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Lagrangian dynamics in high-dimensional point-vortex systems
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We study the Lagrangian dynamics of systems ofN point vortices and passive particles in a
two-dimensional, doubly periodic domain. The probability distribution function of vortex velocity,
pN , has a slow-velocity Gaussian component and a significant high-velocity tail caused by close
vortex pairs. In the limit forN→`, pN tends to a Gaussian. However, the form of the single-vortex
velocity causes very slow convergence withN; for N'106 the non-Gaussian high-velocity tails still
play a significant role. At finiteN, the Gaussian component is well modeled by an
Ornstein-Uhlenbeck~OU! stochastic process with variancesN5AN ln N/2p. Considering in detail
the caseN5100, we show that at short times the velocity autocorrelation is dominated by the
Gaussian component and displays an exponential decay with a short Lagrangian decorrelation time.
The close pairs have a long correlation time and cause nonergodicity over at least the time of the
integration. Due to close vortex dipoles the absolute dispersion differs significantly from the OU
prediction, and shows evidence of long-time anomalous dispersion. We discuss the mathematical
form of a new stochastic model for the Lagrangian dynamics, consisting of an OU model combined
with long-lived close same-sign vortices engaged in rapid rotation and long-lived close dipoles
engaged in ballistic motion. From a dynamical-systems perspective this work indicates that systems
of dimensionO(100) can have behavior which is a combination of both low-dimensional behavior,
i.e., close pairs, and extremely high-dimensional behavior described by traditional stochastic
processes. ©1998 American Institute of Physics.@S1070-6631~98!02408-8#
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I. INTRODUCTION

Advection of passive and active tracers is a crucial co
ponent in many geophysical processes: ozone transport in
stratosphere, pollutant dispersal in the atmosphere and
ocean, plankton and salinity transport in the ocean. Additi
ally, understanding the relationships between Eulerian
Lagrangian statistics is necessary for interpreting data
vided by ocean floats and atmospheric balloons.

Standard Lagrangian approaches to transport in flu
are based on the use of either stochastic models or ch
advection in low-dimensional dynamical systems. Lagra
ian stochastic models are generally based on assuming
transport is dominated by unstructured Gaussian random
locity fluctuations, and they are most successful when
system under study has an extremely high-dimensional p
space.1,2 The standard example is Brownian motion whi
describes the irregular movement of microscopic particle
systems with dimensionality of the order of Avogadro
number,O(1023). In this case, the details of the determinis
description are irrelevant.

Chaotic advection, on the other hand, is based on a f
deterministic description of the phase-space dynamics. It

a!Permanent address: Istituto di Cosmogeofisica del CNR, C.so Fium
I-10133 Torino, Italy.
1921070-6631/98/10(8)/1929/13/$15.00
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traditionally been applied to systems with just a few excit
degrees of freedom, with very simple spatial structures,
with periodic or quasi-periodic temporal dynamics.3–5 Thus,
the traditional application of stochastic models is to high
turbulent flows without strong coherent structures, wh
low-dimensional chaotic advection is appropriate for flo
dominated by a few large-scale waves, vortices, or ot
structures.6,7

Geophysical turbulence, however, does not fully belo
to either of the above categories. One of the main difficult
encountered in studying Lagrangian advection in geoph
cal turbulence is, in fact, the complex space-time structure
the flow. The joint effects of rotation and stratification ofte
induce the presence of energetic coherent structures that
tain the majority of the enstrophy of the system.8–10 Intense
jets such as the Gulf Stream act as partial barriers to tra
port, while coherent vortices such as ocean mesoscale ed
and the stratospheric polar vortex can trap particles for lo
times.11–15 Previous studies of barotropic turbulence ha
shown that coherent vortices play an important role in
advection of Lagrangian tracers, inducing characteristic s
natures that cannot be captured by simple stocha
models.12,16,17

In this work, we further explore the properties of adve
tion in flows dominated by strong coherent vortices, and
4,
9 © 1998 American Institute of Physics
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particular, we consider an ensemble of many point vorti
in two spatial dimensions. Systems of points vortices cap
many of the features of two-dimensional turbule
flows.18–22In geophysically relevant situations the number
energetic coherent structures is neither as large
Avogadro’s number, nor as small as the number of degr
of freedom in simple models of low-dimensional chaotic a
vection. Systems ofN point vortices withN;O(10m), m
small, are thus used here as another simplified parad
they have an intermediate phase-space dimensionality,
are appropriate for describing advection in vortex domina
flows. As we show below, the dynamics of systems of ma
point vortices displays properties of both stochastic mod
and low-dimensional chaotic advection, and provides a u
ful bridge between high-dimensional stochastic models
low-dimensional chaotic advection.

The remainder of this paper is organized as follows. S
tion II contains an introduction to the dynamics of poi
vortices, Section III addresses the central limit theorem
point-vortex systems and considers the statistical prope
of ensembles of point vortices. In Section IV we discuss
statistical properties of long time-integrations of systems
100 point vortices, and study the behavior of both the vo
ces and of passively advected particles. In Section V
study single-particle dispersion in point-vortex systems a
compare with the dispersion of an ensemble of rando
moving particles described by the Ornstein-Uhlenbeck~OU!
stochastic process.2 Finally, in Section VI we present conclu
sions and perspectives, and discuss a possible alternative
chastic model for describing advection in point-vortex s
tems.

II. POINT-VORTEX DYNAMICS

Point vortices are singular solutions of the Euler eq
tions in two spatial dimensions. The dynamics of an e
semble of point vortices is described self-consistently b
system of equations that take the noncanonical Hamilton
form

G i

dxi

dt
5

]H

]yi
, G i

dyi

dt
52

]H

]xi
, ~1!

wherexi5(xi ,yi) is the position of thei -th vortex with con-
stant circulationG i , H is the Hamiltonian

H~$xi%!52 (
i , j 51
iÞ j

N
G iG j

2
G~xi ,xj !, ~2!

N is the number of vortices, and the form of the Green fu
tion G depends on the boundary conditions.23 The positions
xi andyi play the role of noncanonically conjugate variable
the number of degrees of freedom is equal to the numbe
vortices, and the dimensionality of the phase space is tw
the number of vortices. The number of independent c
served quantities of~1! and~2! also depends on the bounda
conditions, but it is always finite and small. Hence, an
sembly of more than a few vortices behaves chaotically.

Passively advected particles are easily incorporated
point-vortex systems. A point vortex with zero circulatio
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G i50, is advected by the other vortices but has no influe
on the velocity of any other vortex. Such passively advec
particles will be referred to here aspassives, and particles
with G iÞ0 as vortices. Recently, the motion of passive p
ticles in point-vortex systems has been the subject of sev
investigations.16,24,25 These studies have shown that po
vortices are surrounded by finite-size islands of regular
grangian motion, where passives can be trapped for v
long times. This implies the existence of long-time non
godicity in passive particle motion, where averages over
sembles of different advected particles differ from time a
erages over single-particle trajectories. In turn, this may l
to long lasting differences between Eulerian and Lagrang
averages and the possibility of non-Brownian~anomalous!
dispersion. In the following, we explore in detail some
these issues.

In this work we use periodic boundary conditions b
cause it is the only domain that has the needed propertie
closed domain has a finite maximum separation and is t
not suited to study long-time dispersion properties. T
leaves the infinite plane, the periodic plane~2-torus!, and the
sphere. The infinite plane is unsuitable because motion is
homogeneous with a finite number of vortices. On a sph
there is no unique way to count the number of times a p
ticle travels around the domain, and thus the sphere does
allow a satisfactory definition of particle dispersion at lo
times. Thus the only boundary condition which meets o
requirements is that of the periodic domain. In addition, m
simulations of homogeneous turbulence use these boun
conditions.

The Green functionG for point vortices on a periodic
domain with length 2p may be written as26,27

G~xi ,xj !5 (
m52`

`

lnS cosh~xi2xj22pm!2cos~yi2yj !

cosh~2pm! D
2

~xi2xj !
2

2p
. ~3!

The functionG can be shown to be periodic inx andy, and
invariant under the transformationx
y. The velocity of the
i -th vortex resulting from~1!, ~2!, and~3! is a sum over the
velocities induced by each of the other vortices:

ui5(
j 51
j Þ i

N

G j (
m52`

`
2sin~yi2yj !

cosh~xi2xj22pm!2cos~yi2yj !
,

~4!

v i5(
j 51
j Þ i

N

G j (
m52`

`
sin~xi2xj !

cosh~yi2yj22pm!2cos~xi2xj !
,

whereui5(ui ,v i)5(dxi /dt,dyi /dt). The dynamics on the
periodic domain has two invariants, the components of
linear momentum, corresponding to translation parallel to
x and y axes; Px5( i 51

N G i yi and Py5( i 51
N G ixi . Angular

momentum is not an invariant because the periodic bound
conditions break the rotational symmetry. The invariantsPx

and Py are independent only if the total circulation(G i is
zero.23 In this case, the motion is chaotic forN.3.
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III. POINT-VORTEX CONFIGURATIONS

In this section we discuss the properties of instantane
configurations ofN vortices. We restrict ourselves to con
figurations with zero total circulation and an equal number
positive and negative vortices.

First consider the velocity induced at a pointx0

5(x0 ,y0) by a single vortex atx1 . In the limit r 5ux12x0u
→0 the velocity~4! asymptotically approaches the veloci
generated by a single vortex on the infinite domain, 2G/r .
@Note that with the choice~3! for the Green function, the
timescale differs from that usually used on the infinite pla
by a factor of 4p; hence the velocity from a close vortex
here a factor 4p greater than the expression usually used
the infinite domain.23# At larger distances from the vortex
the domain periodicity modifies this simple form of the v
locity. In practice, the velocity on the periodic domain d
parts significantly from the infinite plane result only for sep
rations greater than approximately one sixth of the doma

Next, consider the probability density function~pdf! for
the velocity resulting from a single vortex,p1(u). This has
been studied in detail by Minet al. in the case of the infinite
domain.28 If the position of the vortex is chosen at rando
from a uniform distribution, then the high-velocity limit o
p1 is easily calculated. Since the probability of having se
ration betweenr andr 1dr is 2prdr , and since for smallr
the velocity scales as 1/r then for large uuu, p1(u)
;p(r (uuu))udr/duuuu;1/uuu3. This scaling for large veloci-
ties is independent of the boundary conditions, as the bou
aries are irrelevant at sufficiently small separations. The
tailed form of the distribution for smalleruuu does, however,
depend on the specific form ofu for a periodic domain, and
it depends on the direction ofu as well as its magnitude.

Since we are interested in the dynamics of systems
several point vortices, we now consider the velocity induc
at a point by a system ofN vortices with uG i u51. This ve-
locity is merely the sum of the velocities due to each vor
separately. If the vortices are randomly placed, then the
locity is the sum ofN random numbers, and its pdfpN(u) is
determined byp1(u). For functionsp1 which decay suffi-
ciently rapidly, the central limit theorem applies andpN ap-
proaches a Gaussian. Most statements of the central
theorem require that the variance ofp1 be finite. Here, since
p1;1/uuu3 the variance* uuu2p1(uuu)duuu diverges logarith-
mically. However, this divergence is sufficiently slow th
the central limit theorem still applies and asN→`, pN does
become Gaussian. For more details, see the Appendix,
et al.,28 and Ibragimov and Linnik.29

For large but not infiniteN, the velocity pdf of an en-
semble of vortices displays interesting properties. For dis
butions with finite variance, the convergence to a Gaussia
quite rapid. For example, ifp1 were constant over a finite
region and zero elsewhere, thenpN is quite close to Gaussia
even for N55. However, for distributions with slowly di-
verging variance, such as the case here, the convergenc
Gaussian is slow and is called ‘‘nonnormal.’’29 For nonnor-
mal convergence, the variance of the sum scales differe
than the normal case. In the Appendix we show that for po
vortices the variance of the asymptotic Gaussian issN
us
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5AN ln N/2p. Figure 1 shows howpN(u/sN) asymptoti-
cally approaches a normal distribution. Due to symme
pN(u)5pN(v) and these two distributions have been co
bined into a single pdf. Further,pN is even and we combine
positive and negative velocities. A least-squares fit of
small velocity portion of the distribution to a Gaussian pr
vides a variance of approximately one~as expected forN
→`! and an amplitude 0.9 of that of a normal distributio
One sees that even though the central limit theorem form
applies, the convergence is extremely slow and even
large N, pN has significant high-velocity tails. Further, th
small-velocity part ofpN is well approximated by a Gaussia
with the asymptotic variance, but with amplitude less th
one due to the significant fraction of events contained in
high-velocity tails. In what follows, we show that both th
Gaussian portion of the pdf at small velocities and the hi
velocity tails play an important role in the advection proce

In the remainder of this paper we focus on systems
100 point vortices. Similar results are obtained with oth
values of N between about 10 and a thousand. From
perspective of dynamical systems, an ensemble of 100 p
vortices has a 200-dimensional phase space; it is thus q
high dimensional. However, it is still reasonable to nume
cally integrate the equations for significant times. From
perspective of the central limit theorem, due to the slow n
normal convergence,N5100 is not large enough forp100 to
be completely Gaussian.

We next consider several different initial configuratio
of the N vortices. The circulations of the vortex population
are characterized byḠ, the average of the absolute value
the individual circulations. We focus on configurations wi

FIG. 1. Probability density functionpN(u/sN) for the instantaneous veloc
ity u produced by N randomly placed vortices, scaled bysN

5AN ln N/2p. Solid lines arepN for N5102, 104, and 106. Dashed line is
a Gaussian pdf with unit variance and amplitude 0.9. The inset shows s
curves on log–log axes, along with the dotted line;1/u3.
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1932 Phys. Fluids, Vol. 10, No. 8, August 1998 Weiss, Provenzale, and McWilliams
Ḡ51, and with random individual circulations uniformly dis
tributed in the range 0.8Ḡ<uG i u<1.2Ḡ. The variation in the
individual G i ’s is included to break any symmetry in vorte
pair interactions that may arise in a system with identi
uG i u ’s. For each configuration, the initial vortex positions a
randomly chosen in the square domain@0,2p#2. For simplic-
ity we only consider initial conditions withPx5Py50.

The set of initial configurations discussed above c
have a range of energies,E5H($xi%)/4p2. Close opposite-
sign vortex pairs give a large negative contribution to
energy, while close same-sign pairs provide a positive c
tribution. Thus, depending on the random initial positions
the vortices, the energy of the system may take differ
values. In Fig. 2 we show the density of states, i.e., the n
ber of states with energy in a given interval, obtained fro
104 different realizations of the initial vortex configuration
described above withN5100. This distribution has a mea
of 20.076, a variance of 1.18, and a skewness coefficien
0.85. In the following we integrate the motion of 300 rando
configurations extracted from this ensemble for a relativ
short time,T50.1. The two vertical dotted lines indicate tw
arbitrarily chosen configurations that have been integra
for a much longer time,T530.

The relationship between vortex speed and nea
neighbor distance for all the 100 vortices in the 300 ra
domly chosen configurations is seen in Fig. 3. Large spe
are associated with close nearest neighbors. From this
may conclude that the high velocities in the tail of the pd
are due to the presence of a single close vortex and not to
superposition of the contributions of several different vo
ces. Thus, high-velocity tails inp100 are essentially two-
vortex phenomena and not many-body effects. This imp
that in the limit N→`, as the tails ofpN disappear, the

FIG. 2. Density of states as a function of energy for 104 random configu-
rations of 100 vortices. Dashed lines indicate two arbitrary initial condit
used for long integrations.
l
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importance of two-vortex interactions goes to zero. Ho
ever, given the slow convergence ofpN , two-vortex interac-
tions will be important even for very largeN.

IV. LONG-TIME INTEGRATIONS

In this section we focus on the phase-space trajecto
obtained by a relatively long-time integration of the two ra
domly selected initial configurations indicated in Fig.
These initial configurations haveN5100 vortices andNp

5100 passives. The configurations were integrated untT
530 using a fourth-order Runge-Kutta method with fix
time stepDt51025. The positions and velocities of the vo
tices were saved everyDts51022.

The Cartesian velocity pdfs, averaged over time and
vortices, denoted byp̄(u), are obtained by measuringu and
v for all vortices everyDts throughout the integration; again
from symmetryp̄(u)5 p̄(v)5 p̄(2u)5 p̄(2v) so 6u and
6v are combined into a single pdf. The pdfs for the vort
and passive velocities in each of the two solutions are sho
in Fig. 4. The central part of each pdf,uuu&20, is well ap-
proximated by the same Gaussian which fits the central
of p100; it has the theoretical asymptotic widths100

5A100 ln 100/2p'8.56 and amplitude 0.9 of a Gaussia
with unit normalization. Thus the vortices and passives in
two solutions all have the same small-velocity pdf as ea
other and as an ensemble of random initial conditions.

The high-velocity tails ofp̄ for the two solutions are,
however, significantly different. One solution has a sign
cant excess overp100 at large velocities, while the other ha
a deficit. Note that both solutions, however, have a defici
extremely large velocities,u*250'30s100. The pdf with

FIG. 3. Scatter-plot of instantaneous vortex speed versus nearest neig
distance for all vortices in 300 randomly chosen configurations. The das
lines indicate the speed induced by a single vortex with the smallest
largest circulations in the population.
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smaller tail in the vortices comes from the same integrat
as the pdf with the larger tail in the passives, and vice ve
This is not significant, and is merely the result of pickin
only two random initial conditions.

The lack of convergence of the pdfs over the time of
integration T indicates thatT is not long enough for the
system to forget its initial conditions. By other measur
however,T is very long. A typical eddy turnover time, est
mated as the time for a vortex at a typical vortex separa

FIG. 4. The velocity pdf averaged over time and particles,p̄(u), for ~a! the

vortices, and~b! the passives. In each panel, the two solid lines arep̄(u) for
the two long integrations discussed in the text, the dotted line is a Gaus
with variances100 and amplitude 0.9 and the dashed line isp100(u), as in

Fig. 1, but with the same sample size asp̄.
n
a.

e

,

n

2p/AN from another vortex to rotate in a complete circle,
approximately 0.4. Another measure of the eddy turno
time is ((G i

2)1/2'0.1. Thus T is O(100) eddy turnover
times. A completely different measure of the length of t
integration is that in a time ofT the particles travel around
the basic periodic domain several times. All of this indica
that the correlation time for the tail of the pdf is very lon
and that the point-vortex system displays a very lo
memory with an associated lack of ergodicity over large
not infinite, time intervals. While this is consistent with wh
has already been observed for systems of a few p
vortices,16,27 it is somewhat surprising that this phenomen
persists in a system with so many degrees of freedom.

A standard statistic for studying velocity time series
the Lagrangian velocity autocorrelationR(t),

R~t!5
^u~ t !•u~ t1t!&

^uu~ t !2u&
, ~5!

where ^¯& represents an average over time and over p
ticles. The autocorrelations from the long phase-space tra
tories for the two populations of vortices and passives
shown in Fig. 5. As in the pdfs, there is no significant d
ference between the vortices and passives. After a very s
period with steep decay, the autocorrelation of the vorti
and passives follows an exponential extremely well. Fot
greater than those shown in the figure,R(t) oscillates around
zero. The Lagrangian decorrelation time of the phase-sp
trajectories,TL , is estimated by fittingR(t);exp(2t/TL)
for the periodt50.02 tot50.2, givingTL50.0960.01. A
theoretical estimate of the order of magnitude ofTL can eas-
ily be obtained by assuming thatTL is the time it takes for a
vortex moving at a typical velocitysN5AN ln N/2p to

an

FIG. 5. Velocity autocorrelation functionR(t), Eq. ~5!, for the two long
integrations. Solid lines are the vortices, dashed lines are the passives
dotted line is the exponential which best fits the average of the vortices
passives, and has a decay time ofTL50.09.
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FIG. 6. Individual particle trajectories from the long integrations:~a! a fast vortex, where the period of fast motion,uuu.70, is shown in bold;~b! a slow
vortex; ~c! a slow passive; and~d! a stochastic particle governed by the Ornstein-Uhlenbeck process, Eq.~6!. The trajectory of the fast vortex appears not
be smooth because of the finite plotting interval,Dts .
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cross a distance equal to the typical vortex separa
2p/AN; this estimate givesTL;(2p)3/2/NAln N;0.07,
quite close to that effectively observed. Note also that
common method of estimating the Lagrangian integral ti
scale,TI5*0

`R(t)dt, provides misleading results becau
the very long memory of the system implies that extrem
long integration times are needed to reliably calculateTI .

Individual vortex and passive trajectories, some e
amples of which are shown in Fig. 6, are in general qu
complex. The first two panels of Fig. 6 show examples of
intermittently fast moving vortex and of a vortex random
selected from the population of vortices with moderate av
age speed. The single fast vortex shown in Fig. 6~a! com-
prises 33% of the extreme tail~velocity greater than 10s100!

of the velocity pdfp̄ for its integration. Figure 6~c! shows the
n

e
e

y

-
e
n

r-

particle trajectory of a randomly selected passive partic
The particle trajectories of the slow vortex and the pass
are qualitatively similar, although the passive does ha
more tight loops, indicating that at those times it is close t
vortex. The particle trajectory of the fast vortex is qualit
tively different than the other two.

The time series of the speed of the fast vortex, Fig.
shows clear bimodal behavior with the vortex jumping b
tween slow and fast episodes. A time series of the distanc
the closest vortex and its identity, Fig. 8, shows that episo
of extremely fast motion coincide with the vortex being clo
to another, oppositely-signed, vortex, i.e., it is a member o
close dipole. These episodes start and end with change
the identity of the close vortex. Furthermore, the three se
rate fast episodes are separated by extremely short perio
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slow motion where the closest vortex is significantly furth
away and changes identity rapidly. The ratio of the dista
of the second closest vortex to the distance of the clo
vortex, Fig. 9, demonstrates that the fast episodes are pr
rily the result of close dipoles. However, note that during
period fromt'22 to t'24 this distance ratio is smaller tha
during other fast periods~but still larger than during slow
periods!, and there are small oscillations in the nearest nei
bor distance~Fig. 8!. Analysis of the individual vortex tra-
jectories shows that during this period the second clo

FIG. 7. Time series for the speed of the fast vortex shown in Fig. 6~a!.

FIG. 8. Nearest neighbor distance for the fast vortex shown in Fig.~a!
~lower curve!. The identity of the nearest neighbor is shown in the up
curve: a line at 1.3 indicates a same-sign nearest neighbor, a line a
indicates an opposite-sign nearest neighbor, and the line jumps to 1.2
time the identity of the nearest neighbor changes.
r
e
st
a-

e

-

st

vortex has the same identity and there is thus a tempo
three-vortex bound state.

Before closing this section, we note that we have n
detected any significant difference between vortex and p
sive statistics, in the sense that the internal variability in e
of these populations is by far larger than any difference
tween vortices and passives. This is not too surprising if
consider that the contribution of each individual vortex to t
total vorticity field is rather small forN5100, and each in-
dividual vortex in the collective field of the other vortice
behaves similar to a passive. Significant differences do e
however, in strong two-body interactions: Close vortices
celerate each other and may undergo episodes of fast
placement, while passives trapped in the vicinity of a vor
do not influence its motion.

When passives are close to a vortex, they spin with la
velocity and create high-velocity components in the p
Moreover, passives close to a vortex tend to remain ass
ated with it for very long times, both on the infinite plane16

and in periodic domains.30 The presence or absence of hig
velocity ‘‘bumps’’ in the pdf is thus entirely determined b
the initial conditions, i.e., whether or not the system happ
to start with close passives. Only by integrating for tim
much longer than the trapping time is it possible for the tim
average pdf to converge to the ensemble average pdf
issue which is related to the possible nonergodicity of p
sive particle motion in point vortex systems.16 At present, it
is unclear whether the trapping islands around the vorti
have a time-asymptotic nature or disappear at finite~but
long! time. Preliminary runs of few-vortex systems30 have
shown that the trapping islands exist up to at leastt53000.
By comparison, bound states of vortex couples tend to
for much shorter times.

When a passive is close to a vortex, it thus beha

r
.1

ery

FIG. 9. Ratio of the distances from the fast vortex shown in Fig. 6~a! to its
second and first nearest neighbors.
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similar to the vortex with which it is linked, with an add
tional fast rotational component. Whenever the vortex und
goes a fast displacement due to vortex dipolar coupling,
trapped passive does as well. A detailed theoretical comp
son of the long-time displacement statistics of vortices a
passives should thus carefully evaluate the probability th
passive be trapped near a vortex~which is related to the
initial conditions and determined mainly by geometric fa
tors! and the lifetime of vortex–vortex and vortex–passi
couples. On a purely heuristic basis, the present simulat
have shown no detectable differences between the gross
tistical behavior of vortices and passives, at least on the t
scales we have considered.

V. PROPERTIES OF SINGLE-PARTICLE DISPERSION

In this section we study the properties of single-parti
dispersion in point-vortex systems. A classic stocha
model for describing the motion of advected particles is
Ornstein–Uhlenbeck~OU! process2,31

dx5udt, du52
u

TL
dt1

sou

TL
1/2dW, ~6!

whereW is the Wiener process, anddW is a Gaussian ran
dom increment with ^dW&50 and ^dWa(t)dWb(t8)&
52da,bd(t2t8)dt, where^¯& indicates an average over a
ensemble of independent realizations, and Greek subsc
indicate vector components. The OU process is character
by two parameters: a velocity scalesou which determines
the variance of the velocity pdf, and a timescaleTL which is
the Lagrangian decorrelation time of the exponential veloc
autocorrelationRou(t)5exp(2t/TL). Recently, the OU pro-
cess has been used to model single-particle dispersion in
atmosphere and the ocean.32

Here, the OU process is a very natural choice for a s
chastic model. As we have already seen, the velocity pdf
a significant Gaussian component, leading us to pick
Gaussian process. Additionally, the Lagrangian velocity
tocorrelation has a period of exponential decay, which le
to the OU process. Furthermore, the two parameters of
OU model have already been determined:sou5s100'8.56
andTL50.09. The major failure of the OU process is that
does not capture the high-velocity tails of the vortex pdfs
trajectory of an OU particle with these parameters is sho
in Fig. 6~d!. The large-scale motion is similar to that of
slow vortex or passive, but the small-scale motion has m
sharp turns instead of small loops.

The OU process may thus give a framework for anal
ing the time evolution of the vortex statistics, at least for t
slow portion of the vortex population. This is in contrast
the application of the central limit theorem in Sec. III, whic
only refers to single instants in time. To explore similariti
and differences with the OU process, relatively short-ti
integrations, untilT50.1, were performed on 300 initia
conditions chosen randomly from those shown in Fig.
Each initial condition has 100 vortices and 100 passiv
This data set is thus the same size as a single long inte
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tion. The velocity pdfs averaged over all initial conditions,
well as the time and initial condition averaged pdfs, are eq
to p100.

We now compare the vortex displacements,Dx(t)
5x(t)2x(0), with the displacements of the OU process. A
is usually done in the study of systems with periodic boun
ary conditions, we compute displacements from the unfold
trajectories, i.e., by taking into account the number of tim
a particle has wound around the periodic domain.12 Again,
due to symmetry, we can combinex and y displacements.
The OU process has displacements with a Gaussian
whose widthsDx is

sDx
2 ~t!52sou

2 TL
2S t

TL
1e2t/TL21D . ~7!

The pdf of vortex displacements at time delayt can be com-
pared to the OU pdf by scaling each vortex displacement
the abovesDx(t). The resulting set of pdfs, as obtained b
considering all 100 vortices for all 300 initial configuration
are shown in Fig. 10 for time delayst50.01,0.02, . . .,0.09.
This figure shows that for small displacements the pdfs ag
with the OU result. However, there are significant larg
displacement tails, which are largest for small times, a
decrease ast increases.

To identify the origin of the large-displacement tails,
Fig. 11 we show the displacements att50.05 versus the
nearest neighbor distance, for both same-sign and oppo
sign neighbors. The large displacements are associated
close opposite-sign vortices, i.e., a vortex dipole, while th
is no correlation between large displacements and c

FIG. 10. Probability density function of displacementsDx(t) scaled by the
OU expected displacementsDx , Eq. ~7!, for t50.01,0.02,...,0.09, from the
300 short integrations. The dashed line is the OU Gaussian. The inset s
the tails fort50.01 ~upper solid curve! and 0.09~lower solid curve!.
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same-sign vortices. Further, the value of the large displa
ment is well predicted by the motion of an isolated dipole

We can conclude that the small displacements are es
tially a mean-field process, in that~1! they are due to the
action of many other vortices and~2! they are well captured
by a stochastic model such as the OU process, whic
known to work well for extremely high-dimensional system
such as Brownian motion. On the other hand, the large
placements are essentially due to two-body interactio
namely, temporary coupling of opposite-sign vortices. Sam

FIG. 11. Scatter-plot of displacementDx(t), t50.05, versus average nea
est neighbor distance over the time period for~a! opposite-sign pairs, and~b!
same-sign pairs in the 300 short integrations. The solid line in~a! is the
displacement of a single dipole on the infinite plane withuGu51.
e-

n-

is

s-
s,
-

sign couples rotate rapidly about their center of vorticity, a
otherwise behave similarly to a single vortex with larger c
culation. Thus, they contribute to the high-velocity tails, b
do not contribute to the large-displacement tails. Similar
sults are observed for the passive particles, with the us
caveat that when passives couple with a vortex they do
affect its velocity, but they can be trapped in the vicinity of
vortex undergoing fast dipolar motion.

We next turn to the temporal evolution of the avera
vortex and passive displacement, i.e, to absolute or sin
particle dispersion. The single-particle dispersion of a sys
of moving particles is defined as

A2~t,t !5^~x~ t1t!2x~ t !!2&p , ~8!

where^¯&p indicates an average over the ensemble of p
ticles. When the particle motion is statistically stationary,
is the case here,A2 becomes independent oft. The finite-
time dispersion coefficient is defined asD(t)5A2/2t. For
motions in differentiable velocity fields, the short time di
persion is ballistic, i.e.,A2(t)}t2 for t!TI whereTI is the
Lagrangian integral timescale, defined as the integral of
velocity autocorrelation. IfTI is finite, then at large times the
dispersion becomes Brownian-like, i.e.,A2(t);t. The usual
dispersion coefficient is thus defined in the infinite tim
limit, D5 limt→` D(t).

For the OU process, the appropriate ensemble of p
ticles is a collection of independent realizations of t
Wiener process. The diffusion coefficient then becomes

Dou~t!52sou
2 TLF12

TL~12e2t/TL!

t G , ~9!

which has the infinite time limitDou52sou
2 TL .

For the point-vortex system, the appropriate ensembl
Eq. ~8! is the collection of vortices or passives at a sing
time in a single integration. As for displacements, dispers
is calculated using unfolded trajectories. The four result
diffusion coefficients are shown in Fig. 12. There is no s
nificant difference between the vortices and passives,
thus the best estimate is obtained by averaging the four
fusion coefficients. The diffusion coefficient for the OU pr
cess, Eq.~9!, is shown for comparison. Also shown is th
expected error of the mean for four ensembles of 100
particles, which is calculated with standard statistical me
ods. For short times,t&0.1;TL , the OU process capture
the dispersion reasonably well. For intermediate times,TL

&t&2;20TL , the OU process overestimates the dispersi
For long times,t*20TL , the diffusion coefficient appears t
grow beyond that of the OU prediction. This anomalous
large single-particle dispersion is presumably due to the t
in the velocity pdfs and large displacements of long-liv
close dipoles. It is an interesting question, which rema
unanswered at the moment, whether the single-particle
persion becomes Brownian at very large times in poi
vortex systems.

VI. CONCLUSIONS

In this paper we analyze the Lagrangian dynamics
vortices and passives in high-dimensional,N5O(100),



un

n
e

he

oc
a
e

ov
th
e
tr

f

l-

h
irs
t

-
fo
it
a

ss
a

nts
is-

. At
llis-

e

ion,
o
sion

e
OU

ess
ng-
be
pairs
pro-
ort
be

-
ort

one
his
o

nd
and
o
for
se
g

can
eir

to
the

tic
s,
m-
ber
ant
ty
ign
e

he
he
od
tly
we

tic

ell
on-
city
-

r of

f
t
n-

1938 Phys. Fluids, Vol. 10, No. 8, August 1998 Weiss, Provenzale, and McWilliams
point-vortex systems. We find that the behavior can be
derstood by partitioning the system into two components:~1!
mean-field behavior resulting from the collection of dista
vortices, and~2! high-velocity behavior resulting from clos
pairs ~and, occasionally, triplets or more!.

The partition in the statistical dynamics is due to t
slow, nonnormal convergence ofpN . In the limit N→` the
velocity pdf is Gaussian and only mean-field behavior
curs. The mean-field behavior is well modeled as
Ornstein-Uhlenbeck~OU! stochastic process. This part of th
dynamics has a short correlation time,TL50.09, which can
be estimated by simple arguments based on the turn
times for average vortex separation. However, due to
1/uuu3 behavior of the velocity pdf for a single vortex at larg
uuu, the convergence to the Gaussian implied by the cen
limit theorem is extremely slow withN, and the variance o
the Gaussian component scales asAN ln N rather than the
more commonAN.

The slow convergence is important for physically re
evant, large but finite, values ofN, where there is a signifi-
cant, non-Gaussian, high-velocity tail in the pdf. This hig
velocity tail has a very long correlation time. Close pa
typically last for much longer thanTL ; indeed, they can las
so long that even our longest integrations, ofO(300TL), do
not yield reliable statistics for the distribution of pair life
times. These long-lived pairs exhibit nonergodic behavior
at least the time of our simulations, which is consistent w
previous evidence for long-time nonergodicity with only
few point vortices.16,27

As a result of the high-velocity tails, the OU proce
does not accurately capture the single-particle dispersion

FIG. 12. Diffusion coefficientD(t) from the two long integrations for the
vortices~thin solid curves!, passives~thin dashed curves!, and the average o
the four ~thick solid curve!. Also shown is the OU diffusion coefficien
~thick solid smooth curve! and the envelope of expected error for four e
sembles of 100 OU particles~thick dashed curves!. The inset shows the
same curves for short times.
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the pdf of particle displacements. The small displaceme
scale approximately as in the OU model, but the large d
placements show no such scaling due to close dipoles
very short times, of course, the displacements exhibit ba
tic scaling, withD(t)}t. After the first significant loss of
velocity correlation, att;O(TL), the OU model captures th
average dispersion reasonably well. At later times,t'1 – 5,
the OU model overestimates the single-particle dispers
and at very large times,t.20, the OU model appears t
underestimate the dispersion. This suggests that the diffu
coefficient may continue to increase resulting in long-tim
anomalous dispersion, rather than saturate as in the
model around a time ofO(10TL).

It may be possible to construct a new stochastic proc
that includes both the Gaussian slow vortices and the lo
lived, close, high-velocity pairs. The slow vortices would
modeled as an OU process. Since the close same-sign
rotate in place, these vortices should be modeled by a
cess that has negative velocity correlations at very sh
times. The close dipoles travel large distances, and could
modeled by a Le´vy walk.33 In previous studies of point vor
tices, Viecelli found anomalous relative dispersion at sh
times, which he explained as Le´vy walks.34,35

In order to create a combined stochastic process
would need information about the close-pair dynamics. T
information could be condensed into two joint pdfs and tw
scalar probabilities: the joint pdfs of close-pair velocities a
lifetimes, separately for the dipoles and same-sign pairs,
the transition probabilities for switching from OU motion t
close dipoles and same-sign pairs, i.e., the probabilities
close-pair formation. We already know that the pdf for clo
pair velocities, which is related to the joint pdf by integratin
over lifetime, scales asu23 for largeu. If we are only con-
cerned with displacements, then the same-sign pairs
probably be absorbed into the OU component, since th
center of vorticity moves as a single vortex. If we wish
model the velocities, however, then the fast rotation of
same-sign pairs is important.

With this information one could construct a stochas
algorithm in which particles move with OU random walk
and, at particular instants, have some probability of beco
ing members of a dipole or same-sign pair. Once a mem
of a dipole, the particle moves for some time at a const
velocity in a random direction, with the time and veloci
chosen from the joint pdf. Once a member of a same-s
pair, the particle has a high oscillating velocity for som
time, plus a slower OU random-walk velocity, again with t
time and velocity chosen from the joint pdf. Because of t
long correlation time of the close pairs, obtaining a go
estimate of these joint pdfs would require significan
longer integrations than we have done here; therefore,
will not propose here an explicit form for the new stochas
model.

How relevant is the range ofN we study here for geo-
physical flows? The number of coherent vortices is not w
known in nature, since they are often hard to detect by c
ventional measurement techniques; for example, the vorti
or potential vorticity fields are usually poorly sampled. How
ever, we can estimate an upper bound on the numbe
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coherent vortices in the large-scale geostrophic regime
the atmosphere and ocean as the ratio of total area to a
cal vortex area, neglecting any stacking in the vertical.~We
do not consider the ageostrophic, smaller-scale regimes
which 2D vortex dynamics are probably less relevant.! A
typical geostrophic vortex size is given by the Rossby rad
of deformation, which, at midlatitudes, is approximately
km in the ocean, and 1000 km in the atmosphere.36 The total
areas of the ocean and atmosphere are about 3.53108 km2

and 53108 km2, respectively. Thus, if the area were fille
with closely packed vortices, which is certainly not the ca
the ocean would haveO(105) vortices and the atmospher
would have onlyO(102) vortices. From Fig. 1 we see tha
with this upper bound even the ocean would not be in
infinite N regime and the tails of the pdf would be importan
Thus, the behavior described in this paper is representa
of what we expect from the number of coherent vortices
the atmosphere and ocean.

The point-vortex system is only an approximation to t
dynamics of coherent vortices in geophysical flows. Tr
coherent vortices have a finite core size and a finite lifetim
even though the former is often small and the latter la
compared to many geophysical phenomena. The existenc
a finite core does not significantly affect the dynamics
passive tracers, as shown by simulations of two-dimensio
turbulence.12,16,17 Since extended coherent vortices effe
tively retain the matter in and near their cores and can tra
long distances over their long lifetimes, they can have c
siderable influence over large-scale material transports, s
larly to what happens for point vortices. On the other ha
the dynamics of the vortices themselves may be affected
the presence of a finite core. In particular, same-sign vort
can merge, a process which is not included in point-vor
dynamics. Although a full answer to the impact of fini
cores can only come from simulations of extended vortic
we note that many of the specific Lagrangian properties
cussed here are mainly determined by the behavior of c
dipoles. These still exist, with similar properties, in the ca
of extended vortices, suggesting that the results found h
for point vortices which are due to dipoles may be mo
general. Future studies will address the properties of
grangian transport in systems of coherent vortices with
tended cores and in punctuated point-vortex dynamics wh
instantaneous merger is allowed.

In this paper we have demonstrated several differen
of vortex systems from random walking. On the other ha
aspects of the overall dispersion behavior seen in Fig. 12
grossly captured by simple OU diffusion on times very lar
compared toTL . Thus, we see this study as giving som
further degree of support for the common practice of para
eterizing large-scale transports as eddy diffusion. In this c
text, the eddy diffusion coefficient is a function of the cohe
ent vortex population obtained from Eq.~9! with sou

replaced bysN , D5NTL ln N/p. Thus, one may be able t
obtain a time-varying eddy diffusion by observing how t
vortex population changes over time. However, it may ev
tually turn out that the quantitatively significant differenc
between vortex dispersion and stochastic diffusion impl
significant qualitative difference as well. For example, if t
of
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diffusion coefficient continues to grow with time, then fo
times much longer than these simulations, eddy diffus
will fail.
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APPENDIX: THE CENTRAL LIMIT THEOREM FOR
POINT VORTICES

In this Appendix we show that in the limitN→` the
velocity probability density function~pdf! for the velocity
due toN randomly placed vortices,pN , becomes Gaussia
with variancesN5AN ln N/2p. The calculation is based o
theorems regarding random variables.29 The fact thatpN be-
comes Gaussian was mentioned previously by Minet al.;28

the value of the variance is, to our knowledge, new.
The relevant theorems discuss the behavior ofzN , the

sum of N independent identically distributed random va
ablesxi with pdf F(x), scaled by a factorsN :

zN5
x11...1xN

sN
. ~A1!

If in the limit N→` the pdf for zN converges weakly to
some distributionG, thenF is said to be in the domain o
attraction ofG. The family of distributions which have non
empty domains of attraction are called Le´vy distributions
and are identified by an indexa, 0,a<2; a52 corre-
sponds to the normal distribution, anda51 is the Cauchy
distribution.29,33 Here we shall only be concerned witha
52.

Ibragimov and Linnik29 prove thatF belongs to the do-
main of attraction of the normal distribution if and only if th
truncated second moment

I ~X!5E
2X

X

x2F~x!dx ~A2!

is slowly varying in the sense that

lim
X→`

I ~ tX!

I ~X!
51 ~A3!

for all t. They further show that the scaling of the sum,sN ,
is given by the requirement that

lim
N→`

NI~esN!

sN
2 51, ~A4!

for somee.0. As written, Eq.~A4! assumes thatF has zero
mean which is the case of interest here; ifF has nonzero
mean then another term is needed in the equation.
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Here,p1(u) takes the role ofF(x), wherep1(u) is the
pdf for thex-component of the velocity,u, produced at the
origin from a point vortex with unit circulation placed at
random position in the periodic domain@2p,p#2. Since the
velocity is a vectoru5(u,v) described by a joint distribution
p(u,v), p1 is obtained from

p1~u!5E
2`

`

p~u,v !dv. ~A5!

Due to symmetry the pdfs foru andv are identical and we
need only consider one of them. It is sufficient to only co
sider vortices with positive circulation since changing t
sign of the circulation is equivalent to changing the sign ox.
Thus, allowing random positive and negative unit circu
tions would not affectp1 or pN .

We are interested in the velocity componentu due toN
vortices, with pdfpN(u), whereu is the unscaled sum of th
velocity components of the individual vortices. Thus, if t
sum scaled bysN has a normal distribution, thenpN is
Gaussian with variancesN .

While the joint distributionp(u,v) is rather difficult to
determine in detail, changing variables allow us to eas
integrate over the distribution. The random velocityu is due
to a vortex at a random positionx, so p(u,v)dudv
5p(x,y)dxdy. Further, since the vortex is placed random
from a uniform distribution,p(x,y)51/4p2. A final change
of variables to polar coordinates (r ,u) gives

I ~X!5E
2X

X

duE
2`

`

dvu2p~u,v !

5
1

4p2 E duE drru2~r ,u!. ~A6!

To determine the bounds of the integral we need
curve r (u,X) such thatu(r ,u)5X, with v arbitrary. Since
we are interested in the behavior ofI (X) in the limit of large
X we can use the asymptotic form of Eq.~4!, u(r ,u)
52 sinu/r. Since the original integral is overuuu,X, in po-
lar coordinates the integration is overr .2 sinu/X; this cor-
responds to integrating over all points outside two circ
with radius 1/X centered at61/X. Along thex-axis,u50 or
p, r is allowed to go to zero; thus,v52 cosu/r can reach
both6` andr .2 sinu/X does not restrictv. DefiningR(u)
to be the distance from the origin to the edge of the perio
domain results in

I ~X!5
1

4p2 E
0

2p

duE
2 sin u/X

R~u!

drru2~r ,u!. ~A7!

Despite the fact that the integral covers smallu, the limiting
behavior of I only depends on the asymptotic form
u(r ,u). Writing the velocity as

u~r ,u!5
2 sin u

r
1g~r ,u!, ~A8!

where, from Eq.~4!, g;O(r ) for small r , gives

I ~X!5
1

p
ln X1O~1!. ~A9!
-

-

y

e

s

ic

It is now straightforward to verify thatI (X) is slowly vary-
ing in the sense of~A3!, and thusp1 is in the domain of
attraction of the normal distribution. Further, the requirem
~A4! is satisfied by

sN5AN ln N

2p
. ~A10!

Thus, in the limitN→`, pN is Gaussian with variancesN .
Because this result only depends on the explicit form ofu for
small separations, it is independent of boundary conditio
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