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We study the Lagrangian dynamics of systemsNofpoint vortices and passive particles in a
two-dimensional, doubly periodic domain. The probability distribution function of vortex velocity,
pn, has a slow-velocity Gaussian component and a significant high-velocity tail caused by close
vortex pairs. In the limit foN— oo, py tends to a Gaussian. However, the form of the single-vortex
velocity causes very slow convergence withfor N~ 10° the non-Gaussian high-velocity tails still

play a significant role. At finiteN, the Gaussian component is well modeled by an
Ornstein-UhlenbeckOU) stochastic process with varianag= /N In N/27. Considering in detalil

the caseN=100, we show that at short times the velocity autocorrelation is dominated by the
Gaussian component and displays an exponential decay with a short Lagrangian decorrelation time.
The close pairs have a long correlation time and cause nonergodicity over at least the time of the
integration. Due to close vortex dipoles the absolute dispersion differs significantly from the OU
prediction, and shows evidence of long-time anomalous dispersion. We discuss the mathematical
form of a new stochastic model for the Lagrangian dynamics, consisting of an OU model combined
with long-lived close same-sign vortices engaged in rapid rotation and long-lived close dipoles
engaged in ballistic motion. From a dynamical-systems perspective this work indicates that systems
of dimensionO(100) can have behavior which is a combination of both low-dimensional behavior,
i.e., close pairs, and extremely high-dimensional behavior described by traditional stochastic
processes. €1998 American Institute of Physids$$1070-663(98)02408-§

I. INTRODUCTION traditionally been applied to systems with just a few excited
degrees of freedom, with very simple spatial structures, and
Advection of passive and active tracers is a crucial comyyith periodic or quasi-periodic temporal dynamics.Thus,
ponent in many geophysical processes: ozone transport in thge traditional application of stochastic models is to highly
stratosphere, pollutant dispersal in the atmosphere and thg,jent flows without strong coherent structures, while
ocean, plankton and salinity transport in the ocean. Additiony, . qimensional chaotic advection is appropriate for flows

ally, understanding the relationships between Eulerian angominated by a few large-scale waves, vortices, or other

Lagrangian statistics is necessary for interpreting data PO ctured”?

vided by ocean floats gnd atmospheric balloons. . . Geophysical turbulence, however, does not fully belong
Standard Lagrangian approaches to transport in f|UId? . . T,

. . q either of the above categories. One of the main difficulties

are based on the use of either stochastic models or chaotic

advection in low-dimensional dynamical systems. Lagrang_encountered in studying Lagrangian advection in geophysi-

ian stochastic models are generally based on assuming th&@ tUrbulence is, in fact, the complex space-time structure of
transport is dominated by unstructured Gaussian random Véhe flow. The joint effects of rot.at|on and stratification often
locity fluctuations, and they are most successful when théhduce the presence of energetic coherent structures that con-
system under study has an extremely high-dimensional phad@in the majority of the enstrophy of the systén? intense
space-2 The standard example is Brownian motion whichets such as the Gulf Stream act as partial barriers to trans-
describes the irregular movement of microscopic particles ifPort, while coherent vortices such as ocean mesoscale eddies
systems with dimensionality of the order of Avogadro’s and the stratospheric polar vortex can trap particles for long
number,0(10%). In this case, the details of the deterministic imes™~*° Previous studies of barotropic turbulence have
description are irrelevant. shown that coherent vortices play an important role in the
Chaotic advection, on the other hand, is based on a fullpdvection of Lagrangian tracers, inducing characteristic sig-
deterministic description of the phase-space dynamics. It hasatures that cannot be captured by simple stochastic

models!?16:17
dpermanent address: Istituto di Cosmogeofisica del CNR, C.so Fiume 4, I_n this work, V_Ve further explore the prOpert'e.S of adveq-
1-10133 Torino, Italy. tion in flows dominated by strong coherent vortices, and, in
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particular, we consider an ensemble of many point vortice§’;=0, is advected by the other vortices but has no influence
in two spatial dimensions. Systems of points vortices capturen the velocity of any other vortex. Such passively advected
many of the features of two-dimensional turbulentparticles will be referred to here gmssivesand particles
flows 1¥-22|n geophysically relevant situations the number ofwith I';# 0 as vortices. Recently, the motion of passive par-
energetic coherent structures is neither as large aticles in point-vortex systems has been the subject of several
Avogadro’s number, nor as small as the number of degreeisvestigations®?42° These studies have shown that point
of freedom in simple models of low-dimensional chaotic ad-vortices are surrounded by finite-size islands of regular La-
vection. Systems oN point vortices withN~O(10™), m  grangian motion, where passives can be trapped for very
small, are thus used here as another simplified paradignbong times. This implies the existence of long-time noner-
they have an intermediate phase-space dimensionality, amgbdicity in passive particle motion, where averages over en-
are appropriate for describing advection in vortex dominategembles of different advected particles differ from time av-
flows. As we show below, the dynamics of systems of manyerages over single-particle trajectories. In turn, this may lead
point vortices displays properties of both stochastic model$o long lasting differences between Eulerian and Lagrangian
and low-dimensional chaotic advection, and provides a useaverages and the possibility of non-BrowniGanomalous

ful bridge between high-dimensional stochastic models andispersion. In the following, we explore in detail some of
low-dimensional chaotic advection. these issues.

The remainder of this paper is organized as follows. Sec- In this work we use periodic boundary conditions be-
tion 1l contains an introduction to the dynamics of point cause it is the only domain that has the needed properties. A
vortices, Section Il addresses the central limit theorem forclosed domain has a finite maximum separation and is thus
point-vortex systems and considers the statistical propertiesot suited to study long-time dispersion properties. This
of ensembles of point vortices. In Section IV we discuss thdeaves the infinite plane, the periodic plai2etorug, and the
statistical properties of long time-integrations of systems ofsphere. The infinite plane is unsuitable because motion is not
100 point vortices, and study the behavior of both the vorti-homogeneous with a finite number of vortices. On a sphere,
ces and of passively advected particles. In Section V wehere is ho unique way to count the number of times a par-
study single-particle dispersion in point-vortex systems andicle travels around the domain, and thus the sphere does not
compare with the dispersion of an ensemble of randomhallow a satisfactory definition of particle dispersion at long
moving particles described by the Ornstein-Uhlenb@@kl)  times. Thus the only boundary condition which meets our
stochastic procegsFinally, in Section VI we present conclu- requirements is that of the periodic domain. In addition, most
sions and perspectives, and discuss a possible alternative sgimulations of homogeneous turbulence use these boundary
chastic model for describing advection in point-vortex sys-conditions.
tems. The Green functiorG for point vortices on a periodic

domain with length 2 may be written &%’

1. POINT-VORTEX DYNAMICS Sl )= g ] cosl(xi—xj—Zﬂ-m)—Cos{yi—y]-)
Point vortices are singular solutions of the Euler equa-~ """ """ £ cosh27m)

tions in two spatial dimensions. The dynamics of an en- 5

semble of point vortices is described self-consistently by a _ (X —x) &)

system of equations that take the noncanonical Hamiltonian 2w

form

The functionG can be shown to be periodic nandy, and
dx;  oH dy; dH invariant under the transformatio=y. The velocity of the

Fige = ay;’ gt =- ax;’ D ith vortex resulting fron(1), (2), and(3) is a sum over the
wherex. = (x; ,y;) is the position of thé-th vortex with con- velocities induced by each of the other vortices:
stant circulationl’;, H is the Hamiltonian N % :
N u _z r E —sin(yi—Yj)
T, e TS coshx—x;—2mm)—cogy;—Y;)’
HxD== 2 —5* Glx.x), el F - Ry
ij=1 2 ( )
P#] N " _
N is the number of vortices, and the form of the Green func- ;.= >} T Sin(xi — X)) ,
tion G depends on the boundary conditidisThe positions =1 m==e coshy; —y;—2mm)—cogX;—X;)

X; andy; play the role of noncanonically conjugate variables,
the number of degrees of freedom is equal to the number afthereu;= (u; ,v;) = (dx; /dt,dy;/dt). The dynamics on the
vortices, and the dimensionality of the phase space is twicperiodic domain has two invariants, the components of the
the number of vortices. The number of independent conlinear momentum, corresponding to translation parallel to the
served quantities dfl) and(2) also depends on the boundary x andy axes;P,==N .Ty; and Py:2i’“= ,Iixi. Angular
conditions, but it is always finite and small. Hence, an asimomentum is not an invariant because the periodic boundary
sembly of more than a few vortices behaves chaotically. conditions break the rotational symmetry. The invarigts
Passively advected particles are easily incorporated iand P, are independent only if the total circulatiafl’; is
point-vortex systems. A point vortex with zero circulation, zero? In this case, the motion is chaotic for>3.
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Ill. POINT-VORTEX CONFIGURATIONS 1

In this section we discuss the properties of instantaneou:
configurations ofN vortices. We restrict ourselves to con-
figurations with zero total circulation and an equal number of
positive and negative vortices.

First consider the velocity induced at a poing
=(Xq,Yo) by a single vortex ax;. In the limit r =|x;— X
—0 the velocity(4) asymptotically approaches the velocity
generated by a single vortex on the infinite domaif/r2
[Note that with the choicé3) for the Green function, the
timescale differs from that usually used on the infinite plane 0.01
by a factor of 4r; hence the velocity from a close vortex is
here a factor & greater than the expression usually used on
the infinite domairt’] At larger distances from the vortex,
the domain periodicity modifies this simple form of the ve-
locity. In practice, the velocity on the periodic domain de-
parts significantly from the infinite plane result only for sepa- 0.001
rations greater than approximately one sixth of the domain.

Next, consider the probability density functigpdf) for 0 > . 6 8 10
the velocity resulting from a single vortep,(u). This has u
been .St;.lgdled In detfal_l by Miet al.in the_ case of the infinite FIG. 1. Probability density functiopy(u/oy) for the instantaneous veloc-
domain<® If the pOSItIOI’] of the vortex is chosen at random |[y u produced by N rand0m|y p|aced vortices, scaled bVN
from a uniform distribution, then the high-velocity limit of =N InN2z. Solid lines arepy for N=1C?, 10", and 16. Dashed line is
p; is easily calculated. Since the probability of having sepa? Gaussian pdf with unit variance and amplitude 0.9. The inset shows same
ration between andr +dr is 2rdr, and since for smali  curves on log-log axes, along with the dotted lind/u°.
the velocity scales as ri/then for large |u|, p;(u)
~p(r(Jup))|dr/d]ul|~1/u|®. This scaling for large veloci-
ties is independent of the boundary conditions, as the bound= VN In N/27r. Figure 1 shows howpy(u/oy) asymptoti-
aries are irrelevant at sufficiently small separations. The decally approaches a normal distribution. Due to symmetry,
tailed form of the distribution for smalldu| does, however, Pn(U)=pn(v) and these two distributions have been com-
depend on the specific form offor a periodic domain, and bined into a single pdf. Furthepy is even and we combine
it depends on the direction of as well as its magnitude. positive and negative velocities. A least-squares fit of the

Since we are interested in the dynamics of systems o$mall velocity portion of the distribution to a Gaussian pro-
several point vortices, we now consider the velocity inducedVides a variance of approximately orias expected foN
at a point by a system dfl vortices with|T';|=1. This ve- ~—) and an amplitude 0.9 of that of a normal distribution.
locity is merely the sum of the velocities due to each vortexOne sees that even though the central limit theorem formally
separately. If the vortices are randomly placed, then the veapplies, the convergence is extremely slow and even for
locity is the sum ofN random numbers, and its pgf,(u) is  1arge N, py has significant high-velocity tails. Further, the
determined byp,(u). For functionsp; which decay suffi- small-velocity part oy is well approximated by a Gaussian
ciently rapidly, the central limit theorem applies apg ap-  With the asymptotic variance, but with amplitude less than
proaches a Gaussian. Most statements of the central lim@ne due to the significant fraction of events contained in the
theorem require that the variancef be finite. Here, since high-velocity tails. In what follows, we show that both the
p;~ 1/|u|® the variancef|u|?p;(Ju|)d|u| diverges logarith- ~Gaussian portion of the pdf at small velocities and the high-

mically. However, this divergence is sufficiently slow that velocity tails play an important role in the advection process.

0.1

Py (Waopy

the central limit theorem still applies and Ws-o, py does In the remainder of this paper we focus on systems of
become Gaussian. For more details, see the Appendix, Mih00 point vortices. Similar results are obtained with other
et al,?® and Ibragimov and Linnik® values of N between about 10 and a thousand. From the

For large but not infiniteN, the velocity pdf of an en- perspective of dynamical systems, an ensemble of 100 point
semble of vortices displays interesting properties. For distrivortices has a 200-dimensional phase space; it is thus quite
butions with finite variance, the convergence to a Gaussian i8igh dimensional. However, it is still reasonable to numeri-
quite rapid. For example, ip; were constant over a finite cally integrate the equations for significant times. From the
region and zero elsewhere, theg is quite close to Gaussian Perspective of the central limit theorem, due to the slow non-
even forN=5. However, for distributions with slowly di- Nnormal convergenceé\ =100 is not large enough fquqo to
verging variance, such as the case here, the convergence t®& completely Gaussian.

Gaussian is slow and is called “nonnormaﬁg’For nonnor- We next consider several different initial configurations
mal convergence, the variance of the sum scales differentl9f the N vortices. The circulations of the vortex populations
than the normal case. In the Appendix we show that for poinare characterized by, the average of the absolute value of
vortices the variance of the asymptotic Gaussianoj¢ the individual circulations. We focus on configurations with
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FIG. 2. Density of states as a function of energy fof tindom configu-  FIG. 3. Scatter-plot of instantaneous vortex speed versus nearest neighbor

rations of 100 vortices. Dashed lines indicate two arbitrary initial condition distance for all vortices in 300 randomly chosen configurations. The dashed

used for long integrations. lines indicate the speed induced by a single vortex with the smallest and
largest circulations in the population.

I'=1, and with random individual circulations uniformly dis-

tributed in the range OI8<|I'j|<1.2I". The variation in the . .
C g : ever, given the slow convergencemy§, two-vortex interac-
individual T';’s is included to break any symmetry in vortex . . :

tions will be important even for very largs.

pair interactions that may arise in a system with identical
|T';|’s. For each configuration, the initial vortex positions are
randomly chosen in the square dompin27]?. For simplic-  IV. LONG-TIME INTEGRATIONS

ity we only consider initial conditions witfP,=P,=0. : . . .
e ) . . In this section we focus on the phase-space trajectories
The set of initial configurations discussed above can

I _ 2 . Obtained by a relatively long-time integration of the two ran-
have a range of energiel=H({x})/4=". Close opposite domly selected initial configurations indicated in Fig. 2.

sign vortex pairs give a large negative contribution to the‘l’hese initial configurations havii—100 vortices andN
energy, while close same-sign pairs provide a positive con- p

tribution. Thus, depending on the random initial positions of_ 100 passives. The configurations were integrated dntl

; . =30 using a fourth-order Runge-Kutta method with fixed
the vortices, the energy of the system may take different; 5 " "
. . . ime stepAt=10"". The positions and velocities of the vor-

values. In Fig. 2 we show the density of states, i.e., the num- 5
tices were saved evetyt;=10 °.

ber of states with energy in a given interval, obtained from The Cartesian velocity ndfs. averaged over time and all
10* different realizations of the initial vortex configurations ) € Lartesian velocily pais, ? eraged ove ) € and a
described above withi=100. This distribution has a mean Vortices, denoted bp(u), are obtained by measuringand

of —0.076, a variance of 1.18, and a skewness coefficient df for all vortices evenAts throughout the integration; again,
0.85. In the following we integrate the motion of 300 randomfrom symmetryp(u) =p(v)=p(—u)=p(—-v) so +u and
configurations extracted from this ensemble for a relatively*v are combined into a single pdf. The pdfs for the vortex
short time,T=0.1. The two vertical dotted lines indicate two and passive velocities in each of the two solutions are shown

arbitrarily chosen configurations that have been integratet Fig. 4. The central part of each pdfj| <20, is well ap-
for a much longer timeT = 30. proximated by the same Gaussian which fits the central part
The relationship between vortex speed and nearestf Pioo; it has the theoretical asymptotic widtlrigo
neighbor distance for all the 100 vortices in the 300 ran-= V100 In 100/27~8.56 and amplitude 0.9 of a Gaussian
domly chosen configurations is seen in Fig. 3. Large speed4ith unit normalization. Thus the vortices and passives in the
are associated with close nearest neighbors. From this w0 solutions all have the same small-velocity pdf as each
may conclude that the high velocities in the tail of the pdfsother and as an ensemble of random initial conditions.
are due to the presence of a single close vortex and not to the The high-velocity tails ofp for the two solutions are,
superposition of the contributions of several different vorti-however, significantly different. One solution has a signifi-
ces. Thus, high-velocity tails ip;o, are essentially two- cant excess ovas o at large velocities, while the other has
vortex phenomena and not many-body effects. This implies deficit. Note that both solutions, however, have a deficit at
that in the limit N—oo, as the tails ofpy disappear, the extremely large velocitiesi=250~300,. The pdf with

importance of two-vortex interactions goes to zero. How-
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0.1 : : , : | FIG. 5. Velocity autocorrelation functioR(7), Eq. (5), for the two long
] integrations. Solid lines are the vortices, dashed lines are the passives. The
dotted line is the exponential which best fits the average of the vortices and
passives, and has a decay timeTpf= 0.09.
0.01 | .
27N from another vortex to rotate in a complete circle, is
approximately 0.4. Another measure of the eddy turnover
time is (EI'?)Y?~0.1. ThusT is O(100) eddy turnover
0.001 | ] times. A completely different measure of the length of the
s integration is that in a time of the particles travel around
=% I\ . . . . . . .
3, the basic periodic domain several times. All of this indicates
\ that the correlation time for the tail of the pdf is very long,
0.0001 - ! ] and that the point-vortex system displays a very long
| memory with an associated lack of ergodicity over large, if
:Ilﬁ‘:mlﬂ, , not infinite, time intervals. While this is consistent with what
\ ':E’-ié‘k'”‘l\hi L ] has already been observed for systems of a few point
Te-05 'w‘.lﬁl i ?‘f ! lﬂ ] vortices'®?’ it is somewhat surprising that this phenomenon
F . :"}G:' i 1 : prising P
- : ' =‘ il i: 1k bl 1 persists in a system with so many degrees of freedom.
P AT '1' Lt M Ll A standard statistic for studying velocity time series is
o 0 50 100 150 200 250 300 the Lagrangian velocity autocorrelatiét( 7),
u
(u(t)-u(t+7))
R(7m)= (5

FIG. 4. The velocity pdf averaged over time and particgss), for (a) the

(lum?)
vortices, andb) the passives. In each panel, the two solid Ilnespiua for
the two long integrations discussed in the text, the dotted line is a Gaussiawhere (---) represents an average over time and over par-
with variances ;o and amplitude 0.9 and the dashed lingigu), asin ticles. The autocorrelations from the long phase-space trajec-

Fig. 1, but with the same sample sizems tories for the two populations of vortices and passives are
shown in Fig. 5. As in the pdfs, there is no significant dif-
ference between the vortices and passives. After a very short

smaller tail in the vortices comes from the same integratiorperiod with steep decay, the autocorrelation of the vortices

as the pdf with the larger tail in the passives, and vice versaand passives follows an exponential extremely well. For

This is not significant, and is merely the result of picking greater than those shown in the figur¢ ) oscillates around

only two random initial conditions. zero. The Lagrangian decorrelation time of the phase-space

The lack of convergence of the pdfs over the time of thetrajectories, T, , is estimated by fittingR(7) ~exp(—7T,)

integration T indicates thatT is not long enough for the for the periodr=0.02 tor=0.2, givingT, =0.09=0.01. A

system to forget its initial conditions. By other measurestheoretical estimate of the order of magnitudelpfcan eas-

however,T is very long. A typical eddy turnover time, esti- ily be obtained by assuming that is the time it takes for a

mated as the time for a vortex at a typical vortex separatiowortex moving at a typical velocityory=+/N In N/27 to
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FIG. 6. Individual particle trajectories from the long integratio(®:a fast vortex, where the period of fast motign|> 70, is shown in bold(b) a slow
vortex; (c) a slow passive; angt) a stochastic particle governed by the Ornstein-Uhlenbeck proces&)Efhe trajectory of the fast vortex appears not to
be smooth because of the finite plotting intervst, .

cross a distance equal to the typical vortex separatioparticle trajectory of a randomly selected passive particle.
27N; this estimate givesT ~(27)¥4¥N.InN~0.07, The particle trajectories of the slow vortex and the passive
quite close to that effectively observed. Note also that theare qualitatively similar, although the passive does have
common method of estimating the Lagrangian integral timemore tight loops, indicating that at those times it is close to a
scale,T,= [gR(7)d7, provides misleading results becausevortex. The particle trajectory of the fast vortex is qualita-
the very long memory of the system implies that extremelytively different than the other two.
long integration times are needed to reliably calculgte The time series of the speed of the fast vortex, Fig. 7,
Individual vortex and passive trajectories, some ex-shows clear bimodal behavior with the vortex jumping be-
amples of which are shown in Fig. 6, are in general quitetween slow and fast episodes. A time series of the distance to
complex. The first two panels of Fig. 6 show examples of arthe closest vortex and its identity, Fig. 8, shows that episodes
intermittently fast moving vortex and of a vortex randomly of extremely fast motion coincide with the vortex being close
selected from the population of vortices with moderate averto another, oppositely-signed, vortex, i.e., it is a member of a
age speed. The single fast vortex shown in Fi@ @om-  close dipole. These episodes start and end with changes in
prises 33% of the extreme tdilelocity greater than k809  the identity of the close vortex. Furthermore, the three sepa-
of the velocity pdfp for its integration. Figure @) shows the rate fast episodes are separated by extremely short periods of
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FIG. 9. Ratio of the distances from the fast vortex shown in Fg) ® its

. L second and first nearest neighbors.
slow motion where the closest vortex is significantly further

away and changes identity rapidly. The ratio of the distance

of the second closest vortex to the distance of the closesfy tex has the same identity and there is thus a temporary
vortex, Fig. 9, demonstrates that the fast episodes are primgs ae_vortex bound state

rily the result of close dipoles. However, note that during the  gofore closing this section, we note that we have not

period fromt~ 22 tot~24 this distance ratio is smaller than detected any significant difference between vortex and pas-

dur?ng other fast periodgbut St”,l Ia_rger _than during SIOV‘_’ sive statistics, in the sense that the internal variability in each
periods, and there are small oscillations in the nearest nelghbf these populations is by far larger than any difference be-

bor distance(Fig. 8). Analysis of the individual vortex tra-  yyeen vortices and passives. This is not too surprising if we

jectories shows that during this period the second closestysider that the contribution of each individual vortex to the

total vorticity field is rather small foN= 100, and each in-
dividual vortex in the collective field of the other vortices
behaves similar to a passive. Significant differences do exist,
however, in strong two-body interactions: Close vortices ac-

celerate each other and may undergo episodes of fast dis-
1.2 1 placement, while passives trapped in the vicinity of a vortex
do not influence its motion.

i 4 When passives are close to a vortex, they spin with large
velocity and create high-velocity components in the pdf.
Moreover, passives close to a vortex tend to remain associ-
ated with it for very long times, both on the infinite pldhe
and in periodic domain® The presence or absence of high-
06 F ‘ i velocity “bumps” in the pdf is thus entirely determined by
| the initial conditions, i.e., whether or not the system happens
to start with close passives. Only by integrating for times
much longer than the trapping time is it possible for the time
average pdf to converge to the ensemble average pdf, an
02 r issue which is related to the possible nonergodicity of pas-
sive particle motion in point vortex systertfsAt present, it
o , , , : is unclear whether the trapping islands around the vortices
0 5 10 15 20 25 30 have a time-asymptotic nature or disappear at filitet
long) time. Preliminary runs of few-vortex systefishave
FIG. 8. Nearest neighbor distance for the fast vortex shown in R&@. 6 shown that the trapping islands exist up to at le¢asB000.

(lower curvg. The identity of the nearest neighbor is shown in the upper gy, comnarison, bound states of vortex couples tend to live
curve: a line at 1.3 indicates a same-sign nearest neighbor, a line at 1,

indicates an opposite-sign nearest neighbor, and the line jumps to 1.2 eve 9r much shorter t_imeg. )
time the identity of the nearest neighbor changes. When a passive is close to a vortex, it thus behaves

14 T T T T T

nearest neighbor distance

04
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similar to the vortex with which it is linked, with an addi- 1 T ey
tional fast rotational component. Whenever the vortex under- .
goes a fast displacement due to vortex dipolar coupling, the
trapped passive does as well. A detailed theoretical compari-
son of the long-time displacement statistics of vortices and
passives should thus carefully evaluate the probability that a 01k
passive be trapped near a vortéxhich is related to the
initial conditions and determined mainly by geometric fac-
tors) and the lifetime of vortex—vortex and vortex—passive
couples. On a purely heuristic basis, the present simulations;
have shown no detectable differences between the gross ste™
tistical behavior of vortices and passives, at least on the time
scales we have considered.

0.0t |

V. PROPERTIES OF SINGLE-PARTICLE DISPERSION 0.001 L

In this section we study the properties of single-particle
dispersion in point-vortex systems. A classic stochastic
model for describing the motion of advected particles is the ) 1
Ornstein—UhlenbeckOU) proces$! scaled displacement

- idt-l— Tou dw (6) FIG. 10. Probability density function of displacements(7) scaled by the

T, WZ ! OU expected displacemeat,, , Eq.(7), for 7=0.01,0.02,..,0.09, from the
300 short integrations. The dashed line is the OU Gaussian. The inset shows
the tails for7=0.01 (upper solid curvieand 0.09(lower solid curve.

dx=udt, du=

whereW is the Wiener process, artlW is a Gaussian ran-
dom increment with (dW)=0 and (dW,(t)dW(t"))
=26, z0(t—t")dt, where(: --) indicates an average over an
ensemble of independent realizations, and Greek subscripen. The velocity pdfs averaged over all initial conditions, as
indicate vector components. The OU process is characterizegell as the time and initial condition averaged pdfs, are equal
by two parameters: a velocity scatg,, which determines to p,q,.

the variance of the velocity pdf, and a timesc@jewhich is We now compare the vortex displacementsx(r)

the Lagrangian decorrelation time of the exponential velocity=x( ) — x(0), with the displacements of the OU process. As
autocorrelatiorR,(7) =exp(—#T.). Recently, the OU pro- s usually done in the study of systems with periodic bound-
cess has been used to model single-particle dispersion in tegy conditions, we compute displacements from the unfolded
atmosphere and the oce¥n. trajectories, i.e., by taking into account the number of times

Here, the OU process is a very natural choice for a stoa particle has wound around the periodic dortaigain,
chastic model. As we have already seen, the velocity pdf hague to symmetry, we can combineandy displacements.

a significant Gaussian component, leading us to pick §he OU process has displacements with a Gaussian pdf
Gaussian process. Additionally, the Lagrangian velocity auwhose widtho , is

tocorrelation has a period of exponential decay, which leads
to the OU process. Furthermore, the two parameters of the
OU model have already been determined,= o195~ 8.56
and T, =0.09. The major failure of the OU process is that it
does not capture the high-velocity tails of the vortex pdfs. AThe pdf of vortex displacements at time delagan be com-
trajectory of an OU particle with these parameters is showmpared to the OU pdf by scaling each vortex displacement by
in Fig. 6(d). The large-scale motion is similar to that of a the aboveo,,(7). The resulting set of pdfs, as obtained by
slow vortex or passive, but the small-scale motion has moreonsidering all 100 vortices for all 300 initial configurations,
sharp turns instead of small loops. are shown in Fig. 10 for time delays=0.01,0.02...,0.09.

The OU process may thus give a framework for analyz-This figure shows that for small displacements the pdfs agree
ing the time evolution of the vortex statistics, at least for thewith the OU result. However, there are significant large-
slow portion of the vortex population. This is in contrast to displacement tails, which are largest for small times, and
the application of the central limit theorem in Sec. I, which decrease as increases.
only refers to single instants in time. To explore similarities  To identify the origin of the large-displacement tails, in
and differences with the OU process, relatively short-timeFig. 11 we show the displacements &t 0.05 versus the
integrations, untilT=0.1, were performed on 300 initial nearest neighbor distance, for both same-sign and opposite-
conditions chosen randomly from those shown in Fig. 2sign neighbors. The large displacements are associated with
Each initial condition has 100 vortices and 100 passivesclose opposite-sign vortices, i.e., a vortex dipole, while there
This data set is thus the same size as a single long integr&s no correlation between large displacements and close

T

a’ix( T)= 20'§UTE T

+e—T/TL—1>. (7)
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FIG. 11. Scatter-plot of displacemefik(7), 7=0.05, versus average near-
est neighbor distance over the time period(@ropposite-sign pairs, an)
same-sign pairs in the 300 short integrations. The solid linéjins the
displacement of a single dipole on the infinite plane with= 1.
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sign couples rotate rapidly about their center of vorticity, and
otherwise behave similarly to a single vortex with larger cir-
culation. Thus, they contribute to the high-velocity tails, but
do not contribute to the large-displacement tails. Similar re-
sults are observed for the passive particles, with the usual
caveat that when passives couple with a vortex they do not
affect its velocity, but they can be trapped in the vicinity of a
vortex undergoing fast dipolar motion.

We next turn to the temporal evolution of the average
vortex and passive displacement, i.e, to absolute or single-
particle dispersion. The single-particle dispersion of a system
of moving particles is defined as

AZ(7,) =((X(t+7) = X(1))%),, (8)

where(---),, indicates an average over the ensemble of par-
ticles. When the particle motion is statistically stationary, as
is the case hereA? becomes independent of The finite-
time dispersion coefficient is defined B 7)=A?/2r. For
motions in differentiable velocity fields, the short time dis-
persion is ballistic, i.e.A?(7)x 72 for 7<T, whereT, is the
Lagrangian integral timescale, defined as the integral of the
velocity autocorrelation. IT, is finite, then at large times the
dispersion becomes Brownian-like, i.82(7)~ . The usual
dispersion coefficient is thus defined in the infinite time
limit, D=Ilim__,.. D(7).

For the OU process, the appropriate ensemble of par-
ticles is a collection of independent realizations of the
Wiener process. The diffusion coefficient then becomes

T(1-e 7L

Dou(T):za'guTL 1_¥ ) 9)
which has the infinite time IimiD0u=20c2,uTL.

For the point-vortex system, the appropriate ensemble in
Eqg. (8) is the collection of vortices or passives at a single
time in a single integration. As for displacements, dispersion
is calculated using unfolded trajectories. The four resulting
diffusion coefficients are shown in Fig. 12. There is no sig-
nificant difference between the vortices and passives, and
thus the best estimate is obtained by averaging the four dif-
fusion coefficients. The diffusion coefficient for the OU pro-
cess, Eq(9), is shown for comparison. Also shown is the
expected error of the mean for four ensembles of 100 OU
particles, which is calculated with standard statistical meth-
ods. For short times,<0.1~T, , the OU process captures
the dispersion reasonably well. For intermediate tim@gs,
=t=<2~20T_, the OU process overestimates the dispersion.
For long timest=20T, , the diffusion coefficient appears to
grow beyond that of the OU prediction. This anomalously
large single-particle dispersion is presumably due to the tails

same-sign vortices. Further, the value of the large displacén the velocity pdfs and large displacements of long-lived

ment is well predicted by the motion of an isolated dipole.

close dipoles. It is an interesting question, which remains

We can conclude that the small displacements are esseannanswered at the moment, whether the single-particle dis-

tially a mean-field process, in thé&l) they are due to the
action of many other vortices an@d) they are well captured

persion becomes Brownian at very large times in point-
vortex systems.

by a stochastic model such as the OU process, which is
known to work well for extremely high-dimensional systems
such as Brownian motion. On the other hand, the large dis-
placements are essentially due to two-body interactions,

VI. CONCLUSIONS

In this paper we analyze the Lagrangian dynamics of

namely, temporary coupling of opposite-sign vortices. Samevortices and passives in high-dimension&l=0(100),
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the pdf of particle displacements. The small displacements
scale approximately as in the OU model, but the large dis-
placements show no such scaling due to close dipoles. At
very short times, of course, the displacements exhibit ballis-
tic scaling, withD (7)o 7. After the first significant loss of
velocity correlation, at~O(T,), the OU model captures the
average dispersion reasonably well. At later times1—5,
the OU model overestimates the single-particle dispersion,
and at very large timeg,>20, the OU model appears to
underestimate the dispersion. This suggests that the diffusion
coefficient may continue to increase resulting in long-time
anomalous dispersion, rather than saturate as in the OU
| AP model around a time o®(10T ).
N4 = ] It may be possible to construct a new stochastic process
’ that includes both the Gaussian slow vortices and the long-
lived, close, high-velocity pairs. The slow vortices would be
modeled as an OU process. Since the close same-sign pairs
rotate in place, these vortices should be modeled by a pro-
cess that has negative velocity correlations at very short
0 5 10 15 20 25 30 times. The close dipoles travel large distances, and could be
* modeled by a Ley walk.33 In previous studies of point vor-
FIG. 12. Diffusion coefficienD(7) from the two long integrations for the  tices, Viecelli found anomalous relative dispersion at short
vortices(thin solid curvey, passivesthin dashed curvesand the average of  times, which he explained as'uy; walks 3435
thg four (thick solid curve. Also shown is the OU diffusion coefficient In order to create a combined stochastic process one
(thick solid smooth curyeand the envelope of expected error for four en- . . . . .
sembles of 100 OU particleghick dashed curves The inset shows the would need information about the close-pair dynamics. This
same curves for short times. information could be condensed into two joint pdfs and two
scalar probabilities: the joint pdfs of close-pair velocities and
lifetimes, separately for the dipoles and same-sign pairs, and
point-vortex systems. We find that the behavior can be unthe transition probabilities for switching from OU motion to
derstood by partitioning the system into two componefils: close dipoles and same-sign pairs, i.e., the probabilities for
mean-field behavior resulting from the collection of distantclose-pair formation. We already know that the pdf for close
vortices, and2) high-velocity behavior resulting from close pair velocities, which is related to the joint pdf by integrating
pairs (and, occasionally, triplets or mgre over lifetime, scales as™ for largeu. If we are only con-
The partition in the statistical dynamics is due to thecerned with displacements, then the same-sign pairs can
slow, nonnormal convergence pf;. In the limit N—« the  probably be absorbed into the OU component, since their
velocity pdf is Gaussian and only mean-field behavior occenter of vorticity moves as a single vortex. If we wish to
curs. The mean-field behavior is well modeled as ammodel the velocities, however, then the fast rotation of the
Ornstein-UhlenbeckOU) stochastic process. This part of the same-sign pairs is important.
dynamics has a short correlation tinig,=0.09, which can With this information one could construct a stochastic
be estimated by simple arguments based on the turnoveigorithm in which particles move with OU random walks,
times for average vortex separation. However, due to thend, at particular instants, have some probability of becom-
1//u|® behavior of the velocity pdf for a single vortex at large ing members of a dipole or same-sign pair. Once a member
lu], the convergence to the Gaussian implied by the centradf a dipole, the particle moves for some time at a constant
limit theorem is extremely slow witlN, and the variance of velocity in a random direction, with the time and velocity
the Gaussian component scales\A¢ In N rather than the chosen from the joint pdf. Once a member of a same-sign
more commonyN. pair, the particle has a high oscillating velocity for some
The slow convergence is important for physically rel-time, plus a slower OU random-walk velocity, again with the
evant, large but finite, values &f, where there is a signifi- time and velocity chosen from the joint pdf. Because of the
cant, non-Gaussian, high-velocity tail in the pdf. This high-long correlation time of the close pairs, obtaining a good
velocity tail has a very long correlation time. Close pairsestimate of these joint pdfs would require significantly
typically last for much longer thai, ; indeed, they can last longer integrations than we have done here; therefore, we
so long that even our longest integrationsQqf300T, ), do  will not propose here an explicit form for the new stochastic
not yield reliable statistics for the distribution of pair life- model.
times. These long-lived pairs exhibit nonergodic behavior for  How relevant is the range df we study here for geo-
at least the time of our simulations, which is consistent withphysical flows? The number of coherent vortices is not well
previous evidence for long-time nonergodicity with only a known in nature, since they are often hard to detect by con-
few point vortices:®2 ventional measurement techniques; for example, the vorticity
As a result of the high-velocity tails, the OU process or potential vorticity fields are usually poorly sampled. How-
does not accurately capture the single-particle dispersion arel/er, we can estimate an upper bound on the number of
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coherent vortices in the large-scale geostrophic regimes dfiffusion coefficient continues to grow with time, then for
the atmosphere and ocean as the ratio of total area to a tygimes much longer than these simulations, eddy diffusion
cal vortex area, neglecting any stacking in the vertitale  will fail.
do not consider the ageostrophic, smaller-scale regimes, for
Whi_ch 2D vortex_dynamics_ are pr_obably less relevadt.  ACKNOWLEDGMENTS
typical geostrophic vortex size is given by the Rossby radius
of deformation, which, at midlatitudes, is approximately 30  The numerical computations of this work have been car-
km in the ocean, and 1000 km in the atmosph&fEhe total  ried on at the computing center of the Istituto di Cos-
areas of the ocean and atmosphere are about B%km? mogeofisica, Torino, Italy, and at the Laboratory for Compu-
and 5x 10° km?, respectively. Thus, if the area were filled tational Dynamics of JILA, University of Colorado, Boulder.
with closely packed vortices, which is certainly not the caseJ.W. is partially supported by NSF ECS-9217394 and
the ocean would hav®(10°) vortices and the atmosphere DOC NA56GP0230. A.P. is grateful to JILA for support and
would have onlyO(10?) vortices. From Fig. 1 we see that hospitality during the final part of this work. Support from
with this upper bound even the ocean would not be in thghe EC Contract No. EV5V-CT94-0503 is gratefully ac-
infinite N regime and the tails of the pdf would be important. knowledged.
Thus, the behavior described in this paper is representative
of what we expect from the number of coherent vortices i”APPENDIX: THE CENTRAL LIMIT THEOREM EOR
the atmosphere and ocean. POINT VORTICES

The point-vortex system is only an approximation to the
dynamics of coherent vortices in geophysical flows. True In this Appendix we show that in the limMN—-co the
coherent vortices have a finite core size and a finite lifetimeYelocity probability density functior(pdf) for the velocity
even though the former is often small and the latter larg&lue toN randomly placed vorticeq)y, becomes Gaussian
compared to many geophysical phenomena. The existence fth varianceoy= N In N/27. The calculation is based on
a finite core does not significantly affect the dynamics oftheorems regarding random variabféghe fact thatpy be-
passive tracers, as shown by simulations of two-dimensiondlomes Gaussian was mentioned previously by kfiral;*®
turbulence’?1%17 Since extended coherent vortices effec-the value of the variance is, to our knowledge, new.
tively retain the matter in and near their cores and can travel The relevant theorems discuss the behavior,f the
long distances over their long lifetimes, they can have consum of N independent identically distributed random vari-
siderable influence over large-scale material transports, sim@blesx; with pdf F(x), scaled by a factooy:
larly to what happens for point vortices. On the other hand, XpH Xy
the dynamics of the vortices themselves may be affected by zy= .
the presence of a finite core. In particular, same-sign vortices
can merge, a process which is not included in point-vortexf in the limit N—oc the pdf for zy converges weakly to
dynamics. Although a full answer to the impact of finite some distributionG, thenF is said to be in the domain of
cores can only come from simulations of extended vorticesattraction ofG. The family of distributions which have non-
we note that many of the specific Lagrangian properties disempty domains of attraction are called vyedistributions
cussed here are mainly determined by the behavior of closand are identified by an index, 0<a<2; a=2 corre-
dipoles. These still exist, with similar properties, in the casesponds to the normal distribution, ard=1 is the Cauchy
of extended vortices, suggesting that the results found herdistribution?>3* Here we shall only be concerned with
for point vortices which are due to dipoles may be more=2.
general. Future studies will address the properties of La- Ibragimov and Linnik® prove thatF belongs to the do-
grangian transport in systems of coherent vortices with exmain of attraction of the normal distribution if and only if the
tended cores and in punctuated point-vortex dynamics wherguncated second moment
instantaneous merger is allowed. X

In this paper we have demonstrated several differences |(x):J X2F(x)dx (A2)
of vortex systems from random walking. On the other hand, X
aspects of the overall dispersion behavior seen in Fig. 12 aig slowly varying in the sense that
grossly captured by simple OU diffusion on times very large
compared toT_ . Thus, we see this study as giving some m:
further degree of support for the common practice of param-  x_.. 1(X)
eterizing large-scale transports as eddy diffusion. In this con; .
text, the eddy diffusion coefficient is a function of the coher-!cor ".’l” t. They furthe_r show that the scaling of the sum,,
ent vortex population obtained from Ed9) with o, is given by the requirement that
replaced byoy, D=NT, In N/7. Thus, one may be able to ~ Nl(eoy)
obtain a time-varying eddy diffusion by observing how the ~ lm ——>—=1, (A4)
vortex population changes over time. However, it may even- - N
tually turn out that the quantitatively significant differencesfor somee>0. As written, Eq.A4) assumes thd& has zero
between vortex dispersion and stochastic diffusion imply amean which is the case of interest herefithas nonzero
significant qualitative difference as well. For example, if themean then another term is needed in the equation.

(A1)
ON

1 (A3)
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Here,p;(u) takes the role of-(x), wherep,(u) is the It is now straightforward to verify that(X) is slowly vary-
pdf for the x-component of the velocityy, produced at the ing in the sense 0ofA3), and thusp, is in the domain of
origin from a point vortex with unit circulation placed at a attraction of the normal distribution. Further, the requirement
random position in the periodic domdir- 7, 7]2. Since the (A4) is satisfied by

velocity is a vectou= (u,v) described by a joint distribution NN
N In
oON~— 2 .

p(u,v), p; is obtained from (A10)

pa(u)= Jlmp(u,v)dv. (A5)  Thus, in the limitN—c, py is Gaussian with variance,, .
Because this result only depends on the explicit form &dr
Due to symmetry the pdfs far andv are identical and we small separations, it is independent of boundary conditions.
need only consider one of them. It is sufficient to only con-
sider vortices with positive circulation since changing the
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