
Nonergodicity of point vortices 
Jeffrey B. Weiss and James C. McWilliams 
National Center jbr A trnospheric Research, P. 0. Box 3000, Boulder, Colorado 80307 

(Received IO September 1990; accepted 22 January 199 1) 

The motion of N point vortices in a two-dimensional fluid is a Hamiltonian dynamical system 
with a 2N-dimensional phase space. The equations of motion for point vortices in a two- 
dimensional square doubly periodic domain are derived from those for an open domain. The 
Hamiltonian has three known constants of the motion and is thus believed to be nonintegrable 
for four or more vortices. Trajectories are numerically integrated from several initial 
conditions containing six vortices with varying total energy. Ergodicity on the surface defined 
by the constants of the motion is directly tested by comparing time-average and ensemble- 
average vortex pair statistics. It is found that the dynamics is not ergodic. There is evidence 
that the nonergodicity is not due to a gross fragmentation of phase space as might result from a 
broken symmetry. Vortex pair statistics are also used to test the randomness of the chaotic 
motion. It is found that the time-averaged statistics of the vortices are clearly distinct from 
those of independent random walkers. 

1. INTRODUCTION 

Hamiltonian dynamics describes the motion of physical 
systems in terms of trajectories in a d-dimensional phase 
space. Very low-dimensional Hamiltonian dynamics, that 
which can be reduced to a four-dimensional phase space 
with a conserved energy, has been the focus of intensive in- 
vestigation in recent years. Is2 As a result, there is now a clear 
understanding of chaotic and regular regions, KAM curves, 
cantori, and the diffusion of trajectories in phase space. In 
such systems it is known that KAM curves, two-dimension- 
al tori, can divide the three-dimensional energy surface 
yielding nonergodic behavior. Time averages then depend 
on the initial condition of the trajectory. In higher dimen- 
sions, KAM tori do not divide the energy surface. Motion 
around these tori, called Arnold diffusion, makes it possible 
for trajectories to be ergodic. Very high-dimensional Hamil- 
tonians, e.g., a macroscopic volume of gas where d- 1023, 
are the subject of statistical mechanics,3 where ergodicity is 
usually assumed. In this work the focus is on the middle 
ground, Hamiltonian dynamics in a moderate dimensional 
phase space, where we numerically test whether the dynam- 
ics is ergodic. 

The system studied here is a collection of Npoint vorti- 
ces in a two-dimensional fluid with doubly periodic bound- 
ary conditions. The dynamics of N point vortices is a 2N- 
dimensional Hamiltonian system. The point vortex 
Hamiltonian is thought to be nonintegrable for N> N * where 
N * depends on the geometry of the system.4 For a square 
doubly periodic domain, N * = 4. Unlike the near-integrable 
Hamiltonians often studied, the point vortex Hamiltonian 
has no known division into integrable and small nonintegra- 
ble parts. 

Apart from being an interesting dynamical system, a 
collection of point vortices is a widely used model in fluid 
mechanics. Numerical simulations of two-dimensional de- 
caying turbulence, for example, show the appearance of self- 
organized coherent vortices. These vortices are relatively 

long lived, being destroyed or transformed in close en- 
counters with other coherent vortices.’ When such coherent 
vortices are far apart, their nearly conservative behavior 
may be approximated by a collection of point vortices. In- 
deed, remarkable agreement has been shown for relatively 
short times between a full numerical simulation and integra- 
tion of 17 point vortices.6 

The dynamics of point vortices has previously been 
studied in open domains and closed domains with reflecting 
walls,4*7-‘4 but not in a domain with periodic boundary con- 
ditions. In an open domain one must restrict the vortices to 
having a single sign if one wishes to study long-time dynam- 
ics, since opposite-sign vortices tend to pair up and propa- 
gate off to infinity. A periodic domain does not have this 
difficulty. In addition, the chosen boundary conditions al- 
low us to make contact with numerical simulations of two- 
dimensional fluids, calculations which have most often been 
made in a periodic domain. 

A system is ergodic if ensemble averages equal time 
averages over any single trajectory, except a set of trajector- 
ies with measure zero. The ensemble average is over a surface 
defined by the constants of the motion. One difficulty with 
any numerical test of ergodicity is that ergodicity is defined 
in the limit where the number of elements in the ensemble 
and the duration of the time average approach infinity. In 
practice, however, it is only necessary to use samples large 
enough for equilibrium to be reached. But, there is always 
the possibility that what appears to be equilibrium is only 
metastable, or changes very slowly, and much larger samples 
are needed to reach true equilibrium. 

The numerical study of ergodicity in near-integrable 
Hamiltonians dates back to Fermi et al.,” with recent work 
by Thirumalai and Mountain, l6 and Pettini’and Landolfi.i7 
In these studies, ergodicity is probed by investigating equi- 
partition of energy. The dynamics of such systems displays a 
so-called stochasticity threshold: Energies above the thresh- 
old quickly reach equipartition, while those below the 
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threshold do not reach equipartition or do so very slowly. 
Here we investigate ergodicity in a fully nonintegrable Ham- 
iltonian by direct comparison of ensemble and time aver- 
ages. One mechanism for nonergodicity found in condensed 
matter physics’* and two-dimensional magnetohydrodyna- 
mics” is that of symmetry breaking, where the equations of 
motions have a symmetry that is broken by their solutions. 
In this case, the phase space is broken into several compo- 
nents that are related by symmetry. Symmetry breaking is 
also found in a model of a negative temperature guiding- 
center plasma in a bounded circular domain, asystem analo- 
gous to point vortices in the same domain.*’ 

We also address the question of whether the chaotic mo- 
tion of point vortices is similar to the motion of independent 
random walkers. This question arises because it is tempting. 
to model coherent vortices in a fluid as a collection of ran- 
domly moving vortices whose interaction has a short spatial 
range. Such a model can only be correct if the chaotic motion 
mimics a random walk. 

Section II of this paper contains a derivation of the equa- 
tions of motion for point vortices in a periodic domain. In 
Sec. III, vortex pair statistics are used to investigate the 
qualitative behavior of vortex pairs, and to test the ergodicity 
and randomness of the chaotic motion. 

II. POINT VORTICES IN A PERIODIC DOMAIN 
The equations of motion for N point vortices in an infi- 

nite two-dimensional domain are4 

(1) 

where (xi,y,) is the position of vortex i, ~~ is its-circulation, 
~~=x~-X~~Y~=y,--y~,r~=x~+y&andtheprimeon, 
the sum means to exclude the term] = i. We shall focus on 
the case (K[ 1 = K for all i. 

The equations of motion in a doubly periodic square 
domain are obtained by summing over the infinite number of 
image vortices produced by the boundary. By choosing an 
appropriate unit of distance the box size can be scaled to 27r, 
resulting in 

.ki 
Lr) 

1 N,K - s;(Yfj,X~ ) 
=- 

= .( 2%-&l J 1 S(xg,yii) ’ (2) 

where 

S(X,Y) = 2 
x-22?m 

m.n= -- (x-27~2)~+ (y-2~~2)~ ’ 
(3) 

In Eq. (3), the sum over m is absolutely convergent, while 
the sum over n is conditionally convergent. The dependence 
of 5’ on the manner in which the limits are taken is seen by 
considering the finite sum 

s.w,iv C&Y 1 
x-277-n 

m=--Mn=-N (X-%~?f)~f (y-h-m)“. (4) 

Using the method of Laplace transforms” on the sum over 
n, treating resulting integrals involving M and N asymptoti- 
cally, and then taking the limit M,N+ CO only for those 
terms that are independent of the order of the limit results in 

IsMN = g In= --m + c&(y -;;;; - cos(x) 

+ x -__ x tan-’ 5 . 
2-T-r d 0 

(5) : 

The ratio N/Mmust now be chosen on physical grounds. We 
require that contributions to the velocity from equidistant 
image vortices cancel. Thus,, they velocity induced on vortex 
i from vortex j with xii = rr is zero, i.e., .S(rr,y) = 0; this 
implies.that-the physically correct limit is 

1 
?= 2 +- cosh(y -;;z;w cos(x) * (6) m= -IO 

The result (6) is particularly useful as the remaining sum 
rapidly converges. By choosing an appropriate unit of time 
we can absorb the constants coming from ( 1) and (6) and 
rescale K to unity. The final result for the equations of motion 
is 

/ - \ 
cosh(x, - 2rm) - cos(yi) 

9 

(7) 

withKi = 4 1. 
We define a Hamiltonian H in terms of a vortex pair 

energy h, 

Hz -C’ 
ii 

7 h(x&), 

such that 

(9) 

It is clear from the f part of (7) that 

h(w) 

G i ln[cosh(x - 2rm) - cos(y)] +f(x) + CY 
m= -m 

(10) 

The function f may be found by reconsidering the calcula- 
tion leading to (6). Applying the Laplace transform to the 
sum over m instead of n we obtain 

S(xJ1) = i J- sinh(x - 2rn) x --. 
tz= --cc3 2 cosh(x - 25-n) - cos(y) 2T-r 

(11) 

Writing the equations of motion using ( 11) rather than (6) 
gives f(x) = - x2/27r. Subtracting the (infinite) constant 
2, ln[cosh(2rrm)] renders h finite (for x2 + y’#O). The 
final result for the vortex pair energy in a periodic square 
domain is 

h(x,y) = 2 In cosh(x - 2rm) - cos(y) 
m= -02 cosh( 2m) > 

x2 ------. 
2Tr 

(12) 

836 Phys. Fluids A, Vol. 3, No. 5, May 1991 J. B. Weiss and J. C. McWill iams 836 

Downloaded 29 Aug 2007 to 128.138.145.71. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



The function h is manifestly periodic in y. Periodicity in x 
can be shown by considering ( 12) with asymptotically large 
limits in the sum and letting x-x + 2a. The equality of (6) 
and ( 11) implies that the partial derivatives of h (x,y) equal 
those of h(y,x) from which one deduces that h is invariant 
under n,y. 

Using the Hamiltonian; the equations of motion can be 
written in terms of a Poisson bracket, 

with the Poisson bracket defined as 

[~bd+(g-g--~~). 
J I / / 

( lp-1 

Consideration of sums of periodic images like those 
above has a history going back to Ewald,” and includes 
work by Nijboer and De Wette,23 and Seyler.24 More recent- 
ly, following Nijboer and De Wette, Benzi and Legras” cal- 
culated the energy for a square periodic domain in terms of 
the exponential integral. Campbell, et aL2’j calculated the 
energy for more general periodic lattices; with some algebra 
it can be shown that the result ( 12) agrees, apart from an 
additive constant, with their result. O’Nei12’ derived the ve- 
locity in terms of the Weierstrass zeta function, the energy in 
terms of Jacobi theta functions, and verified numerically 
that his energy agreed with that of Campbell et al. The re- 
sults presented above were derived independently, in a man- 
ner different from previous work, and are new. Due to rapid 
convergence of the remaining sums, the equations presented 
here are, like those obtained earlier, useful for numerical 
integration. 

Point vortices in an infinite domain have four constants 
of the motion arising from the four symmetries of translation 
in time, translation in x and y, and rotation.4 The periodic 
boundary conditions break the continuous rotation symme- 
try, leaving three constants of the motion. These are the en- 
ergy E = H({K,,x,.J,}), and the quantities P, = Zi~iyi and 
P, = _ IZii~pi. We shall refer to P = P,2 + P,j as the 
“vortex momentum”; it is related to the fluid momentum in 
a manner depending on the boundary conditions. The vortex 
momentum is discussed in further detail in the Appendix. As 
in the open domain, P, and P, are independent, i.e., have 
zero Poisson bracket, only if the total circulation Qci is 
zero. For the remainder of this paper .we shall assume that 
this is’the case. Thus, we expect that three vortices are inte- 
grable, while four or more vortices are in general nonintegra- 
ble. Since we assume the vortices have circulations of equal 
magnitude and zero total circulation, N must be even. 

The motion of N point vortices in a square periodic do- 
main is thus a 2N-dimensional Hamiltonian dynamical sys- 
tem. Using the canonical transformations found in Eckhardt 
and Aref,14 the conserved vortex momentum can be used to 
reduce the dynamics to a phase space with four fewer dimen- 
sions. In this reduced phase space the only conserved quanti- 
ty is the energy. Such reduction is particularly useful when 
the reduced phase space is small enough to be easily visua- 
lized, but comes at the expense of using nonphysical coordi- 
nates. 

For four vortices, the reduced phase space is four di- 
mensional; this is the well-studied case of low-dimensional 

Hamiltonian chaos and the usual features should appear. 
The case of four vortices in nonperiodic domains has been 
previously studied,4,‘3*‘4 and the behavior is as expected. In 
particular, KAM curves can divide the phase space causing 
nonergodic behavior. 

In this paper we are interested in the properties of high- 
er-dimensional Hamiltonian chaos. We shall thus take the 
next step towards truly high-dimensional chaos and study 
the case of six vortices. The phase space is now 12 dimension- 
al and can be reduced to eight dimensions. An eight-dimen- 
sional phase space, however, is not appreciably easier to deal 
with than a IZdimensional phase space, and further, the 
coordinates become complicated. We thus choose to remain 
in the original phase space where the coordinates are the 
vortex positions. 

III. DYNAMICS OF SIX POINT VORTICES 

In this section we shall use the equations of motion de- 
rived above to numerically investigate the moderate dimen- 
sional chaos of six point vortices. The vortices reside in a 
square doubly periodic domain, have individual circulations 
of equal magnitude, and have zero total circulation. As dis- 
cussed above, the dynamics has three constants of the mo- 
tion: the energy and the two components of the vortex mo- 
mentum. In this work we shall set the vortex momentum to 
zero, and study the effect on the dynamics of varying the 
energy. Note that P = 0 is the average vortex momentum of 
an ensemble of randomly chosen vortex positions. 

A qualitative picture of the effect of varying the energy 
can be obtained by heuristically considering the behavior of 
vortex pairs. A close pair of opposite-sign vortices has a large 
negative energy and will translate-across the domain. A close 
pair of same-sign vortices has a large positive energy and will 
rotate about its center of vorticity. Thus, negative energy 
states will have opposite-sign pairs closer together than on 
average. The close opposite-sign pairs will ~translate across 
the domain and quickly “collide” with other vortices, result- 
ing in scattering. By “collide” it is meant that the vortices 
become close enough that their interaction becomes signifi- 
cant. Thus, opposite-sign pairs will have a relatively short 
lifetime. On the other hand, positive energy states will have 
same-sign pairs closer together than on average. Since these 
pairs rotate but do not translate, they are only disrupted 
when another vortex comes nearby. As the energy increases, 
the same-sign pairs move closer together, making it less like- 
ly that another vortex will come close enough to disrupt 
them. Thus, we expect same-sign pairs to have a relatively 
long lifetime, with the lifetime increasing with energy. 

It is easy to choose a random configuration on the P = 0 
surface due to the linearity of the vortex momentum. Indeed, 
one can prove by induction that if the strengths of all N 
vortices are known, the positions are restricted to [0,2?r], 
and the x positions of the first m - 1 vortices are known, 
then P,, = 0 can only be satisfied provided X, is chosen in 
the range 

-(N-m- l)a--K,(q,-l +s,-,) 

<x,<(N--+ l)rr--K,(q,-l +s~.-~), (15) 
where qn z By= , K~x~, and s, = %-ZyZ n + 1 K~. A similar rela- 
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tion holds for P., and y,. The relation ( 15) can be intuitively 
understood by thinking of the following analogous problem. 
Suppose one wants four numbers, two in [ 0, 1 ] and two in 
[ - l,O], whose sum is zero. If after choosing the two posi- 
tive numbers the sum is 1.8, then the third number must be in 
[ - 1, - 0.81 for the four to sum to zero. 

We shall use the relation ( 15) to choose random config- 
urations subject to the constraint P, = 9” = 0: Each posi- 
tion is chosen with uniform probability from the intersection 
of ( 15) and [0,27r]. Henceforth, when we speak of random 
configurations we shall mean subject to the above constraint. 

We now ask the question: What is the probability that a 
random configuration with zero vortex momentum will 
have an energy in the range (E,E + AE)? The answer is 
given by the density of states,p( E,P,- = O,P, = 0). The den- 
sity of states, plotted in Fig. I, is calculated directly by 
choosing 10 000 random vortex configurations and counting 
the number within each energy range, and is normalized to 
unity. Both very high energies and very low energies are 
unlikely due to the small probability of two randomly placed 
vortices lying extremely close together. The density of states 
is a fundamental quantity in statistical mechanics, from 
which one can define an entropy S, and a temperature T,28 

1 
S=klnp, ----=ds. 

kT dE 

Since states with positive energy have decreasing p, their 
temperature is negative. 

While there has been previous work on the statistical 
mechanics of point vortices,9*‘*~29 it differs from that pre- 
sented in this paper in two important ways. First, numerical 
simulations were restricted to short times, while we find that 
very long times are needed to reach equilibrium. In addition, 
previous authors have made various assumptions common 
to statistical mechanics. Here the approach is to test such 
assumptions by direct integration of the equations of motion: 

FIG. 1. Density of states vs energy for six vortices with P = 0, calculated 
from 10 000 random configurations. 

We shall focus on the dynamics at five different values of 
the energy. From the density of states the average and rms 
energies are found to be - 0.28 and 2.90, respectively. Joyce 
and Montgomery” calculate that p has its maximum at 
E = 0; herep peaks at a slightly negative energy. The small 
discrepancy is thought to be due to sampling error in our 
calculation of the density of states. The energy is resealed by 
subtracting the value of the average energy from the original 
energy. Thus, energies above average are positive, and ener- 
gies below average are negative. In addition, apart from 
complications due to the average energy being slightly dis- 
placed from the peak in p (also thought to be sampling er- 
ror) positive energies have negative temperatures and vice- 
versa. The five energies to be investigated are the average 
energy (z = 0), the average plus and minus 1 rms deviation, 
(E,, = & 2.90), and the average plus and minus 2 rms 
deviations (Eizv = k-5.80). 

The ensembles used for ensemble averages are collec- 
tions of N, random configurations with zero vortex momen- 
tum in an energy shell centered oti the desired energy E. 
Configurations are randomly generated with arbitrary ener- 
gy as described above and only those whose energy is within 
AE of E are included in the ensemble. It is found that ensem- 
ble averages are relatively insensitive to the range of energy 
allowed; in what follows a range of AE = 0.1 was used. Al- 
ternatively, one could adjust the positions of vortices in the 
configurations until the required energy is reached; this 
technique, while not truly random, gives the same result as 
averaging over an energy shell for the cases tested. 

To calculate time averages we start with an initial con- 
figuration with the desired energy. To obtain a given energy 
we generate random configurations with zero vortex mo- 
mentum and arbitrary energy until a configuration is found 
whose energy is close to the required energy. Then, a vortex 
pair is chosen at random and their- positions are adjusted 
until thk required energy is reached. 

Trajectories are generated from initial configurations by 
numerically integrating the equations of motion (7) on a 
Cray-XMP. The integration is done by the subroutine 
LSODE, a member of ODEPACK,~’ and is set to use a back- 
ward differentiation method. Owing to numerical errors 
neither the energy nor the vortex momentum are conserved 
exactly. For integrations of length T = 100 000 time units 
the rms errors in the final energy and final components of the 
vortex momentum are 0.0487 and 7.33 X 10 -‘, respectively. 
Although certain features of the dynamics, such as details 
about recurrences, are sensitive to exact conservation of in- 
variants, the aspects considered here are not thought to be 
affected by these errois. Note that the errors in the energy 
are smaller than the width of the energy shell used for ensem- 
ble averages. 

The numerical integrations generally confirm the quali- 
tative view of point vortex dynamics described above. Vor- 
tex pairs of both signs are seen td be quite common and are 
often long lived. As expected, opposite-sign pairs quickly 
collide with either another vortex or a vortex pair. Quite 
often, however, rather than the pair being disrupted the re- 
sult is an exchange of partners: the vortex pair continues but 
the identity of its members is different. In addition, clusters 
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of three and four vortices are visible, and, while not very 
common, can also be long lived. The long lifetime of larger 
clusters may be an intrinsic feature of such clusters or it may 
be due to the small number of remaining unclustered vorti- 
ces. 

Quantitative information about the dynamics is ob- 
tained by investigating vortex pair statistics. In particular, 
we calculate the average pair separation and two different 
two-particle distribution functions. The distribution func- 
tions are the standard two-particle distribution function 
p(r), giving the probability of finding a vortex pair at a dis- 
tance r, 

p(r) = t&r - r,>>, (17) 
and the vorticity-weighted two-particle distribution func- 
tion q(r), 

q(r) = (KiK~S(r- r,)). (18) 
In the above expressions the brackets indicate an average 
over all vortex pairs and either a time or ensemble average. 
Subscripts e and twill indicate ensemble and time averages, 
respectively. The distribution functions are normalized to 
correspond to those for a single opposite-sign vortex pair. 
Thus, the integral of p( r) is normalized to one and the inte- 
gral of q(r) is normalized to negative one. Because the 
boundary conditions break the rotational symmetry we do 
not expect either p( r,8) or q( r,@ to be functions of r alone. 
However, the dependence on 8 should be small for small r. In 
addition, by averaging over the angle, we reduce the uncer- 
tainties due to finite time integrations. 

Pair distribution functions are well known in statistical 
mechanics and are often related to physically important 
quantities.3 For point vortices, the time-averaged enstrophy 
spectrum can be calculated from 4. The time-averaged en- 
strophy spectrum is defined as 

S(k) = (112971 (IN4 1% (19) 

where t;(k) is the Fourier transform of the vorticity, and the 
brackets indicate a time average. For point vortices 
c(r) = I;+J( r - ri ), from which one finds 

S(k) = q(k) + W/‘k), (201 
where q(k) is the Fourier transform of q( r) . By integrating 
over the angle, one obtains 

S’(k) = q(k) + Nk, 
where q(k) /k is the Hankel transform of q ( r j /r. 

(21) 

Together, the two distribution functions give complete 
information about vortex pairs. The probability of a same- or 
opposite-sign pair at a distance r is [p(r) + / - q(r) ]/2. If 
q(r) is zero then there are either no vortex pairs at a distance 
r or an equal number of same-sign and opposite-sign pairs; 
the two possibilities are distinguished by whetherp( r) is also 
zero. 

Trajectories were integrated for T = 100 000 starting 
from one initial condition at each of the five selected ener- 
gies. Time averages w&e calculated from these trajectories 
by sampling every 0.2 time units. Since the time unit is de- 
fined in terms of K, these trajectories are quite long on the 

scale of the vorticity. As the vorticity determines the scale of 
the velocity, the trajectories are also very long in terms of the 
distance a vortex travels and hence the number of close en- 
counters with other vortices. One can define a two-vortex 
correlation time by calculating a correlation function for the 
two-vortex distribution function p( r;t), where p( r;t) is de- 
fined as the time averagedp( r) obtained from the time inter- 
val (t,t + 50). It is found that the correlation time is approx- 
imately 200 time units for z, grows to 500 for E _ 2W, and to 
2500 for E + 2g. The correlation time increases with the mag- 
nitude of the energy due to long-lived pairs, with the larger 
increase at positive energies caused by the longer lifetime of 
same-sign pairs. Thus, the full trajectories are long com- 
pared to the two-vortex correlation time. 

Ensemble averages are calculated from N, random con- 
figurations whose energy is within 0.1 of the selected energy. 
ForEand E,, a value of N, = 200 000 was used, while for 
E f 21r a value of N, = 50 000 was used. A smaller sample 
size was used at E k 20 due to the low probability of finding a 
random configuration with such extreme energy and the re- 
sulting extensive searching required. 

For both time and ensemble averages we estimate the 
errors due to using a finite sample size by subsampling. Each 
sample is broken into five subsamples of equal size. The un- 
certainty in the mean is then estimated as a/l/5, where (T ’ is 
the variance of the means obtained from the subsamples. The 
uncertainties are shown as error bars in Fig. 2, and as gray 
shaded regions in Figs. 3-7. Regions in Figs. 3-7 where the 
shading is not apparent have uncertainties smaller than the 
width of the line representing the mean. 

In addition to testing ergodicity, we wish to compare the 
dynamics to the motion of independent random walkers. For 
a random walk, the time-averaged pair distribution func- 
tions are independent of the details of the process provided 
the random walkers are independent. Since independent 

2.5 
I 

2.4 

2.3 

A 
; 

2.2 

2.1 

2.0 

energy 

FIG. 2. Average vortex pair separation versus energy. The solid line denotes 
time average, the dotted line denotes ensemble average, and the dashed line 
denotes independent random walkers. Error bars are estimates of the uncer- 
tainty due to finite sample size. 
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FIG. 3. (a) Two-particle distribution functionp(r) vs rfor E = 3 = 0. The 
solid, dashed, and dotted lines are time averages, ensemble averages, and 
independent random walkers, respectively. Gray stippled regions (which 
are very thin in this figure) are estimates of the uncertainty due to finite 
sample size. (b) Vorticity-weighted two-particle distribution function q(r) 
vs r for E = ?? = 0. Line types and shading are the same as (a). 

random walkers have equal probability of being separated by 
any vector r, their pair distribution functions are determined 
by the area at radius r in a square with sides of length 277-z 

prw (r) = i 
r/k, r<r, 
r/27r- (2r/?i?) cos-,‘(7r/r), 7xX&Y%. 

(22) 

For the case we are considering, N vortices, half with K~ = 1 
and half with K, = - 1, there are N/2 more opposite-sign 
pairs than same-sign pairs. Thus, since q( r) is normalized to 
the case N= 2, 

s,, (r) = -prw 09. (23) 

la) 
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(b) 0.2 
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52 rs 
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FIG. 4. [a) Same as Fig. 3(a) but E = E.. a = - 2.90. (b) Same as Fig. 
3(b) butE= E....,, = - 2.90. 

From (22) one obtains that the average pair separation of 
independent random walkers is -- 

dr rp,, (r) = n-v2 7+Tln(l +VZ). ? (24) 

The average vortex pair separation at the five selected 
energies is shown in Fig. 2. The solid, dotted, and dashed 
lines represent the results for the time average, ensemble 
average, and random walkers, respe>tively. The qualitative 
behavior of the two averages as a function of energy is similar 
but they are quantitatively distinct. For all energies the time- 
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FIG. 5. (a) Same as Fig. 3(a) but E = E-,, = - 5.80. (b) Same as Fig. 
3(b) but E= E”“,, = -~ 5.80. 

averaged pair separation is significantly larger than the en- 
semble average. The asymmetry about E = 0 is striking. For 
negative energies there is a sharp decrease in the average 
separation, while for positive energies, the average separa- 
tion is almost constant. This asymmetry results from the 
asymmetry in the behavior ofp( r) discussed below. In addi- 
tion, the time average differs significantly from that of ran- 
dom walkers at all but the largest energy. 

The two-particle distribution functions are shown in 
Figs. 3-7. In these figures, the solid lines indicate time aver- 
ages, dashed lines indicate ensemble averages, and dotted 
lines indicate random walkers. At all energies, the time and 
ensemble averages agree qualitatively but not quantitatively. 

The results for the average energy, E = E, are shown in 
Figs. 3(a) and 3(b). Whilep,,p,, andp, are similar [Fig. 
3 (a) 1, the differences are significant. In particular, both pt 
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-0.6 

-0.8 

FIG.6.(a)SameasFig.3(a)butE.=E+,=2.90.(b)SameasFig.3(b) 
butE=E+,=2.90. 

and pe display a dearth of very close pairs and an excess of 
medium-spaced pairs overp,, . The differences, however, are 
more apparent when the sign of the pairs is considered. From 
Fig. 3 (b) it is seen that qt and qe are qualitatively similar and 
have considerably more opposite-sign close pairs and more 
same-sign distant pairs than random. Further, the ensemble 
average has more close opposite-sign pairs and more distant 
same-sign pairs than the time average. Also note the sharp 
change in behavior at Y 2 r where both qt and qe go from an 
excess of opposite-sign pairs to almost equal numbers of 
same-sign and opposite-sign pairs. 

At an energy one rms deviation below the average, 
E = E D [ Figs. 4 (a) and 4 (b ) 1, the time-averaged and en- 
semble-averaged distributions again display a large number 
of opposite-sign close pairs and roughly the same number of 
same-sign and opposite-sign pairs at larger separations. The 
boundary between the two regimes is YC 2. The distributions 
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show the beginnings of a sharp peak at r= 1.3. As was the 
case for the average energy, the ensemble average contains 
more close opposite-sign pairs than the time average. Both 
time- and ensemble-averagedp and q are distinctly different 
from random walkers. 

The~distributions at E = E-,, [Figs. 5(a) and 5(b)] 
are similar to that-at E _ ~: There is an enhanced probability 
of opposite-sign pairs at small distances, and equal probabili- 
ty of same-sign and opposite-sign pairs at larger distances. 
The boundary between the regimes, however, has changed, 
and is now at rN- 1.3. The peak visible at E ~ has become 
larger, sharper, and is now at r-0.8. As before, the ensemble 
average contains more close opposite-sign pairs than the 
time average, and both are very different than random 
walkers. 

The behavior at positive energies is qualitatively differ- 
ent than at negative energies. At E = E + o, pt and pe [Fig. 

6(a) ] are similar to those at E, while qt and qe [Fig. 6(b) ] 
have changed significantly. There is now an excess of close 
same-sign pairs and distant opposite-sign pairs, but no evi- 
dence of a sharp peak. The ensemble average has more close 
same-sign pairs and more distant opposite-sign pairs than 
the time average. 

The behavior at the extreme positive energy, E = E + zc, 
is similar to that at E + cI, but the features are more pro- 
nounced [Figs. 7(a) and 7(b) 1. Both pt and pe are now 
clearly not random, particularly at very small distances. The 
vorticity weighted distributions qt and qe again show a broad 
peak of same-sign pairs at small distances and opposite-sign 
pairs at large distances. 

The fact that the uncertainties due to finite sample size 
are small indicates that the samples are generally large 
enough to have equilibrated. A general trend is that the un- 
certainties increase at more extreme energies. It is quite pos- 
sible, however, that the distributions have not equilibrated at 
positive energies at very small distances. At both E, ~ and 
E + 20, there are no pairs below a certain distance. It may be 
that such extremely close pairs would appear in longer time 
integrations. Even if this were the case, however, the differ- 
ences between the time averages and the ensemble averages 
are large enough that they would probably not disappear 
entirely. 

The question now arises as to the mechanism for the 
nonergodicity apparent in the data. In systems reducible to 
motion on a three-dimensional energy surface, KAM sur- 
faces-can produce nonergodicity by dividing the energy sur- 
face into separate components. In this case, trajectories re- 
sulting from initial conditions in different components 
produce different results. Thus, by calculating time averages 
over several trajectories from different initial conditions we 
can investigate whether the surface defined by the energy 
and vortex momentum is elfectively broken into separate 
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FIG. 8. Vorticity-weighted two-particle distribution function q(r) vs r for 
E = E = 0. The solid lines are time averages over each of five trajectories 
with different initial conditions. The dashed lineis the ensemble average. 
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components. Five different random initial contigurations, 
each with energy E = E, were integrated for T= 100 000 
time units. The resulting vorticityiweighted distribution 
functions are shown in Fig. 8. Only q is plotted sincep, and 
pe are similar at this energy. The five solid lines are the five 
different time averages, while the dashed line is the ensemble 
average. The five time averages agree to within roughly twice 
the uncertainty indicated in Fig. 3(b), and are distinctly 
different than the ensemble average. This indicates that the 
nonergodicity is not due to the energy-vortex momentum 
surface being broken into several components of roughly 
equal size. Due to the long time necessary for these integra- 
tions it was not possible to compute multiple trajectories at 
other energies. 

IV. CONCLUSIONS 

The differences between the dynamics at negative ener- 
gies (positive temperatures) and at positive energies (nega- 
tive temperatures) are several. As expected from qualitative 
considerations the positive energy states contain relatively 
more close same-sign pairs, while the negative energy states 
contain relatively more close opposite-sign pairs. For both 
positive and negative energies, there is enhanced vortex pair- 
ing as the magnitude of the energy increases, but the pairing 
takes qualitatively different forms. 

Finally, the chaotic behavior of point vortices is clearly 
distinct from the motion of independent random walkers. 
Thus, a model of two-dimensional turbulence in terms of 
randomly moving coherent vortices would not display the 
correct behavior. 
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Negative energy states display an increasingly sharp 
peak in the two-particle distribution functions as the magni- 
tude of the energy increases, with the peak moving to smaller 
distances. This peak represents an enhanced probability of 
finding opposite-sign vortex pairs at a particular distance. 
This distance is~not determined by a length scale external to 
the problem, but is chosen by the dynamics itself and de- 
pends on the energy. At larger vortex separations there are 
roughly equal probabilities of finding opposite-sign and 
same-sign pairs. A consequence of this behavior is that the 
average vortex pair separation decreases as the magnitude of 
the energy increases. 
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APPENDIX: THE VORTEX MOMENTUM 

In this appendix we address two aspects of the “vortex 
momentum,” 

~=~Ki(J’$--Xi~)= --CKiiiXXi. 
i 

(Al) 

First, we show’ that the conservation of P is due to transla- 
tion symmetry, and second, we show that P is equal to the 
fluid momentum, 9’ ESJ$~~ % u, plus a boundary term. 

Positive energy states show an enhanced probability of 
close same-sign pairs which takes the form of a broad hump 
rather than a sharp peak. At larger distances there is an ex- 
cess of opposite-sign pairs. This separation of close same- 
sign pairs and distant opposite-sign pairs results in the aver- 
age pair separation remaining roughly constant with energy. 

At all energies considered there are significant differ- 
ences between the time-averaged and ensemble-averaged 
distribution functions. Thus, at least for the time scales con- 
sidered here, the dynamics is not ergodic. These time scales 
are quite long and appear to be sufficient for the time average 
to equilibrate. 

The imposition of periodic boundary conditions breaks 
the rotation symmetry present in an open domain. The 
translation symmetries do remain, however, and result in the 
conservation of the vortex momentum. The transiation sym- 
metry is reflected in the functional form of the vortex pair 
energy in a periodic domain: h (xi ,xj ) = h ( xii >. Further, 
one sees that the rotation symmetry of the open domain is 
broken by the fact that h is not a central potential: 
h ( xii ) # h ( 1 xii 1) . Using the Poisson bracket defined in Eq. 
( 14) above, it is straightforward to show that 
dP/dt = [P,H] is made up of sums of terms of the form 
dh ( xij ) /dx, + dh (xi) /ax, m= 0. Thus, conservation of P is 
due to the translation symmetry of h. 

We now look into the mechanism for the nonergodicity. The relationship of P to the fluid momentum 9 is best 
According to Birkhoff s theorem,3*3’ nonergodicity implies addressed by considering the analog to the vortex momen- 
that the energy-vortex momentum surface is decomposable, tum for a continuous distribution of vorticity c(x). From 
i.e., it is broken into more than one component. We suspect, the definition of P, Eq. (Al ) above, we see that P is a La-’ 
but have not confirmed, that Birkhoff s theorem holds here. grangian quantity: The individual vortices are followed 
If the nonergodicity is due to a broken symmetry, then the through time preserving their strengths K~, and P is calculat- 
components have equal areas, since they are related by sym- ed using their current position xi. Also note that in Eq. (Al ) 
metry. The fact that five separate initial conditions converge the positions of the vortices are not restricted to the basic 
to the same time average, different than the ensemble aver- square, x&( 0,297). It is clear from Eq. (A 1) that P is not 
age, means that it is unlikely that the surface is broken into invariant under the transformation xi -+ xi + 2m2? + 2n-m.P. 

several equal-sized components. Thus the nonergodicity is 
probably not due to a broken symmetry. The remaining pos- 
sibility is that there is one region covering a large part of the 
surface and one or more much smaller regions in the remain- 
der. In this case, it is not unlikely that the five separate initial 
conditions were all in the same region. Since the calculations 
were necessarily finite time integrations, we cannot rule out 
the possibility that, rather than being truly separate compo- 
nents, the regions are separated by weakly permeable bar- 
riers, and hence the dynamics is ultimately ergodic. The 
length of the integrations, however, indicates that, if Arnold 
diffusion through such barriers is possible, it is extremely 
slow, and thus the time scale for ergodicity is very long. Iden- 
tification of these regions and the dynamics of trajectories 
within them will be the subject of future work. 
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Thus, P can only be time independent if the vortices are 
allowed to evolve freely, and are not mapped back into the 
basic square when they leave. The dynamics, governed by 
Eq. (7) above, is invariant under the transformation, and 
does not distinguish between whether or not the vortices are 
mapped back to the basic square. 

Thus, to find the correct analog of the vortex momen- 
tum for continuously distributed vorticity, we imagine start- 
ing the fluid with a specified vorticity in the basic square, and 
then following the Lagrangian evolution of the fluid parcels. 
The position of a parcel at time t which was initially at x is 
denoted by X(t;x>. Since vorticity doesn’t change following 
parcels, 

Is 

2lr 

PZ- d’xii xX(t;x)Qx) (A%4 
0 

=-- d’x k xX(r;x)g [X(t;x) I (A2b) 

=- SI d2X f xi&X), (A2c) 
D 

where D denotes the region into which the basic square has 
evolved at time t. The Lagrangian evolution of the basic 
square into D is an area-preserving rearrangement of the 
fluid parcels. This implies that each point, XED can be 
mapped back to the basic square by a translation of 
2rm(X)j? + 25-n(X)> such that the image of D is exactly 
the basic square. Thus, an integral over D of a periodic quan- 
tity is equivalent to an integral over the basic square. Eq. 
(A2) should be contrasted with the Eulerian expression 

P,Z - d2x ,% xx&x,t). 

In either a closed or a nonperiodic open domain the integrals 
would be over the entire fluid, and since the transformation 
between x and X($x) amounts to an area-preserving rear- 
rangement of the fluid parcels, the two expressions would be 
equal. In a periodicdomain, however, the integrals are only 
over D and the basic square, and the two expressions may 
differ. 

We now show that the vortex momentum can be ex- 
pressed as a sum of the fluid momentum and a boundary 
term. For simplicity we consider only the x component P,; 
they component is handled similarly. For a continuous dis- 
tribution of vorticity, g = k*( VXu) , Eq. (A2c) then gives ^ ^ 

P,’ 
II 

d2X Y&[Vxu(X)I 
D 

d2X &[Vx( Yu) + (u-2$1, 

where the final line results from Stokes’ theorem. Thus, 

P, = 
s 

dsuY+ yp,. 
aD 

(A3) 

The first term in Eq. (A3 ) is the boundary term mentioned 
above; while the second term is the x component of the fluid 
momentum per unit square. Note that in the case of a non- 
periodic open domain where u falls off faster than l/r, the 
boundary term goes to zero and P = 9’. 
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