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Climate variability has significant human impact but is
difficult to model and predict. Recent theoretical develop-
ments in nonequilibrium statistical mechanics cover a class
of stochastic models often used for climate phenomena. The
theory for a coarse-grained entropy production is developed
for simple stochastic climate models and applied to observed
tropical sea surface temperatures (SST), demonstrating that
nonequilibrium properties can be quantified with climate
datasets, and that tropical SST variability is approximately
consistent with fluctuations about a nonequilibrium steady-
state with relatively few degrees-of-freedom. Fluctuations
with negative entropy production demonstrate that seasonal
tropical SST variability is small and fast in a thermodynamic
sense, indicating that nonequilibrium fluctuation theory is
applicable. This work demonstrates that nonequilibrium
theory can address climate-scale phenomena, suggests that
it could provide insight into how climate change will affect
climate variability, and perhaps provide a fundamental the-
ory for variability of the climate system.

1. Introduction

The climate system self-organizes into many distinct
recognizable features such as El-Niño, the Atlantic Gulf
Stream, and the mid-latitude storm tracks. While the mean
state of these features is reasonably well captured by com-
plex coupled global climate models, their variability is typ-
ically more difficult to capture in models, is poorly under-
stood from a theoretical perspective, and yet has large hu-
man impacts [Solomon et al., 2007; Min et al., 2005; Zhang
and McPhaden, 2006; Wunsch, 2008; van Oldenborgh et al.,
2005; Collins, 2005; Spencer et al., 2005; Greeves et al., 2007;
Ulbrich, 2008]. Simple stochastic climate models provide
predictions of some climate phenomena that are on par with
detailed dynamical models [Newman et al., 2003; Saha et
al., 2006]. Recently, it has become clear that these mod-
els implicitly assume that the variability of climate features
is a manifestation of fluctuations about a nonequilibrium
steady-state [Weiss, 2007]. This leads one to consider the
application of the statistical mechanics of nonequilibrium
systems to climate variability. Here we consider nonequi-
librium steady states in the context of simple stochastic cli-
mate models but note that the concept is applicable to more
complex models as well.

Recent breakthroughs in statistical mechanics in the form
of fluctuation theorems have revolutionized our understand-
ing of nonequilibrium systems [Evans et al., 1993; Gallavotti
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and Cohen, 1995; Evans and Searles, 2002; Sevick et al.,
2008]. Previous work on fluctuation theorems has focused
on micro-scale systems such as RNA molecules and molec-
ular machines [Sevick et al., 2008]. Fluctuation theorems
quantify the likelihood of finding fluctuations that decrease
entropy. In accordance with the Second Law of Thermo-
dynamics, these fluctuations are exponentially unlikely in
large systems at long times. But for small systems at short
times, such “backwards” fluctuations are observable [Evans
and Searles, 2002; Sevick et al., 2008]. This requirement of
small scales would seem to preclude the application of fluctu-
ation theory to climate phenomena. However some climate
features may be dynamically small in terms of their degrees-
of-freedom and fast in terms of the relevant timescales, and
thus could potentially exhibit entropy reducing fluctuations.

2. Stochastic Climate Models

Simple stochastic climate models have long been used to
study the climate system [Epstein, 1969; North and Cahalan,
1981; Penland and Magorian, 1993; Penland and Sardesh-
mukhn, 1995; Farrell and Ioannou, 1993; Moore and Farrell,
1993]. In the simplest models, sometimes called Langevin
models, the state of the system is described by a real N
dimensional vector x, the linear dynamics and noise ampli-
tude are described by real N × N matrices A and F, the
diffusion matrix is D = FFT /2, superscript T denotes the
matrix transpose, ξ is N dimensional Gaussian white noise,
and the dynamics is given by

dx

dt
= Ax + Fξ. (1)

Langevin systems have been used to study climate features
including El-Niño [Penland and Magorian, 1993], the Gulf
Stream [Moore and Farrell, 1993], and mid-latitude storm
tracks [Newman et al., 2003]. In the case of tropical sea
surface temperature (SST) the deterministic part represents
slowly evolving ocean dynamics and the random noise rep-
resents the fast chaotic atmosphere at timescales beyond the
Lyapunov predictability limit.

Langevin models such as equation (1) are among the sim-
plest mathematical models of a nonequilibrium steady-state.
Linear stochastic systems can have surprisingly complex
and ordered behavior arising from matrix non-commutivity
rather than nonlinearity. When AD 6= DAT , equation
(1) describes a nonequilibrium system where small noise is
amplified into large finite-time events with well-defined life-
cycles [Ioannou, 1995; Weiss, 2003]. These models display
the essential features of nonequilibrium fluctuations and are
simple enough that quantitative calculations can be per-
formed and compared with observations.

Linear inverse models are models where the governing ma-
trices in equation (1) , A and F, are obtained by fitting to
observed data. Here we use the linear inverse model for trop-
ical SST of Penland and Matrosova [2006]. In this model,
the Comprehensive Ocean-Atmosphere Data Set (COADS)
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[Woodruff et al., 1993] of monthly SST in the tropical strip
from 30◦ S to 30◦ N from 1950-2000 was consolidated onto
a 4◦ × 10◦ grid, subjected to a three-month running mean,
and the 1950-2000 climatology was removed. The resulting
data was then projected onto the first 20 empirical orthogo-
nal functions, which were used to construct A, and F, pro-
viding a 20-dimensional empirical stochastic model for sea-
sonal SST dynamics. While this model has been shown to
have skill for seasonal SST predictions, its thermodynamic
properties have not been previously investigated.

3. Entropy Production

Non-equilibrium steady-states are maintained away from
equilibrium by the production of entropy. Here we study
thermodynamic concepts of nonequilibrium entropy produc-
tion, in contrast to previous work on information theoretic
concepts of entropy [DelSole and Tippett, 2007]. For a sys-
tem in a nonequilibrium steady-state, a finite trajectory seg-
ment has an entropy production σ given by the ratio of the
probabilities of finding the trajectory segment and its time-
reversed counterpart [Seifert, 2005]:

σ = ln
P [X]

P [X̂]
, (2)

where X is a trajectory segment from t to t + τ , X =
{x(t + s)}τ

s=0
, X̂ is the time-reversed trajectory X̂ =

{x(t + τ − s)}τ

s=0
, P [X] is the probability of finding path

X in the steady-state, and P [X̂] is the probability of finding
the time-reversed path in the steady-state.

When data is finitely sampled, the continuous trajectory
is not available and one must turn to a coarse-grained en-
tropy production. Coarse-grained entropy productions are
always less than or equal to the total entropy production,
and have been used to provide a lower bound on the dissi-
pated work [Gomez-Marin et al., 2008]. One specific coarse-
graining is to consider only the dependence on the endpoints
of the trajectory segment, which we call the endpoint en-
tropy production σe, obtained from considering all trajecto-
ries with timespan τ with fixed initial and final endpoints,
x0 and x1. The full path probability can be written in terms
of the coarse-grained probability of finding a trajectory seg-
ment with endpoints x(t) = x0 and x(t + τ ) = x1 regard-
less of the intervening path, P [x0,x1], and the conditional
probability of finding the path X with the given endpoints,
P [X|x0,x1]:

P [X] = P [X|x0,x1]P [x0,x1]. (3)

One obtains σe as the analog of the total entropy production
but calculated from the coarse-grained probability distribu-
tion function (pdf)

σe = ln
P [x0,x1]

P [x̂0, x̂1]
, (4)

where x̂0 = x1 and x̂1 = x0.
Define the average over trajectories with fixed endpoints

to be

〈F 〉
e

=

∫

x(t)=x0
x(t+τ)=x1

Dx(s) P [X|x0,x1] F. (5)

It is then straightforward to show that the total and coarse-
grained entropy productions σ and σe are related by

〈

e−σ
〉

e
= e−σe . (6)

Thus, if σe is negative, this implies that there exist trajec-
tory segments with negative total entropy production, and
further, that there are enough of them for the average in
equation (6) to be greater than one.

Recently a theory was developed for systems described
by equation (1) relating the statistics of σe to the govern-
ing matrices A and F [Weiss, 2007]. In this previous work
the quantity here called σe was not recognized as a coarse-
grained entropy and the above connection to the total en-
tropy production was not established. The theory does show
that σe satisfies a fluctuation theorem: trajectory segments
with positive σe are exponentially more likely than those
with negative σe, pτ (σe)/pτ (−σe) = exp(σe), where the pdf
pτ (σe) is the probability that a trajectory segment has en-
tropy production σe.

We now state the results of this previous theory which
we will here apply to tropical SST observations. Define the
finite time N × N dimensional covariance matrix

Cτ = 2

∫

0

−τ

ds e−As
De−A

T
s, (7)

the steady-state covariance C0 = limτ→∞ Cτ , and their in-
verses Qτ = C−1

τ , Q0 = C−1

0
. Define the 2N × 2N dimen-

sional block-matrices R01, R10, and R,

R01 =

(

eA
T

τQτeAτ + Q0 −eA
T

τQτ

−QτeAτ Qτ

)

,

R10 =

(

Qτ −QτeAτ

−eA
T

τQτ eA
T

τQτeAτ + Q0

)

, (8)

R = R10 − R01, and the 2N dimensional endpoint vector
z = (x0,x1). Then for a given trajectory segment, the end-
point entropy production is

σe(x0,x1) =
1

2
z

T
Rz. (9)

The theory gives pτ (σe) and its moments in terms of the
governing matrices. Define a matrix W = R−1

01
R. Then the

mean and variance are given by [Weiss, 2007, equation 25]

〈σe〉 = Tr(W)/2,
〈

(σe − 〈σe〉)2
〉

= Tr(W2)/2, (10)

where the average is over all endpoints. The characteristic
function of pτ (σe) is [Weiss, 2007, equation 21]

p̂τ (k) =
1

∏

2N

n=1

√
1 − ikλn

, (11)

where λn are the eigenvalues of W, and pτ (σe) is obtained
from its characteristic function by the usual relationship.

4. Entropy production of tropical SST

We investigate whether the entropy production of fluctu-
ations in tropical SST match the predictions made by as-
suming that the system is in a nonequilibrium steady-state
governed by equation (1). We thus look at pτ (σe) and its
dependence on the segment time τ . A direct test of the fluc-
tuation theorem is not feasible due to the relatively short 50
year SST time series.

The pdf and its moments can be calculated by two sepa-
rate methods. They can be calculated from equations (10)
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and (11), which we refer to as the theoretical method. Al-
ternatively, for each trajectory segment one can obtain σe

directly using equation (9). These individual entropy pro-
ductions can be used to directly compute moments and com-
piled into a pdf, which we refer to as the direct method. For
a system that is exactly described by equation (1), the meth-
ods must agree, apart from sampling errors due to using a
finite number of trajectory segments in the direct method.
But if the system is not governed by Langevin dynamics,
then there is no reason to expect the methods to agree.
Since both methods use the same governing matrices, which
are themselves derived from the timeseries used in the di-
rect method, they are not independent. Agreement between
the two methods thus demonstrates the self-consistency of
Langevin dynamics, and indicates that the variability is
consistent with fluctuations about a linear nonequilibrium
steady-state. The coarse-grained entropy production pro-
vides a new test for the validity of Langevin dynamics
which is independent from the tau-test used by Penland and
Sardeshmukhn [1995].

Using the linear inverse model of Penland and Matrosova
[2006] we calculate the average, variance, and pdf of σe. The
average over all endpoints, 〈σe〉 (τ ), has a broad maximum at
three to five months and decays to near zero over two years
(Figure 1a). This is consistent with the known timescales for
El-Niño events. The error-bars indicate the standard error
in the direct calculation due to finite sample size, assum-
ing that the governing matrices are exact and the segments
are independent. These assumptions imply that the true
uncertainty in the comparison is larger than indicated by
the error bars. For times longer than the three-month aver-
aging time of the data, the average from the two methods
agrees extremely well, while for shorter times we do not ex-
pect the Langevin model to be accurate. The variance of σe

shows qualitative agreement between the two methods, but
the differences are larger than the lower bound indicated by
the error bars (Figure 1b).

The pdf’s calculated by the two methods have the same
general shape and similar evolution with τ (Figure 2). They
have long tails for positive σe, finite probability of negative
σe, and as the segment time increases they become narrower
and the peak decreases towards zero. The trajectory seg-
ments with negative σe imply that there exist “backwards”
trajectories with negative total entropy production. Thus,
on timescales of months, the seasonally averaged tropical
SST can be considered a small, fast system in thermody-
namic terms where “violations” of the Second Law of Ther-
modynamics are likely to occur, albeit with a small proba-
bility.

The entropy production which maintains the nonequi-
librium steady-state results in a long-term average rate of
entropy production in the thermal reservoir producing the
noise. Here, the reservoir is the chaotic atmosphere whose
time-average entropy production rate is bounded by the sum
of its positive Lyapunov exponents [Eckmann and Ruelle,
1985]. The average rate of this entropy production can be
calculated from the governing matrices [Weiss, 2007, equa-
tion 33] and its inverse gives a time of 3.6 days, which
roughly agrees with the Lyapunov predictability time of the
atmosphere. Thus, even in a white-noise model which as-
sumes that the timescale of the atmospheric forcing is so
small as to be effectively zero, the slow seasonally aver-
aged SST dynamics retains information about the finite pre-
dictability time of the fast chaotic atmosphere.

5. Conclusions

The entropy production statistics show that tropical
SST dynamics on seasonal timescales is approximately self-
consistent with a simple nonequilibrium Langevin model,
and thus that tropical SST variability can be considered

to be a manifestation of fluctuations about a nonequilib-
rium steady-state. This is perhaps not surprising, since the
ocean is clearly not in equilibrium and it is not uncommon to
treat natural variability in terms of a stationary state. How-
ever, the fact that a relatively simple Langevin model with
few degrees of freedom correctly captures the entropy pro-
duction indicates that SST variability can be studied using
quantitative theories of nonequilibrium statistical mechanics
which provide new insight into the detailed behavior of such
nonequilibrium fluctuations. The presence of SST fluctua-
tions with negative entropy production indicates that SST
variability is in the regime of small, fast thermodynamic
fluctuations. This work also demonstrates that typical cli-
mate datasets are sufficient to calculate the nonequilibrium
thermodynamic properties of the climate system.

The construction of the linear inverse model has a small
number of subjective choices, but the model was defined for
other purposes, used with here with no modifications, and
the computations presented here have no free parameters.
The ability of the model to capture the entropy production
shows that, in addition to its utility as a forecast model, it is
robust enough to be used for thermodynamic purposes. The
Langevin model is only approximate as demonstrated by the
discrepancies between the two methods, particularly in the
entropy production variance. But the concept of climate
variability as fluctuations about a nonequilibrium steady-
state is much broader than the simple linear model studied
here.

Theories of nonequilibrium fluctuations have the poten-
tial of providing, for the first time, a fundamental quantita-
tive theory for natural climate variability. Further develop-
ment of the theory to include processes such as nonlinear-
ity, colored and multiplicative noise, and the seasonal cycle
should lead to additional improvements. Given the sim-
plicity of the linear model, particularly compared to a full
coupled general circulation model, the success is striking.

Since simple Langevin models are useful for a range of
climate phenomena, we expect that other climate features
will also prove to be at least approximately represented as
fluctuations about a nonequilibrium steady-state. For ex-
ample, considering the SST and thermocline depth as state
variables would provide a theory for natural variability in
upper-ocean heat content which has been the topic of much
recent interest (e.g., Carton and Santorelli [2008]). Apply-
ing these ideas to energy balance climate models (e.g., North
and Cahalan [1981]) could result in a theory for the natural
variability of poleward heat flux. By expanding the theory
to include adiabatic changes in the governing matrices, the
influence of climate change on El-Niño variability could be
addressed.

We must mention that the word “steady” in the conclu-
sion that tropical SST can be represented by a nonequilib-
rium steady-state in no way contradicts the ocean warming
observed over the past fifty years [Levitus et al., 2005]. The
seasonal SST variability is much larger than the warming
of the average state and changes in the governing matrices
due to this warming are too small to be reliably estimated
from a 50-year dataset. Yet the steady-state is changing and
the impact of these changes on the variability is important
in predicting the impacts of global warming. The relevance
of nonequilibrium steady-states demonstrated here indicates
that recent and future advances in nonequilibrium statistical
mechanics may play a role in improving forecasts of global
change.
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Figure 1. Average and variance of the endpoint en-
tropy production as a function of trajectory segment
time. Solid line denotes the theoretical method, and
filled circles denote the direct method. The error bars
show the standard error based on the number of trajec-
tory segments of a given segment time in the 50 year
dataset. Panel a shows the average, and panel b shows
the variance.
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Figure 2. Probability distribution function of the end-
point entropy production. The solid curve is the distribu-
tion from the theoretical method and the binned distri-
bution is calculated using the direct method. The darker
shaded bins show trajectory segments with negative en-
tropy production.


