Good agreement is found in the behavior of average vortex 
properties, low-order moments of the flow fields, and the form of self-similar evolution. 

I. lNTRODUCTlON 

Two-dimensional turbulence has been the subject of 
much research in recent years, both because it is a para- 
digm for anisotropic geophysical and astrophysical turbu- 
lence and because it is the most computationally accessible 
example of fluid turbulence. High-resolution numerical 
simulations’-’ and a new scaling theory6 have greatly clar- 
itled our understanding of decaying two-dimensional tur- 
bulence and the role of coherent vortices. The decay of the 
system from random initial conditions can be divided into 
three stages. In the first stage, the fluid self-organizes into 
a collection of coherent vortices containing most of the 
surviving vorticity. Once the coherent vortices have 
emerged, the second stage begins, during which the coher- 
ent vortices dominate the evolution. In this stage, the ev- 
olution is governed primarily by two processes: ( 1) nearly 
conservative mutual advection of the vortices when they 
are well separated and (2) dissipative interaction of vorti- 
ces when they become close. The resulting evolution exhib- 
its scaling behavior, in that aggregate measures of both the 
tlow fields and the vortex population evolve algebraically,3 
with exponents that are simply related.‘j As the evolution 
proceeds, the number of vortices decreases, until a final 
state consisting of a single pair of opposite-sign vortices, a 
dipole, is achieved.4*7 At this point, the nonlinear contri- 
bution to the dissipative evolution ceases, and the final 
stage begins in which the dipole decays diffusively. 

In this paper, we shall explore the scaling regime of the 
middle stage of the evolution by concentrating on the co- 
herent vortices. The result is a picture of turbulence as a 
system of interacting coherent structures including both 
chaotic dynamics and intermittent dissipation, rather than 
the more traditional picture of turbulence as a random 
velocity field. In exploring this conception of turbulence we 
shall explicitly construct a model of interacting vortices, 
which, although extremely simple, captures many of the 
essential features of the turbulence. 

The fluid dynamical equations in terms of the vorticity 
are 

g-r+J($& = ( - 1 )p+‘vpvQf, 5;=v”*, (1) 

where $(x,y) is the streamfunction, c= (VXU) l z^ is the 
vorticity, u is the velocity, J(a,b) za$,,--a,,bx is the Jaco- 
bian, and vp is the viscosity where p= 1 for ordinary vis- 

cosity and p)2 for hyperviscosity (our solution below has 
p =2). The nonlinearity of the flow is characterized by the 
Reynolds number, Re a l/vp; our interest here will be flows 
with large Re. The fluid evolves in a doubly periodic square 
domain with side 2vL. 

The relevant aggregate measures of the flow fall into 
two categories: low-order, spatially averaged moments of 
the flow fields and properties of the vortex population. We 
shall focus on three low-order, spatially averaged mo- 
ments: the kinetic energy per unit area E, the enstrophy Z, 
and the vorticity kurtosis K, 

1 
E= (27TL)’ s 

Iu12 dx 
2 ’ 

1 
Z--(2aL)Z J dx s”, (2) 

dx r’. 

Experience, and in some instances, rigorous mathematical 
arguments, show the following behavior for large Re: E is 
conserved, Z is dissipated, and K, a measure of the inter- 
mittency, grows as the coherent vortices develop and 
evolve.2>8-‘0 The enstrophy decreases through the dissipa- 
tion of vorticity filaments that are generated by close in- 
teraction of coherent vortices. These filaments are 
stretched to ever smaller scales by the turbulent strain 
field, until they reach the dissipation scale, where they are 
diffused away. Since the total energy of the fluid is con- 
served while the filaments are dissipated, it follows that 
they carry no energy, leaving all the energy in the coherent 
vortices. The manner in which the energy is partitioned 
among the evolving structures is discussed in Sec. V. 

The vortex properties of interest are the total number 
of vortices N, the average radius r,, the average circulation 
magnitude Ia, the average vorticity amplitude of the vor- 
tex cores I&, and their distribution functions. The charac- 
teristics of the emergent vortex population depend on the 
energy wave number spectrum of the random initial con- 
dition through the process of vortex self-organization dur- 
ing the first stage of evolution. Relatively broadband spec- 
tra give rise to a population with a wide distribution of 
sizes,” while narrow-band spectra produce a relatively 
narrow distribution.3 We shall focus here on the latter case, 

608 Phys. Fluids A 5 (3), March 1993 0899-8213/93/030608-14&6.00 @ 1993 American Institute of Physics 608 



where the narrow distribution of vortex properties can be 
meaningfully described by average quantities. In the case 
of broadband spectra, the initial distribution of vortex sizes 
has a band-limited, power-law form, and average quantities 
are less useful. 

In a recent paper with our colleagues,6 we proposed a 
new scaling theory for the evolution during the second 
stage, after vortex emergence but before formation of the 
final dipole. In this theory the quantities of interest display 
scaling behavior in which the time dependence is algebraic 
and the exponents are all given in terms of a single unde- 
termined exponent, <. The paper also contained prelimi- 
nary confirmations of the scaling theory by both a high- 
resolution turbulence solution and a modified point-vortex 
model. A recent experiment in thin layers of electrolyte 
also confirms the scaling theory.12 

In this paper we both extend the work of our previous 
paper6 and test the scaling theory in significantly greater 
detail. We show how scaling theory implicitly assumes self- 
similar evolution of probability distributions of vortex 
properties, and introduce finite Reynolds number correc- 
tions to the theory. We integrate the turbulence solution 
three times longer and the modified point-vortex model 20 
times longer than previously, the latter improvement made 
possible by a new renormalization technique. In addition, 
we improve the modified point-vortex model by incorpo- 
rating a new critical merger distance appropriate for vor- 
tices with different sizes, obtained by studying the 
elliptical-moment model. Finally, we construct a new en- 
ergy partition appropriate for structured flows, and assess 
the energy evolution in the modified point-vortex model. 

II. SCALING THEORY 

The classical proposal for self-similar spectrum 
evolution’ is based on the idea that the only conserved 
quantity is the energy, and it predicts that the enstrophy 
decays as t-*. Numerical solutions, however, indicate that 
the emergence of coherent vortices significantly slows the 
enstrophy decay.3’4113 In addition, a second conserved 
quantity appears: the vorticity amplitude inside the vortex 
cores I&,, which is shielded from the deformation, cascade, 
and dissipation that occurs on the edges of and outside the 
vortices.5P9P16’6 We use the two conserved quantities, E and 
&, the population average of c,, to construct a scaling 
theory for the evolution of both vortex properties and sta- 
tistical moments of the fields. The conservation of E and 5, 
can only be expected to be valid as Re+ m; the scaling 
theory is thus an infinite-Re theory. However, it is not a 
conservative theory, as no other inviscid invariants are pre- 
served. 

In the scaling theory, the vortex population is charac- 
terized by N, r,, and &; thus scaling theory is a “mean- 
vortex” theory. By assuming that all the vorticity is con- 
centrated in the vortices, one can express the scaling 
behavior of the other properties in terms of these three 
quantities: 

E--N&$, (3) 

where the scaling for E is obtained by ignoring possible 
logarithmic corrections. The issue of logarithmic correc- 
tions is explored more fully in Sec. V. 

The conserved properties, 

E(f) =Wo), L(t) =&(to), (4) 

where to is any time within the scaling regime, together 
with the algebraic evolution of vortex number observed in 
turbulence solutions,3 

-5 
Nt)=N(to) ; , 0 (5) 

provide the three elements necessary to close the theory. 
The evolution of the other properties is then 

t 614 * m 
r&)=rAfo> < , I-,(t) =lY,(t,) < , 0 0 

t 672 (6) 

K(O==K(to) to . 
0 

Thus, the evolution of all relevant quantities is algebraic, 
and the exponents can be expressed in terms of 5. While 
our focus here is on the regime where there is a relatively 
large number of vortices, we note that the scaling theory 
can be extrapolated down to the final dipole to provide 
predictions about the end state of the nonlinear evolution.7 

The scaling theory addresses the evolution of average 
properties, under the assumption that averages of powers 
of quantities scale the same as powers of averages, e.g., 

rP”(t) =cp[r(t) y, (7) 

where cP is independent of time and the symbol T indicates 
an average over the vortex population at a given time, e.g., 
r,(t) rr( t). The vortex population is fully described by a 
probability distribution function p, which is a function of 
the vortex size, shape, and vorticity amplitude. The as- 
sumption (7) requires that p evolve self-similarly. If, for 
simplicity, we consider only the dependence on vortex size, 
then the scaling assumption (7), 

s 
drrPp(r,t)=c+( Jdrrp(r,t))r, (8) 

is equivalent to assuming self-similar evolution of p, 

(9) 

for some function p and x=r/r,( t). Thus, self-similar ev- 
olution results in the distribution p(x) being independent 
of time. We use the normalization J p (r,t)dr= Jp(x)dx 
= 1. The generalizations to shape and amplitude depen- 
dence are straightforward. 

Ill. TURBULENCE SOLUTIONS 

We shall examine a particular high-resolution, long- 
duration solution of ( 1) for its temporal scaling behavior. 
This solution is an extension in time, by nearly a factor of 
4 to t= 150, of the solution analyzed extensively in previ- 
ous papers. 36,7 It is a pseudospectral numerical integration 
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FIG. 1. The vortex population in the turbulence solution and the com- 
parison curve from scaling theory (5) with f;=O.72. 

FIG. 2. The average vortex size (squares) and circulation (circles) in the 
turbulence solution and comparison curves (solid lines) from scaling 
theory (6) with &=0.72. The dotted line is the finite-Re correction to the 
vortex size (11) with n=O.l. 

with domain size L = 1 and hyperviscosity v,=3.5 x 10m9. 
Its initial conditions have energy E(0) =OS, spectrum 
peak wave number kc = 30, eddy-circulation time 
Z(0)-“2=0.021, and vorticity kurtosis K(0) =3.0 (con- 
sistent with random-phase initialization). The spatial grid 
resolution is 450 intervals in each coordinate direction. 

The first stage of evolution, comprising the maximum 
of enstrophy dissipation at t~O.25 and the emergence of 
the coherent vortices, is essentially completed by t= 1 
whenE( 1) =0.464,Z( 1)-“2==0.041, andK( 1) =6.4. Our 
analysis here will be restricted to the interval l<t<150, 
which spans approximately 1000 eddy-circulation times. 
This interval comprises only part of the second stage of 
evolution; an estimate from scaling theory7 for the end of 
the second stage for this solution is tz3500, which is be- 
yond our means (given our ends). 

The population of coherent vortices is analyzed by an 
automated vortex census3 that tests the local vorticity pat- 
terns based on an idealization of coherent vortex structure 
as axisymmetric and monotonically decreasing away from 
the central extremum. Patterns are selected as vortices if 
they approximately fit this form. The properties of each of 
the selected vortices are then measured; here we will focus 
on the radius ri (equal to the square root of the vortex area 
divided by r), circulation ri, and central extremum & of 
vortex i. 

Figure 1 shows the total number of vortices N(t) from 
the turbulence solution, together with the scaling form (5) 
with c=O.72. Except for sampling fluctuations of modest 
amplitude, it conforms quite well to algebraic decay over 
the lengthy interval in which the vortex population de- 
creases by nearly a factor of 35. The trend in Fig. 1 is 
reasonably well fit by ~~0.70-0.75; the particular value 
g=O.72 is chosen for consistency with the results of Sec. 
IV. -- 

Figure 2 shows r,(t) = ri(t) and I’,(t) = 1 lYi(t) 1 and 
their scaling forms (6). The correspondence with scaling 

theory is quite good over most of the interval, although 
there is some indication that an adjustment to scaling be- 
havior is still occurring up to a time of 3 or 4. From the 
previous analysis,3 we can associate this with a transient 
phase in which there is a relatively large fraction of small, 
weak vortices in the population, compared to later times. 

The average vorticity amplitude &(t> = 1 c&(t) 1 in 
Fig. 3 also exhibits this transient phase. Thereafter it cor- 
responds reasonably well with the scaling theory assump- 
tion (4), although there is a discernible downward trend. 
An approximate algebraic fit, tev, to this later trend yields 
an exponent of 7-O. 1. This is almost certainly an indica- 
tion that the small but finite viscosity has a measurable 
influence over the lengthy integration time here. It acts 
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FIG. 3. The average vortex amplitude in the turbulence solution and the 
comparison curve (solid line) from scaling theory (4). The dotted line is 
the finite-Re correction to the vortex amplitude (10) with q=O. 1. 
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FIG. 4. The energy (circles) and 0.05 times the enstrophy (squares) in 
the turbulence solution, comparison curves from scaling theory, (4) and 
(6) with g=O.72 (solid lines), and the classical proposal8 for self-similar 
evolution (dashed line). The dotted line is the finite-Re correction to the 
enstrophy (11) with v=O.l. 

diffusively to reduce the vorticity extrema and represents a 
finite-Re departure from the inlmite-Reynolds-number 
scaling theory. 

The second moments E(t) and Z(t) are shown in Fig. 
4. The energy corresponds very well with the scaling- 
theory assumption (4), but, even after the initial transient 
phase, the enstrophy shows a greater rate of decay than in 
(6). Again we attribute the discrepancy to the finite Re of 
the turbulence solution. On the other hand, the decay rate 
is clearly much closer to the scaling theory than the clas- 
sical Re= m proposal7 of tp2. The normalized fourth mo- 
ment, K(t) in Fig. 5, conforms quite well with the scaling 
theory (6), but it also exhibits the same initial transient as 
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FIG. 5. The vorticity kurtosis in the turbulence solution and the com- 
parison curve (solid line) from scaling theory (6) with 6=0.72. The 
dotted line is the finite-Re correction ( 11) with r)=O. 1. 
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well as appreciable sampling variability (i.e., oscillations 
about algebraic growth) on a long time scale. 

In summary, the average properties of the vortex pop- 
ulation and low-order statistical moments correspond 
rather well to the scaling theory predictions, albeit with the 
following qualifications: there is an early period of adjust- 
ment to the regime of scaling behavior; there is evident 
sampling variability associated with the finite population 
size, with differing magnitudes for different quantities; and 
there are somewhat greater decay rates for vorticity ex- 
trema and enstrophy that we attribute to the finite Re of 
the turbulence solution. 

We can attempt a quantitative rationalization of the 
diffusive influences by modifying the scaling theory predic- 
tions to include decay of & and growth of r, in such a way 
as to preserve I’,. This is an exact property of the axisym- 
metric conduction equation for 5 and we can use it as a 
hypothesis for including finite-Re effects of ( 1). Under this 
hypothesis, the scaling forms are unaltered from (4)-(6) 
for E, N, and r, all of which fit quite well the turbulence 
solution in Figs. 1, 2, and 4. However, if we assume a 
diffusive effect, 

La tsv, (10) 

and conservation of l?, under diffusion, then from (3), 
r,cct5~‘w2, Zat-m-17, KatV’/2--$* (11) 

If we take v=O. 1 (as a fit to Fig. 3; see above), then we 
note that all the corrections in ( 11) are relatively small, 
and presumably vanish as Re --) CO. 

We see from Fig. 2 that the best exponent for r, lies in 
between (6) and ( 11). From Fig. 4 we see that the best 
exponent for Z is even a little more negative than ( 11)) but 
clearly more so than (6). From Fig. 5 we see that the best 
exponent for K appears closer to (6) than to ( 1 1 ), al- 
though the sampling variability precludes a clear distinc- 
tion. We conclude that although we are not able to confirm 
the diffusive corrections ( 10) and ( 11) with great preci- 
sion, they do have the correct sense and magnitude. Be- 
cause these corrections are relatively small, we will return 
to the Re= CO scaling theory for the remainder of the pa- 
per. 

An earlier analysis of this solution3 calculated the dis- 
tribution function of vortex amplitude. Here we shall focus 
on the probability distribution function of vortex size 
p (r,t) . These two single-property distribution functions 
would completely describe their joint distribution function 
if they were independent. In fact, the present solution, with 
narrow-band initial condition, shows only a weak correla- 
tion, in that the smallest few vortices have weaker ampli- 
tudes than average. This approximate independence of the 
single-property distributions is also seen in solutions with 
broadband initial conditions.” A further reason to focus 
here on p(r,t) is that it allows direct comparison with the 
modified point-vortex model of Sec. IV. 

Scaling behavior is intimately linked to self-similar ev- 
olution of the probability distribution function for vortex 
properties (Sec. II). Thus, we investigate the hypothesis 
that p(r,t) evolves self-similarly as in (9), using the 
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FIG. 6. The instantaneous vortex size distribution function p(x) (9) 
from the turbulence solution at t=4, 8, 15, 30, 60, and 120. 

scaling-theory form (6) for r, with ro( rc> chosen to match 
the turbulence solution at to= 10. Figure 6 shows several 
instantaneous evaluations of p(x), based upon the vortex 
census. There is evidently considerable sampling variability 
in the instantaneous distributions, but there is no evident 
trend, consistent with the hypothesis of self-similarity. In a 
time average of the instantaneous distributions, Fig. 7, the 
sampling variability is substantially reduced and a smooth 
distribution results. 

IV. MODIFIED POINT-VORTEX MODEL 

Our goal in this section is to construct the simplest 
model that captures the essential phenomena of the scaling 
regime of two-dimensional decaying turbulence. The de- 
gree of success of this model will be a measure of our 
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FIG. 7. The average vortex size distribution function p(x) (9) from the 
turbulence solution, averaged over the times in Fig. 6. The uncertainty 
(dotted curve) is estimated by the standard error of the mean, assuming 
the six times are independent. 

understanding of the essential dynamics underlying the 
phenomena. The model we describe here is a modification 
of the one we used previously.6 While we shall be con- 
cerned here with the case where the vortices emerge from 
narrow-band random initial conditions, we note that Benzi 
et al. I7 independently devised a model identical to our pre- 
vious one to study the broadband case. 

We now give a brief overview of our rationale for the 
model’s design. Our goal of using the simplest possible 
model means that we shall represent the coherent vortices 
with a minimal number of degrees of freedom. The mini- 
mal representation is as point vortices, whose invariant 
circulations Ii completely determine the velocity field. 
This representation is appropriate when coherent vortices 
are far apart, and they move under their mutual 
advection.L’P’8 Representing dissipative interactions of 
close vortices, parametrized here by abrupt transforma- 
tions, requires consideration of the size of the vortices. 
Thus we increase the complexity of the representation and 
consider uniform circular disks with radius ri and, thus, 
vorticity pi= ri/~~. The criterion for triggering an abrupt 
transformation, mimicking vortex merger, is separation of 
like-sign vortices by no more than a critical distance d,. 
The determination of d, involves shape deformations for 
which the simplest representation is uniform elliptical 
patches. We find that this is the maximum complexity we 
need to construct the model. Our approach of using a 
single-point/disk/elliptical vortex for a single coherent 
vortex should be contrasted with more complex ap- 
proaches, such as using many point or blob vortices or a 
few isovorticity contours to represent the continuously dis- 
tributed vorticity field within each coherent vortex.‘gY20 

The dynamics of point vortices is Hamiltonian, 

(12) 

where vortex i has position (Xi,yi) and circulation lYP In a 
square periodic domain H takes the form22 

rirj 
H( {Xiyyi, I’i}) = - [,& 2 G(xt-xpYi-Yj) 9 ( 13 ) 

where 

cosh(x/L--2Pm) -cos(y/L) 

cosh( 2n-m) 

(14) 

and G, is an arbitrary constant that we are free to add to G. 
It is convenient to choose 

G,=k---&ln 2-k < ln( l+e-4rm) =0.028 17..., 
I?&1 

(15) 

which results in Jdx G(x) ~0.~~ The sum in ( 14) con- 
verges rapidly, and can be usefully truncated for numerical 
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computations. If N> 3, the Hamiltonian ( 13) is noninte- 
grable and the dynamics is chaotic. 

Point-vortex dynamics, being Hamiltonian, is conser- 
vative. In addition to H, the dynamics conserves the vortex 
momentum, 

Ps C l?i~~-xj). (16) 

(See Ref. 22 for more details about P. > For small but finite 
disks evolving under point-vortex dynamics, the total en- 
ergy is conserved (see Sec. V), as are all moments of the 
vorticity field. 

Iti two-dimensional turbulence, dissipation becomes 
important when two vortices approach closely, and thus 
some modification of point-vortex dynamics is required. 
While the dissipative interaction of two vortices can be 
quite complex, for simplicity we only include what we as- 
sert to be the most important phenomenon: merger of 
same-sign vortices. When two same-sign point vortices be- 
come closer than some critical merger distance, do the 
Hamiltonian dynamics is interrupted, the two vortices are 
replaced by a single new vortex, and the Hamiltonian dy- 
namics continues with this new set of vortices. 

The properties of the new vortex are determined from 
transformation rules based on representing the vortices as 
uniform disks and conserving the same properties as the 
scaling theory: energy and peak vorticity. In this paper we 
shall restrict ourselves to initial vortex populations with 
uniform vorticity: &= +& for all i. In this context, con- 
servation of peak vorticity implies that when two same-sign 
vortices, 1 and 2, merge to form vortex 3, 

~3=41=~2 * (17) 

In the scaling theory, the energy is related to the average 
vortex properties by (3)) where possible logarithmic cor- 
rections have been ignored. Here we hypothesize that (3) 
is also true for individual vortices; we discuss the validity 
of this hypothesis in Sec. V. Together with the transforma- 
tion rule for vorticity ( 17), this results in the transforma- 
tion rule for vortex size, 

r:=r;+r;. (18) 

In principle, these rules could be extended to populations 
with unequal vorticity amplitudes. All other invariants of 
the Hamiltonian system apart from the explicitly con- 
served quantities are lost in the transformation, including 
total circulation and enstrophy. 

Our model fits into a general framework of punctuated 
Hamiltonian dynamics, where Hamiltonian evolution is 
punctuated by dissipative events. These events, represented 
mathematically by abrupt transformations of the Hamil- 
tonian system, characterize the outcome of an irreversible 
evolution toward local flow complexity ending in dissipa- 
tion. The onset of irreversible behavior occurs on a time 
scale fast compared to the intervortex Hamiltonian evolu- 
tion in ( 12), and is thus represented as an instantaneous 
transformation. While we discuss here only the simplest of 
such models, and only for tivo-dimensional decaying tur- 
bulence, we feel that this general class of dynamical sys- 

terns is potentially well suited to modeling any turbulent 
flow that develops sufficiently coherent structuring of the 
vorticity field.24 

A. Critical merger distance 

Two identical initially circular vortices merge when 
their initial separation is less than approximately 3.3 times 
the vortex radius.15 In our previous paper6 and in Benzi 
et al.,17 the criterion dc=3.3(rl+r2)/2 was used for all 
vortex mergers. Using the elliptical-moment mode1,25 we 
develop an alternative criterion more appropriate for un- 
equal vortices. 

The elliptical-moment model, in which the vortices are 
represented as elliptical patches of uniform vorticity in an 
open domain, is the simplest model that exhibits a phe- 
nomenon analogous to vortex merger.15 Since the vortices 
are assumed to remain elliptical, the model cannot capture 
the filamentation and entanglement of vorticity that sictti- 
ally occurs in vortex merger. It does, however, contain the 
phenomenon of vortex collapse, in which the distance be- 
tween the centroids of two vortices goes to zero while the 
ellipticities of the vortices grow. Vortex collapse thus cap- 
tures the early stages of vortex, merger. Identifying the 
threshold for vortex collapse with that for vortex merger 
allows us to use the elliptical-moment model to calculate a 
critical merger distance fdr unequal vortices. 

In the Appendix we study the nonlinear dynamics of 
the elliptical-moment model in some detail. In particular, 
we focus on the collapse of two initially circular vortices 
with equal uniform vorticity and radii i, and r2. We find 
that the collapse boundary is well fit by a simple curve, 

4 
dc(rl,r2) =2.592r2+0.609 6, r1 <r2. (19) 

We n&e that this agrees with previously obtained results 
for the case rl =r2.15 

The true complexity of vortex interactions is, of 
course, enormous. Even a gross simplification such as the 
elliptical-moment model exhibits the complexity of Hamil- 
tonian chaos. As one goes further along the hierarchy to- 
ward more realistic models, the complexity increases. Us- 
ing contour dynamics to model vortices with uniform 
vorticity, Dritschel and Waugh find that the results of vor- 
tex interaction depend in a complicated manner on the 
initial sizes and separations.26 The boundary they find be- 
tween conservative and dissipative interactions is, however, 
close to the d, found in the moment model. If one wants to 
model vortex interactions more realistically, one would 
have to go even further and include continuous vorticity 
profiles. Furthermore, to realistically model vortex inter- 
actions in a turbulent fluid, one would also need to include 
the fluctuating strain field associated with the chaotic mo- 
tions of other, distant vortices. 

Our approach here, however, is to test our understand- 
ing of turbulence using the simplest relevant model. An 
important aspect of our simplification is a binary declara- 
tion about the dissipative close interaction of two vortices: 
either it is wholly conservative or the vortices merge com- 
pletely without loss of l?“. Thus we only include the vortex 
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interactions that have the most dramatic impact on the 
flow: those in which the number of vortices changes. 
Dritschel and Waugh26 fQund that this occurs through ei- 
ther vortex merger, or, if the size disparity between the two 
vortices is great enough, straining out of the small vortex 
leading to a loss of its r2. The transformation rule (18) 
explicitly captures vortex merger while making only small 
errors in the regime of straining out where r1/r2 is small, 
and hence lY’~&,I’$ Finally, we neglect the creation of 
new vortices, which can occur through the rollup of fila- 
ments if the ambient strain field is weak enough. This pro- 
cess does occur in turbulent solutions,2’3 however, its fre- 
quency of occurrence is still not well known, and, more 
importantly, the resulting vortices are relatively small since 
the antecedent filaments are thin. Hence these vortices 
have a relatively weak influence on the evolution of the 
dynamically dominant larger vortices. Thus, in summary, 
our “model consists of point-vortex dynamics, except when 
same-sign vortices approach closer than d, ( 19), at which 
point they instantaneously merge according to the trans- 
formation rules (17) and (18). 

B. Renormalization 

We are interested in the asymptotic scaling regime of 
the evolution, after all transients have died away. If there 
were no limits on computer time or memory, we could 
start with an enormous number of vortices, and after the 
transients died away there would still be a large number of 
vortices and a very long scaling regime, allowing us to 
accurately average out the sampling fluctuations. With cur- 
rent computers, however, it is not possible to use enough 
vortices to achieve this accuracy. To overcome this limita- 
tion we have developed a renormalization technique, in 
which the final state of an integration containing few vor- 
tices is used to create a new initial state with many more 
vortices. By integrating over many renormalization cycles 
we can reach the asymptotic scaling regime and obtain 
enough data to reduce the sampling error to a reasonable 
level. 

The renormalization procedure starts with a state con- 
taining N vortices, with radii ri. From this state, the pro- 
cedure produces a new state, where each vortex is copied m 
times, resulting in N’ =mN. To remain consistent with 
scaling theory, Eqs. (5) and (6), each copy must have a 
new radius ri = rim-“4, while the vorticity amplitude re- 
mains constant. This process can be thought of as using 
scaling theory to produce, from a state at time t, a state at 
an earlier time t’= tm -“CT If the system were truly in a . 
scaling regime, and large enough that there was no sam- 
pling variability, this procedure would merely rewind the 
system to a previous state. Here we shall use m=4. 

It remains to determine the positions of the 4N vorti- 
ces. Because the Hamiltonian dynamics of point vortices is 
sensitive to the configuration of the vortices,22 we do not 
wish to place them completely randomly. Rather, the new 
configuration is determined by the old one. The vortices 
evolve in a doubly periodic domain, i.e., the in&rite plane is 
tiled with copies of the basic (2rrL)’ domain. By shrinking 

distances by a factor of 2, we obtain a new basic domain 
with 4N vortices: Each old vortex at (X+yi) becomes four 
new vortices at (xi/2+nxrLyi/2 +n,,rL) with n,,ny=O;l. 
In order to prevent the copies from evolving identically due 
to the large-scale order, we add small random noise to the 
new positions. This procedure can obviously be generalized 
to any m that is the square of an integer. 

The renormalization procedure reduces distances be- 
tween vortices by a factor of m1’2, while reducing radii by 
a factor of m1’4. Thus, two vortices that before renormal- 
ization were not close enough to merge, may after renor- 
malization merge. The result is that after renormalization 
there is typically a round of merger that reduces the vortex 
number. If radii were reduced in proportion to distances, 
this round of merger would be eliminated, but, for consis- 
tency with scaling theory, vorticity amplitudes would also 
have to be renormalized, changing the time scale of the 
evolution. This alternative is sufficiently more complicated 
that we prefer the simpler choice, which, as we shall see 
below, is successful. 

It is important to note that since the renormalization 
scheme is based on scaling theory, the scaling regime we 
find in the modified point-vortex .-model is a demonstration 
of self-consistency of the scaling hypothesis, rather than an 
independent confirmation. It does, however, provide an in- 
dependent determination of the scaling exponent c since < 
is not used in the renormalization procedure. 

C. Scaling regime 

Having defined the Hamiltonian, the transformation 
rules, and the renormalization procedure, we are now in a 
position to numerically integrate the modified point-vortex 
model. The equations of motion (12) are integrated using 
the package LSODE. 27 The domain is doubly periodic with 
length 2~. An initial condition consists of 400 vortices with 
uniform initial radius ri=0.08, circulation I-i= f I, half 
positive and half negative. This initial radius results in vor- 
tices whose total area initially covers approximately 20% 
of the domain. The vorticity, ci= A&= &49.7 = l?J?r$, is 
constant throughout the evolution due to the transforma- 
tion rule ( 17). The initial positions of the vortices are ran- 
dom, with the restriction that the vortex momentum ( 16) 
be equal to its average over all possible configurations, 
P=o.22 

A single cycle consists of evolution from N=400 to 
N= 100, followed by a renormalization back to N=400. 
Five independent initial conditions were created by using 
independent realizations of the random initial positions. 
Each initial condition is integrated for 12 cycles, defining a 
single trajectory. 

Once a trajectory reaches the scaling regime, the dis- 
tribution of vortex radii will be the same at identical times 
in successive cycles. The distribution at the beginnings of 
several cycles, obtained by averaging over the five trajec- 
tories, is shown in Fig. 8. By cycle seven the distribution 
appears to have equilibrated and further variation is from 
fluctuations due to finite sample size. Note that vortices 
smaller than those in the initial condition appear due to the 
renormalization of vortex size. In the analysis of the model, 
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FIG. 8. Probability distribution functions p(r,t’), t’=O, from the modi- 
fied point-vortex model for several different renormalization cycles, la- 
beled by the numbers on the right. Each distribution is an average over 
the five independent trajectories. The delta-function initial condition is 
indicated symbolically by the arrow. 

we thus use data from cycles 7-12 from each of the five 
trajectories, resulting in a total of 30 cycles. 

The initial condition for each cycle is defined to occur 
at t’=O, but it is to be considered a state within the scaling 
regime at some time t= t’ + to = q,. The hypothesized scal- 
ing behavior is (4)-( 6). In terms of t’, the equation for 
vortex number, for example, is 

t’+to -6 
N(t) =N(to) - 

( ) to * (20) 

The unknown parameters are thus the exponent c, the time 
to, and the values of the average vortex properties at to. The 
only parameter that is relevant for comparison with the 
turbulence solution in Sec. III is g. 

The individual cycles exhibit significant variability, 
both within a single cycle and between cycles, as can be 
seen in p( r,t) (Fig. 8) and N(t) (Fig. 9). To test scaling 
theory we consider average quantities, denoted by a sub- 
script a. We shall need two different averages: an average 
over all vortices iti a single cycle at a single time, denoted 
by an overbar; and an average over all cycles at a single 
time; denoted by angular brackets. Furthermore, the quan- 
tities of interest can all be expressed as averages over vor- 
tex number and radius: 

N,(t) = (N(t) >, 
r&>=(W), 

r,(t) =4b?(t)), 

Z(t) =; (N(t)<(t)), 

K”‘t)=4?i( N(t)&, * 

(21) 

FIG. 9. Vortex number N(t), t>te, te=O.O50, for 30 cycles from the 
modified point-vortex model. 

The values of to, c, and N( to) are obtained by perform- 
ing a least-squares fit of the logarithm of (20)) 

lnN,(t>=A-gln(t’-i-to), (22) 

where ‘4 =ln[N(to)t$]. One can analytically obtain a fit for 
A and g as functions of to. A numerical search for the to 
that minimizes the error completes the fit. Uncertainties 
are obtained by approximating the fitting error near the 
minimum as a quadratic function of to, and finding the At, 
which increases the error by 20%. The results are 
to=0.050*0.003 and ~=0.72*0.02. 

The fit of N,(t) to scaling behavior, shown in Fig. 10, 
is excellent, indicating that the vortex number does indeed 

4x102 , . . . . . I 1 

.I.\,..- 
. . . . . 102 * 

FIG. 10. A comparison of average vortex number N,(t), vortex radius 
r,(t), vortex circulation magnitude I,(t), enstrophy Z,(t), and kurtosis 
K,(t) from the modified point-vortex model (solid lines) and scaling 
theory (dotted lines). In the model, to < t < to + t&,,, where fc=O.O50 and 
&d = 0.14 is the earliest time for one of the 30 cycles to reach N= 100. 
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FIG. 11. Probability distribution functionsp(x) (9) at six different times 
from the modified point-vortex model calculated by averaging over the 30 
cycles. 

evolve algebraically. Furthermore, the value. of g found 
here fits the turbulence solution extremely well (Fig. 1) . 

A comparison of the other quantities with the scaling 
theory predictions (6) is also shown in Fig. 10. The values 
of to and c used in the scaling theory predictions are from 
fitting N, while the initial values [I( to), etc.] are chosen by 
requiring the data to match scaling theory at a single in- 
termediate time. The quantities exhibit algebraic evolution, 
with the exponent well predicted by scaling theory. 

The scaling behavior can be interpreted using (21)) 
together with the fact that the transformation rule (18) 
requires N( t)r:( t) be strictly constant for all t and all 
cycles. Thus, one concludes that (Naz) - (N) “( c),>p, 
from which we infer self-similar evolution of the distribu- 
tion function, as in (7)-(g). Because all quantities are 
related by (21) to the vortex number and radius, we focus 
on the vortex size distribution p (r,t), and test the inference 
that p(r,t) evolves as (9). 

The distributions at six different times, each obtained 
by averaging over- the 30 cycles, are plotted in Fig. 11. The 
distributions are, within sampling variability, identical, and 
one concludes that the hypothesis (9) is true. 

The best estimate for p(x) is obtained by averaging 
over the 30 cycles and several times within each cycle. The 
behavior of fluctuations leads us to conclude that the cor- 
relation time is less than half a cycle. Thus we average over 
three times: at the beginning, near the middle, and near the 
end of each cycle. The best estimate for p(x) and its un- 
certainty are piotted in Fig. 12. 

Figures 6 and 11 show that both the modified point- 
vortex solution and the turbulence solution evolve self- 
similarly according to (9). Comparison of Figs. 7 and 12, 
however, shows that the actual shape of p(x) differs sig- 
nificantly between the two, with the point-vortex model 
containing significantly more small vortices than the tur- 
bulence solution. Differences in the large vortex portion of 

1.5 

1 .o 

2 
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FIG. 12. Best estimate for p(x) (9) from the modified point-vortex 
model, obtained by averaging over the 30 cycles and over three times 
within each cycle. The dotted lines indicate the uncertainty estimated by 
the standard error of the mean, assuming the 90 measurements are inde- 
pendent. 

9 are small enough to be accounted for by sampling vari- 
ability. 

V. ENERGY PARTlTlQN 

The transformation rules for the modified point-vortex 
model are based on conservation of energy, up to a possible 
logarithmic correction. Figure 4 shows that the turbulence 
solution conserves energy extremely well. In this section, 
we investigate energy conservation in the point-vortex 
model. In doing so, we formulate an energy partition ap- 
plicable to any structured flow. 

When the vorticity field is structured, one can partition 
the energy E into three components: the self-energy E, the 
configuration energy EC, and the background energy EJ,. 
Here E,, the energy due to self-interaction of the struc- 
tures, is independent of their positions, while EC, the inter- 
action energy of the structures, is a function of their spatial 
configuration. Here Eb is the. energy resulting from the 
nonstructured part of the vorticity, and contains both the 
interaction between the structures and the background and 
the self-energy of the background. 

The partition is accomplished by rewriting the energy 
(2) in terms of a Green’s function: 

dx’ S‘(x)G(x-x’){(x’), 

(23) 
where G is defined by 

dx’ G(x-x’)c(x’), (24) 

and translation symmetry requires G( x,x’) = G( x-x’). 
Periodic boundary conditions require that the total circu- 
lation in the (27~L)’ domain be zero. The relation V2$=g 
then determines the differential equation which G satisfies: 
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1 
V2G(x) =8(x) - (2aL)~. 

Thus, G is the streamfunction resulting from a point vortex 
with unit circulation, where, to satisfy the requirement on 
the total circulation, a point vortex is defined as a delta 
function, together with its compensating uniform vorticity 
field. Note that in an open domain, L+ 00, and the com- 
pensating field vanishes. From previous work on point vor- 
tices in a periodic domain,22 it is known that G is given by 
(14). 

Consi$er a vortex structure ii(x), with circulation 
l?i= Jdx ci(x). The requirement that the total circulation 
be zero implies that_the physical vorticity resulting from a 
structure is S;(X) =ci(x) -J?J(27iL)‘e The total vorticity 
can be decomposed into structures and background, 
~=~,~~+~~, where the background rorticity & is defined 
to be whatever vorticity is not accounted for by the struc- 
tures. The energy partition is then 

Es= -2(2TL) i ’ pxj-dxj- dx’ cf(x)G(x-x’)[i(x’), 

EC=-- & i,&j j- dx j- dx’ t5(x)G(x-x’Xj(x’>, 

(26) 

Ebe - dx’ &(x)G(x-x’)&(x’) 

+cz dx’ &(x)G(x-x’)&(x’) 
i 

and E=Es-/-Ec+E6.28 
For the case where the structures are small uniform 

disks and &,=O, the lowest-order contributions to the en- 
ergy components can be found analytically. The structures 
are described by, a size ri(L, a vorticity sip and thus a 
circulation ri=&r$. The energy components are then, to 
lowest order, 

E,= - ’ z 2 r;[&ln(&)--&--G], 
2(2rL) i 

1 
Ec=-2(2TL)’ f,j,f#j 

C rir,G(xi--xj), (27) 

Eh=O. 

Note that EC is equal to the point-vortex Hamiltonian ( 13) 
divided by (2~rL)~, the area of the domain. A system of 
small disk vortices evolving under point-vortex dynamics 
conserves the total energy since EC is proportional to the 
conserved Hamiltonian, and Es depends only on Ti and r, 
which are unaffected by point-vortex dynamics.’ Note also 
that in the point-vortex limit, ri*0, [i+ co, with l?i re- 
maining constant, EC is unchanged while Es becomes infi- 
nite. 

In the modified point-vortex model the vortex proper- 
ties evolve due to the transformation of close same-sign 
vortices. We can see from (27) that the transformation 
rules used, ( 17) and ( 18), equivalent to Zirf being con- 

t 

FIG. 13. Energy components E, E, and total energy E, from the mod- 
ified point-vortex model, averaged over the 30 cycles. The dotted lines are 
fits of (30), while the dashed lines are reference lines at constant energy. 

stant, do not strictly conserve E. The nonconservation is, 
as stated earlier, due to logarithmic terms in E: the term in 
Es that depends on r, and EC, which is approximately log- 
arithmic in the vortex separations due to the form of G. 
The degree of energy nonconservation in the modified 
point-vortex model is seen in Fig. 13. We also note that an 
earlier analysis of a single vortex merger event in a spectral 
model shows transformation of energy from EC to Es with 
no change in E or E6.24*28 However, the behavior of a single 
few-body merger event does not necessarily apply to the 
variety of many-body merger events found in a turbulent 
environment. 

The scaling of the energy components (27) with the 
average vortex properties can be determined using a mean- 
vortex approximation. The assumptions of this approxima- 
tion are 

Crf=aNr$ 
i 

mn(;) (L)’ =bNr; In 2 
i 

C 
W#j 

rir,G(Xi-Xj) = -i Nl$G(x,), 

(28) 

where CI, b, c, are positive G( 1) constants, and 1 x, I= 
27rL/@ is a typical nearest-neighbor vortex separation. 
The scaling of the sum over vortex pairs is due to the fact 
that N vortices have N/2 more opposite-sign pairs than 
same-sign pairs. Evaluating G using the leading term in a 
small x expansion gives 

Es= Gc+&+&ln 2)-kin(:)], 

(29) 
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Scaling theory, (5) and (6)) then gives the time evolution 
as 

Es=@--cl In t, c1 > 0, 

E&&-c2 In t, c2>0, (30) 

E=E,+E,=l$+l$!+ (c2--cl)ln t. 

The assumption (28) with a, 6, and c positive results in cl 
and c2 being positive, and thus predicts that the self-energy 
decreases with time due to growing r,/L while the config- 
uration energy grows due to increasing vortex separation 
caused by decreasing N. 

Thus the mean-vortex approximation together with 
scaling theory predict that the energy components of the 
modified point-vortex model evolve logarithmically in 
time. This is seen to be true in Fig. 13, where the energy 
components are calculated from (27) and averaged over 
the 30 cycles. Note that c2/c1 =2x/b > 1 for the modified 
point-vortex model; thus the logarithmic increase of energy 
is a consequence of the distribution functions of vortex size 
and separation, as manifested in (28). 

Vi. DISCUSSION 

In this paper we have presented results from both a 
long-time integration of the fluid equations ( 1) and from a 
modified point-vortex model that formulates turbulence as 
a collection of interacting coherent structures. The two 
systems show excellent agreement in a number of aspects, 
both with each other and with the mean-vortex scaling 
theory: the evolution of average vortex properties and low- 
order moments displays self-similar evolution with the 
same scaling form. Furthermore, the two systems give the 
same value of the scaling exponent 6~0.72. Thus, we be- 
lieve we have achieved and demonstrated a significant de- 
gree of understanding of the statistical dynamics of two- 
dimensional turbulence. 

In the turbulence solution, departures of average prop- 
erties from scaling theory can be rationalized by including 
finite-Re corrections in the scaling theory. The ad hoc func- 
tional form of these corrections is algebraic, and the asso- 
ciated exponent 17 is an incompletely understood function 
of Re that represents the combined effects of advective 
straining and viscous diffusion.29 The corrections do, how- 
ever, qualitatively capture the relatively small departures 
from the Re= CO scaling theory. 

The value of c obtained here is consistent with recent 
laboratory experiments, which also used narrow-band ini- 
tial conditions.12 The agreement between three such di- 
verse systems suggests that the value of c is universal over 
some class of initial conditions, within which scaling be- 
havior is approached asymptotically in time. The size of 
this class is an open question, but we suspect that it is quite 
large. 

There are two significant discrepancies between the 
modified point-vortex model and the turbulence solution: 
the shape of the self-similar distribution function p(x) and 
the behavior of the energy. The fact that our model keeps 
more small vortices than the turbulence solution, Figs. 7 

and 12, leads us to believe that our transformation rules do 
not adequately capture the dissipative interaction of dis- 
parate size vortices. Nonconservation of energy in the 
model, (29) and Fig. 13, indicates that the transformation 
rule for vortex size, based on an approximation to the en- 
ergy that neglects logarithmic variations, is too simple. 
Thus, both discrepancies can be traced to deficiencies in 
the characterization of the dissipative interactions. 

As shown in (9), self-similarity can occur with any 
distribution function p(x). Thus, it is not necessarily sur- 
prising that the model can capture scaling behavior with 
the correct c, despite the above discrepancies. Further- 
more, in our previous work6 we obtained scaling behavior 
with roughly the same value of 6 by using a different crit- 
ical merger distance function, one that resulted in a p(x) 
that contains even more small vortices. In addition, 
Carnevale3’ has found that particles that merge using our 
transformation rules when close, and move not with point- 
vortex dynamics but as random walkers or with ballistic 
trajectories, show a wide range of values for L$ depending 
on the details of the motion. Carnevale also found that 
drastically changing the transformation rule so that it con- 
serves l? rather than r’ affects the value of f. From all of 
this we conclude that p(x) is strongly dependent on the 
characterization of the dissipative interactions, while c de- 
pends weakly on at least some aspects of the dissipative 
transformations but is sensitive to the characterization of 
the conservative phase of the dynamics. 

The deficiencies in the model suggest several directions 
for improvement. Whereas currently merger of same-sign 
vortices is the only dissipative process in the model, one 
could include straining destruction, where small vortices of 
either sign are destroyed when they get too close to a large 
vortex. This would have the effect of reducing the number 
of small vortices, perhaps enough to give the correct p(x). 
In addition, one could use the more detailed equations for 
the energy components (27) to construct energy conserv- 
ing transformation rules. Finally, one could increase the 
generality of the model by including vortices with unequal 
amplitudes. 

Overall, however, we feel that our strategy of repre- 
senting two-dimensional decaying turbulence by a simple 
model containing coherent structures governed by Hamil- 
tonian dynamics and punctuated by abrupt dissipative 
transformations has been a successful one. Furthermore, 
we feel that the mathematical framework of punctuated 
Hamiltonian dynamics is an attractive vehicle for modeling 
dynamical systems that have an essential dependence on 
dissipation that occurs only intermittently, insofar as suf- 
ficient dynamical understanding exists to characterize the 
initiating circumstances and the outcomes of dissipative 
events to create punctuation rules. Punctuated Hamil- 
tonian dynamics provides an efficient representation of the 
irreversible trends found in nearly conservative systems by 
modeling them as abrupt transformations rather than fol- 
lowing in detail the evolutionary complexity. 
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APPENDIX: THE ELLIPTICAL-MOMENT MODEL 

In this appendix we present the elliptical-moment 
modelI and focus on the case of two vortices with equal 
vorticity but unequal size. The model is a Hamiltonian 
dynamical system with two independent constants of the 
motion (apart from the energy), and for two vortices it has 
an eight-dimensional phase space. By appropriate coordi- 
nate transformations the system can be reduced to a four- 
dimensional Hamiltonian with only a conserved energy, 
and can then be visualized with a two-dimensional Poin- 
car6 surface of section. If the vortices are identical, the 
additional symmetry makes the system integrable.” For 
unequal vortices, however, the system is nonintegrable and 
the usual features, such as chaotic regions, islands, KAM 
curves, and cantori, appear.31332 The model is numerically 
integrated to investigate the boundary between those initial 
conditions that collapse, where the distance between vortex 
centroids goes to zero, and those that do not. The bound- 
ary provides the critical condition for merger in the mod- 
ified point-vortex model. 

The elliptical-moment model describes a collection N 
of vortices by a Hamiltonian dynamical system in 4N vari- 
ables: (xi,~i,n,~,), where (X,yi) is the position of the cen- 
troid of vortex i, ;li=ai/bi> 1 is its ellipticity, ai and bi are, 
respectively, half the major and minor axes of the ellipse, 
and pi is the angle of orientation of the major axis with 
respect to the x axis. The description of each vortex is 
completed by the inclusion of two parameters: the vorticity 
& and vortex area Ai=raibp 

In the above coordinates, the model has a singularity 
for circular vortices, /zi= 1, where the orientation becomes 
undefined. The singularity can be removed by changing 
variables to (X,y,S,yi), where 

C6i2Yi) = 

i(/zi-1)2 
ST/Ii llcOS(2$i),Sin(2$i)]. C-41) 

This change of variables also puts the system into canoni- 
cal form (apart from the factor I’i=Al{i) : 

aH I 1 -ayi 
aH 
dxi 

dH . 
-dyi 
aH 

.zEj, 

The Hamiltonian is 

(A21 

+ 
i 

S$+$+$J (Sj COS 28ij+yj Sill 20,) )I1 , 

(443) 

where cos 8..= (Xi-Xj)/R, sin 8,= (vi-yj)/Rij, and 
Rfj= (Xi-Xiji + (yi-yi) 2. 

The system has three continuous symmetries, rotation, 
and translations in x and y, and thus has three dynamical 
invariants: the angular impulse, 

M= 2 l?i X:+yf+2C$+7+)+$ ; 
i=l i 1 

and the global centroid, 

C= $ FiXi. 
i=l 

(A51 

There are, however, only two independent invariants, M 
and 1 C 1 2. The system can thus be reduced from the 4N- 
dimensional phase space to 4N-4 dimensions. We are in- 
terested here in the case N=2, and the phase space can be 
reduced to four dimensions. 

We choose the unit of time SO ci= 1, Ai= l?i, choose the 
origin of our coordinate system so CEO, and choose the 
unit of distance so the larger vortex, defined to be vortex 2, 
has AZ=-T. 

Using R =R,, and 8= 13,~ reduces the system to six 
dimensions. The reduction to four dimensions is accom- 
plished by the coordinate change, 

pi=~~SiIl2O+SiCOS 28, 
C-46) 

4i’yf COS 28--Si sin 28, 

where i= 1,2. The reduced equations of motion are 

(A7) 

the Hamiltonian is 

(~48) 

and the vortex separation R is a function of the coordinates 
and the angular impulse: 
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FIG. 14. Poincark map from numerical integration of the elliptical- 
moment model containing two vortices with IYl =lr/4, r2=~, and initial 
separation &=2.752. 

)I - (A91 
Note that the Hamiltonian (A8) becomes singular as 
R-0. 

An initial condition is fully described by the initial 
vortex shapes ( ql,p1,qz,p2), which are zero for circular vor- 
tices, and two parameters, l?r and M. It is convenient to 
specify the initial vortex separation Ro, which, by (A9), is 
equivalent to M once the initial shapes are specified. In 
addition, for circular initial vortices, one can specify the 
radius r, rather than r,=?r<. 

The dynamics lies on a three-dimensional energy sur- 
face H= E embedded in the four-dimensional phase space, 
and may be visualized via a two-dimensional PoincarC 
map. The map we choose is constructed by transforming to 
action-angle coordinates for vortex 1, 1, = (d+p:)/2, 
tan a1 =ql/pl, and regarding I, as a function of the other 
variables, i,=Il(al,q2,p2;E). We then construct the map 
with the surface (rl=O, oriented with trajectories crossing, 
the surface with increasing al. 

Figure 14 shows one such PoincarC map for several 
trajectories, all with the same initial vortex separation but 
different initial vortex shapes. Trajectories with nearly cir- 
cular initial conditions (small &+pz in Fig. 14) are regu- 
lar and oscillate without collapsing. These regular trajec- 
tories, in which the shape and separation of the vortices 
oscillate as they rotate about each other, are the majority of 
the trajectories seen in Fig. 14. Trajectories whose initial 
conditions have sufficiently large ellipticity are in a chaotic 
region in which collapse occurs. While a chaotic trajectory 
may spend a significant time trapped by a cantorns, and 
thus oscillate in a manner similar to a regular trajectory, 
once the trajectory enters the main chaotic region the vor- 
tex separation R rapidly shrinks to zero. The decrease of 
vortex separation is accompanied by growth in the elliptic- 
ity of the vortices, as indicated by Eq. (A9). Because cha- 
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FIG. 15. Vortex separation squared R’(t) from the elliptical-moment 
model for initially circular vortices with r,=?r/4, ra=t and initial 
separations R,=2.746-2.751 in steps of 0.001. The trajectories are suc- 
cessively offset by AR2=Q.25. 

otic trajectories collapse so quickly, it is very difficult to 
show the chaotic region in a Poincare map. indeed, the 
only chaotic trajectory in Fig. 14, the bottom-most arc in 
the figure, is seen only because it spends some time trapped 
near an island before escaping and collapsing. As the initial 
vortex separation decreases, the region of regular oscilla- 
tions shrinks until the entire phase space is chaotic and all 
initial conditions collapse. 

Defining a simple critical distance do above which vor- 
tices never collapse, and below which they always collapse, 
is not possible due to the complexity of the phase space. 
For example, it may happen that vortices with one initial 
separation are inside an island and do not collapse, while 
vortices initially further apart are in the chaotic region and 
do collapse. Additionally, the possibility of very long trap- 
ping by cantori means that a numerical integration cannot 
definitively decide whether a particular initial condition 
will collapse or not. Thus, the critical distance is best 
thought of as a fuzzy boundary, where well below the 
boundary vortices collapse rapidly, while well above the 
boundary they do not collapse. 

In practice, however, the width of the boundary region 
is very small. Figure 15 depicts the vortex separation R(t) 
for six trajectories containing initially circular vortices 
with initial separations spanning the boundary region. The 
spread in initial separations among the trajectories is only 
0.2%, across which the behavior varies from no collapse in 
4000 time units ( ~40 oscillations) to collapse after a few 
hundred time units. All vortices with initial separations 
smaller than those in the boundary region will collapse, 
while vortices with larger separations will not collapse. 
Note that once collapse begins, the separation very quickly 
drops to zero. 

In defining d, we restrict ourselves to initially circular 
vortices, leaving two nondimensional parameters to define 
the initial condition: the size of the small vortex rl and the 
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FIG. 16. Nondimensional critical distance d,(rr) from the elliptical- 
moment model. The circles are the largest separation for which initially 
circular vortices collapse, while the solid line is a parabolic fit, nfb?, 
with a=2.592 and b=O.609. 

initial vortex separation Rp The complexity of the collapse 
boundary is suffikiently narrow that for our purposes it can 
be ignored; we thus defme the critical distance d,( rI) as the 
largest value of R0 for which two initially circular vortices 
collapse. The results of numerical integrations using a res- 
olution of 0.001 in R,, fit a quadratic, dc(rl) =a+b& 
a=2.592, b=0.609, surprisingly well (Fig. 16). It is not 
yet understood why the complex structure of phase space 
results in such a simple fit. The dimensional form of d, is 
shown in (19). 
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