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Motivated by stochastic models of climate phenomena, the steady state of a linear stochastic model with
additive Gaussian white noise is studied. Fluctuation theorems for nonequilibrium steady states provide a
constraint on the character of these fluctuations. The properties of the fluctuations which are unconstrained by
the fluctuation theorem are investigated and related to the model parameters. The irreversibility of trajectory
segments, which satisfies a fluctuation theorem, is used as a measure of nonequilibrium fluctuations. The
moments of the irreversibility probability density function �pdf� are found and the pdf is seen to be non-
Gaussian. The average irreversibility goes to zero for short and long trajectory segments and has a maximum
for some finite segment length, which defines a characteristic time scale of the fluctuations. The initial average
irreversibility growth rate is equal to the average entropy production and is related to noise amplification. For
systems with a separation of deterministic time scales, modes with time scales much shorter than the trajectory
time span and whose noise amplitudes are not asymptotically large, do not, to first order, contribute to the
irreversibility statistics, providing a potential basis for dimensional reduction.
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I. INTRODUCTION

Recent advances in nonequilibrium statistical mechanics
have investigated fluctuation theorems in a variety of con-
texts �1�. The fluctuation theorem quantifies the probability
of finding fluctuations in nonequilibrium systems that violate
the second law of thermodynamics. Fluctuation theorems
take many forms. The formulation we will focus on is in
terms of the probability of observing finite time trajectory
segments of a system �2,3�. In this context, the fluctuation
theorem provides a constraint that such trajectory segments
must satisfy. Here we investigate the fluctuations in a non-
equilibrium steady state governed by Langevin dynamics.
We go beyond the fluctuation theorem and study those prop-
erties of the fluctuations that are not constrained by the fluc-
tuation theorem. These properties are not generic. They de-
pend on the details of the specific dynamical system, and we
investigate the relationship between the nonequilibrium fluc-
tuations and the parameters defining the Langevin dynamics.

Our motivation for studying specific details of nonequi-
librium fluctuations comes from work in theoretical climate
dynamics. In recent years, linear stochastic dynamical sys-
tems have been successfully used to model many phenomena
in the climate system such as El-Niño �4–6�, the North At-
lantic Gulf Stream �7�, and a variety of atmospheric phenom-
ena �8–12�. We shall refer to these phenomena as climate
subsystems in that they are often considered to be dynamical
systems that are separable from the larger climate system, at
least on some set of spatial and temporal scales. Since these
fluctuations have macroscopic time scales, it is important to
investigate the character of individual fluctuations and the
statistics of their properties.

In the work on climate subsystems, the focus has been on
two considerations: the utility of linear stochastic systems in
forecasting �4,6,13�, and the potential for the deterministic

part of the dynamics to amplify the random noise �6,14–17�.
It is often assumed that the large amplitudes of these phe-
nomena requires them to be the result of dynamical instabili-
ties. The recognition that deterministic dynamics can amplify
small noise forcing, which in meteorology goes back to Lo-
renz �18�, provides an alternative view of such phenomena.
This amplification occurs when the deterministic matrix is
non-normal �14,15�. One common critique of the noise-
amplification view is that non-normality and the resulting
amplification depends on the subjective choice of coordinate
system, and can be removed by an appropriate coordinate
transformation. Recently, this objection has been answered
by noting that underlying the property of non-normality is
the more fundamental, coordinate invariant property of de-
tailed balance. Linear stochastic climate subsystem models
share the property that they violate detailed balance, and this
is what is responsible for the noise amplification �17�. Thus,
a wide range of phenomena in the climate system can be
interpreted as fluctuations in a nonequilibrium steady state.
For climate fluctuations such as El-Niño, understanding the
character of the fluctuations is extremely important. Further,
due to global warming, the steady state is changing. Under-
standing how phenomena such as El-Niño will change as
climate changes is a major uncertainty in climate change
predictions �19�. Thus, improved understanding of how non-
equilibrium fluctuations depend on the properties of the
steady state could lead to improvements in climate change
forecasts.

As a concrete example, we will focus on El-Niño. El-
Niño is a coupled atmosphere-ocean phenomenon that is
centered in the tropical Pacific Ocean and has global im-
pacts. One key aspect of El-Niño is that the atmosphere
evolves on a faster time scale than the ocean. The turbulent
dynamics of the atmosphere has a predictability limit of
about 2 weeks �20�. The ocean, on the other hand, has time
scales of months. Thus, on the monthly time scale of El-
Niño, the atmosphere is unpredictable and can be considered
a random forcing �21�. While this parametrization of fast*jeffrey.weiss@colorado.edu

PHYSICAL REVIEW E 76, 061128 �2007�

1539-3755/2007/76�6�/061128�7� ©2007 The American Physical Society061128-1

http://dx.doi.org/10.1103/PhysRevE.76.061128


chaos as random noise is typically done empirically, there are
some theoretical results �22–25�.

The phenomenon of El-Niño is described in terms of the
sea surface temperature �SST� of the tropical Pacific. Al-
though the SST is a continuous field, both observations and
models use a finite number N of SST values. Thus, the state
vector x of the system is an N-dimensional vector of real
numbers representing the discretized SST field. Often, the
dimensionality is reduced by truncating to some number of
leading modes. Typically, the mean SST is removed, so x
represents the SST anomaly and can be positive or negative.
A linear stochastic Langevin model for El-Niño is then

dx

dt
= Ax + F� , �1�

where A is an N�N real matrix representing the linear de-
terministic dynamics, F is an N�N real matrix representing
the noise forcing, � is N-dimensional Gaussian white noise,
���t��T�s��= I��t−s�, where superscript T represents the
transpose, I is the identity matrix, and the diffusion matrix is
D=FFT /2. We require the system to have a steady state,
which implies that the deterministic dynamics is stable, i.e.,
all eigenvalues of A have a negative real part. From a dy-
namical systems perspective, Eq. �1� describes a stable linear
fixed point perturbed by additive Gaussian white noise.
Equation �1� is the fundamental equation defining the dy-
namics, and our goal is to describe the nonequilibrium fluc-
tuations in terms of A, D, and matrices derived from them.

The Langevin dynamics, Eq. �1�, describes both equilib-
rium and nonequilibrium steady states, depending on
whether or not detailed balance is satisfied. For most matri-
ces A and D, detailed balance is violated and the system has
a nonequilibrium steady state. This is the case for Langevin
models of climate subsystems. Detailed balance requires
AD−DAT=0, and then �=A+DQ0=0, where Q0 is the in-
verse of the steady-state covariance, defined explicitly below,
while both expressions are nonzero when detailed balance is
violated. When detailed balance is violated, the steady-state
distribution p0�x� is maintained by a nonzero divergence-free
probability current j�x�=�xp0�x�, where �x is a phase
space velocity and � can be interpreted as a matrix of rota-
tion frequencies. The probability current is divergence free,
and thus Tr���=0 The system satisfies detailed balance if
and only if there exists a coordinate system where A and D
are both diagonal. Thus, systems described by Eq. �1� in
detailed balance can be transformed into a collection of un-
coupled one-dimensional systems, while those violating de-
tailed balance have an essential multidimensional character.

II. FLUCTUATION THEOREM

The fluctuation theorem can be written in terms of the
probability of observing trajectory segments. Consider a long
trajectory x and choose a time interval t. For any two states
x0 and x1, we define the trajectory probability p�x0 ,x1 , t� as
the probability of finding a trajectory segment within the
long trajectory that begins at x0 and ends at x1 a time t later.
This definition differs from the trajectory probability used in

some previous studies �3,26� in that it depends only on the
end points of the trajectory segment and not on the full tra-
jectory. By relying only on the end points of the trajectory
segment, this definition may be better suited to discretely
sampled data, such as that found in climate records.

The time-reversed trajectory segment, one starting at x1
and ending at x0, has a probability p�x1 ,x0 , t�. For simplicity
we shall drop the dependence on the time interval t when it
causes no confusion. The irreversibility r�x0 ,x1 , t� of a tra-
jectory segment with initial state x0 and final state x1 is de-
fined by

r�x0,x1� = ln
p�x0,x1�
p�x1,x0�

. �2�

Thus, r�0 shows that one is equally likely to find forward
and reverse trajectory segments and the system is reversible,
while r�0 shows that one can distinguish forward from re-
verse trajectories segments. The statistics of r over a long
trajectory corresponds to the intuitive notion of irreversibil-
ity: they quantify how well one is able to distinguish a long
trajectory from the same trajectory going backward in time.

The fluctuation theorem is now a direct result of the defi-
nition of r �3�. Equation �2� implies that r�x1 ,x0�
=−r�x0 ,x1� and p�x0 ,x1�=exp�r�x0 ,x1��p�x1 ,x0�. Then the
probability pr�r� of finding a trajectory segment with irre-
versibility r is

pr�r� =� dNx0dNx1p�x0,x1���r�x0,x1� − r�

=� dNx0dNx1e−r�x1,x0�p�x1,x0���r�x1,x0� + r�

= erpr�− r� . �3�

The final entry in Eq. �3� is the fluctuation theorem relating
the probability of finding positive and negative irreversibili-
ties. The fluctuation theorem thus puts a constraint on pr�r�,
but does not completely determine its functional form.

III. IRREVERSIBILITY OF TRAJECTORY SEGMENTS

For the linear stochastic Langevin dynamics, Eq. �1�, the
probability of finding a trajectory segment with a given irre-
versibility pr�r� can be written in terms of the basic param-
eters of the dynamics. We begin by defining two more tradi-
tional probability distributions: the steady-state probability
p0�x� of finding the system in state x, and the transition
probability p�	x1 , t	x0� of finding the system in state x1 con-
ditioned on the system being in state x0 a time t earlier. The
trajectory probability is then

p�x0,x1,t� = p�	x1,t	x0�p0�x0� . �4�

Because the system is linear with additive Gaussian white
noise, these probabilities are also Gaussian and can be ex-
plicitly written in terms of the covariance of the dynamics.

A stochastic trajectory of Eq. �1� starting at x�0� can be
written as
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x�t� = eAtx�0� + �
0

t

dseA�t−s�F� . �5�

Since we only consider additive noise, the above integral is
the same in both Ito and Stratonovich interpretations. The
time-dependent covariance matrix Ct for �x=x1
−exp�At�x0, the difference between the stochastic trajectory
and its deterministic counterpart is

Ct = ��x�xT� = 2�
0

t

eA�t−s�DeAT�t−s�, �6�

and the steady-state covariance C0=limt→� Ct satisfies the
relation

AC0 + C0A
T + 2D = 0. �7�

Writing C0 as

C0 = 2�
−�

0

dse−AsDe−ATs, �8�

allows one to obtain the useful relation

eAtC0eATt = C0 − Ct. �9�

Define the inverse covariance matrices, sometimes called the
concentration, by Qt=Ct

−1, Q0=C0
−1.

The steady-state probability is

p0�x� = N0 exp�− xTQ0x/2� , �10�

with normalization N0=1 /
�2��N Det�C0�. The transition
probability is

p�	x1,t	x0� = Nt exp�− �xTQt�x/2� , �11�

where the normalization is Nt=1 /
�2��N Det�Ct�. The tran-
sition probability is thus a Gaussian distribution with cova-
riance Ct distributed around the end point of the determinis-
tic trajectory segment beginning at x0.

The trajectory probability depends on both the initial and
final states. We thus consider a 2N-dimensional state space

z = �x0

x1
� . �12�

The forward trajectory probability is Gaussian and is given
by

p�x0,x1� = N exp�− zTR01z/2� , �13�

with normalization N=1 / ��2��N
Det�C0Ct��, and the con-
centration of the trajectory probability R01 is the 2N�2N
matrix

R01 = �eATtQte
At + Q0 − eATtQt

− Qte
At Qt

� . �14�

The reverse trajectory probability is

p�x1,x0� = N exp�− zTR10z/2� , �15�

where the concentration of the reverse trajectory probability
is related to that of the forward trajectory probability by
swapping initial and final states,

R10 = JR01J = � Qt − Qte
At

− eATtQt eATtQte
At + Q0

� , �16�

with

J = �0 I

I 0
� , �17�

and I is the N�N identity matrix.
The irreversibility r is now simply obtained from Eq. �2�,

r�z�=zTRz /2 with the irreversibility concentration matrix R
=R10−R01. One can show that when detailed balance is sat-
isfied, the irreversibility concentration matrix R is identically
zero and the system is reversible. The irreversibility can be
described by the eigenvalues and eigenvectors of R. A
2N-dimensional eigenvector vn with eigenvalue �n can be
written in terms of an N-dimensional initial end point vn0 and
an N-dimensional final end point vn1, vn

T= �vn0
T ,vn1

T �. Due to
the structure of R, each eigenvector has a corresponding
time-reversed eigenvector with reversed end points,
�vn1

T ,vn0
T �, with eigenvalue −�n.

IV. IRREVERSIBILITY DISTRIBUTION

The probability density function of irreversibility pr�r�
can be obtained in terms of its characteristic function p̂r�k�,

p̂r�k� = �eikr� =� dreikrpr�r� ,

pr�r� =
1

2�
� dke−ikrp̂r�k� . �18�

Using the result from the preceding section, the irreversibil-
ity pdf can be written as

pr�r� =� d2Nz��r − zTRz/2�p�x0,x1� . �19�

Writing the � function in terms of its Fourier transform
��r�=1 / �2��dk exp�ikr�, changing the order of integration,
and comparing with Eq. �18� gives the characteristic function

p̂r�k� = N� d2Nz exp�− zT�R01 − ikR�z/2� . �20�

Since R is symmetric and R01 is positive definite, the above
expression can be simplified using the dual conjunctive di-
agonalization �27�. This diagonalizes the matrix in the expo-
nential, transforming the expression into a product of one-
dimensional integrals that can be easily carried out. Define
the matrix W=R01

−1R, define the matrix S−1 to be the matrix
of eigenvectors of W, and define the diagonal matrix � to be
the matrix whose elements are the 2N eigenvalues of W, �n.
Then R01=STS and R=ST�S and Eq. �20� can be integrated
to obtain the characteristic function of the irreversibility pdf,

p̂r�k� =
1


Det�I2N − ik��
=

1

�n=1

2N 
1 − ik�n

, �21�

where we have made use of the fact that
Det�R01�Det�C0Ct�=1. Thus, the characteristic function is
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completely determined by the eigenvalues of W.
The covariance of the forward trajectory probability R01

−1,
needed to compute W, can be written in a relatively simple
form using Eq. �9�,

R01
−1 = � C0 C0eATt

eAtC0 C0
� . �22�

We have thus obtained a closed-form expression for p̂r�k� in
terms of the eigenvalues of W, which is an explicit function
of the deterministic dynamics A, the steady-state and finite-
time covariance matrices C0 and Ct, and their inverses. The
covariance matrices depend only on the deterministic dy-
namics and the diffusion matrix. The full pdf of irreversibil-
ity is then obtained by integrating Eq. �18� using Eq. �21�.
No closed form solution for the integral has been found.

The eigenvalues of W have an interesting interpretation.
In the coordinate system ẑ=Sz, the trajectory probability
p�ẑ��exp�−	ẑ	2 /2�, and the irreversibility is r=�i�iẑi

2 /2.
Thus, the eigenvalue �i of W gives the irreversibility weight-
ing for coordinate i in a coordinate system where the trajec-
tory probability is isotropic and has unit covariance.

The moments of the irreversibility pdf can be obtained by
considering the cumulants of the pdf �28�. The cumulant
function g�k�=ln p̂�k� is

g�k� = −
1

2�
n=1

2N

ln�1 − ik�n� , �23�

and the cumulants are then

�m = �− i�m�dmg�k�
dkm �

k=0
=

�m − 1�!
2

Tr�Wm� . �24�

Using the relationship between cumulants and centered mo-
ments gives the moments of the pdf. The first four centered
moments are

�r� =
1

2
Tr�W� ,

��r − �r��2� =
1

2
Tr�W2� ,

��r − �r��3� = Tr�W3� ,

��r − �r��4� = 3 Tr�W4� +
3

4
Tr2�W2� . �25�

The irreversibility pdf is not, in general, Gaussian. The dis-
tribution is skewed and has kurtosis different from the
Gaussian value. Such non-Gaussian distributions have been
previously seen in a variety of nonequilibrium systems
�29–33�. Considering the definition of r, Eq. �2�, and writing
moments of the irreversibility as

�rn� =� dNx0dNx1rn�x0,x1�p�x0,x1� , �26�

one sees that all �noncentered� moments are non-negative.
The average irreversibility can be simplified to

�r� = Tr�C0Qt�I − e2At� − I� . �27�

It is interesting to consider how the irreversibility scales
with the strength of the noise. Consider taking a system and
increasing the diffusion matrix by a constant factor 	. Then
the covariance matrices increase by 	, and the concentration
matrices are scaled by 1 /	. The irreversibility for a segment
with fixed end points scales by 1 /	, but since the covariance
scales by 	, the probability of finding those end points
scales. As a result, the irreversibility pdf is unchanged by the
scaling. Note that this invariance is only valid for multipli-
cation by a scalar. A matrix transformation of the noise will,
in general, change the dynamics and the irreversibility. The
irreversibility is coordinate invariant, so we are free to con-
sider any convenient coordinate system. If one considers a
coordinate system where D is diagonal, obtainable by an
orthogonal transformation, then the system can be consid-
ered to be coupled to N thermal reservoirs with temperatures
given by the eigenvalues of D. Then, the irreversibility sta-
tistics are unchanged by changing the temperature of all heat
baths by a constant factor. Further, if one considers the co-
ordinate system where D= I, obtainable by a nonorthogonal
transformation, then the system can be considered to have all
N degrees of freedom coupled to a single thermal reservoir
with unit temperature. This coordinate system makes explicit
the fact that all coordinate-invariant properties, including the
irreversibility, are independent of the temperature of this
single reservoir. Thus, irreversibility is neither a measure of
the temperature of the reservoir, nor a measure of the ampli-
tude of the fluctuations, but rather is related to the amplifi-
cation of the noise above that seen in equilibrium.

V. TIME DEPENDENCE OF AVERAGE IRREVERSIBILITY

The time dependence of the average irreversibility gives
information about the time dependence of the fluctuations.
Because the dynamics is stable, the following properties
hold: the eigenvalues of A all have negative real part,
limt→� eAt=0, limt→� Ct=C0, and limt→� Qt=Q0. Thus,
Eqs. �14� and �16� give

lim
t→�

R01 = lim
t→�

R10 = �Q0 0

0 Q0
� . �28�

This is easily understood in that as the time becomes large,
the initial and final states become uncorrelated and the tra-
jectory probability is merely the product of the steady-state
probabilities of the initial and final states. As a result,
limt→� R=0, and the irreversibility of long trajectory seg-
ments goes to zero.

For short times t=
�1, one can use the asymptotic ex-
pansion for eA
 to obtain expressions for C
 and Q
. This
allows one to write the average irreversibility as

�r� =



2
Tr�AC0�ATD−1 − D−1A�� + O�
2� . �29�

Thus, as t→0, �r�→0. Further, for short times the depen-
dence of �r� on the violation of detailed balance, which is
equivalent to ATD−1−D−1A�0, is manifest.
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Thus, the average irreversibility is positive semidefinite
for all time and goes to zero as t→0 and t→�. This means
that either �r��t�=0 for all t and the system is in equilibrium,
or there is a time t� where the average irreversibility reaches
a global maximum. This defines a characteristic time scale of
the irreversible fluctuations.

Fluctuation theorems are often formulated in terms of the
entropy production �1�. Chernyak et al. �3� speculate that for
multidimensional systems such as Eq. �1�, the time average
entropy increase in the thermal reservoirs coupled to the sys-
tem over a time t is, in our notation,

�t =
1

t
�

0

t

dxTD−1�x , �30�

where the integral is interpreted in the Stratonovich sense.
Using the equation of motion �1� to write dx in terms of dt
and taking the average one obtains

��t� =
1

t
�

0

t

ds�xT�s�ATD−1�x�s��

+
1

t
�

0

t

ds��T�s�FTD−1�x�s�� . �31�

The first term is simplified by considering x�s� to be in the
steady state so �xi�s�xj�s��=C0ij

. The second term can be sim-
plified to Tr���=0. Manipulating the result using the defini-
tion of � and Eq. �7� one finds that the average steady-state
rate of entropy production is identical to the zero-time
growth rate of the average trajectory irreversibility given by
Eq. �29�,

��t� = �d�r��t�
dt

�
t=0

. �32�

The entropy production can be related to the noise ampli-
fication that occurs when detailed balance is violated. First
consider one-dimensional dynamics governed by determinis-
tic dynamics A�0, diffusion constant D0, and steady-
state covariance C00. Then Eq. �7� gives −�AC0 /D+1�
=0. The negative sign is chosen so that amplification will
correspond to a positive number. If, through some additional
forcing, the covariance were increased to C�C0, then one
measure of that additional amplitude is −�AC� /D+1�0. In
multidimensional systems, increased variance occurs not
through some additional forcing, but through violation of
detailed balance �17�. One analogous measure for noise
amplification is the nondimensional gain matrix G
=−�AC0D−1+ I�. Using Eq. �7� allows one to write �t as

��t� = Tr�AG� . �33�

The entropy production rate has units of 1/time, and the time
scale of the system is set by the deterministic dynamics A,
Thus, AG is a matrix measure of the noise amplification per
unit time, whose trace gives the steady-state rate of entropy
production.

VI. REDUCTION TO SLOW MODES

Complex spatiotemporal systems are typically high-
dimensional systems with a wide range of time scales. One
often would like to reduce the system down to a more man-
ageable number of degrees of freedom. There are several
common truncations but none are entirely satisfactory. Here
we explore dimensional reduction based on a separation of
time scales and examine the effect on irreversibility.

We have already seen that for times longer than the long-
est deterministic time scale the irreversibility becomes zero.
It is thus not unreasonable to hypothesize that those degrees
of freedom whose time scale is much shorter than the time
span of a trajectory segment will have no affect on its irre-
versibility. If this were the case, then in considering the irre-
versibility of trajectory segments of a particular time span,
one could reduce the dimensionality to those degrees of free-
dom whose time scales are similar to or longer than the seg-
ment time span. We now show that when there is a separa-
tion of time scales in the dynamics this is indeed the case and
the fast modes have a small effect on the irreversibility sta-
tistics.

Climate subsystems often have slow modes which com-
prise a reduced dimensional subspace. Here we shall inves-
tigate the consequences of the deterministic dynamics having
a separation of time scales. Note that by modeling the system
as an N-dimensional stochastic dynamical system we have
already assumed a separation into N slow modes, considered
to be deterministic, and unresolved fast modes which are
parametrized as random noise. Now we decompose the slow
deterministic modes into slower modes and faster modes.
The faster modes are fast compared to the slower modes, but
still slow compared to the random noise. More specifically,
assume that the N eigenvalues �i� of A can be divided into
two groups, Ns slow modes and Nf =N−Ns fast modes, where
Re��i���O�1� for 1� i�Ns, and Re��i���O�1 /�� for Ns

� i�N, and ��1. Further, we restrict ourselves to times t
that are of the order of 1, so that Re��fast� �t�O�1 /��. We
shall rescale the fast eigenvalues so that the small parameter
is explicit, �slow=�slow� , �fast=�fast� �, and the real parts are all
O�1�.

We will work in a coordinate system where A is diagonal,

A = ��s 0

0 � f/�
� , �34�

where �s is a diagonal matrix of slow eigenvalues and � f is
a diagonal matrix of scaled fast eigenvalues. Since the eigen-
values will typically be complex, the coordinate transforma-
tion is also complex. The various equations presented above
must then be modified by changing transpose operators to
adjoint operators, indicated with a superscript dagger. For
more details on coordinate transformations in stochastic lin-
ear systems see �17�. In these coordinates, the state space
variable x can be decomposed into slow variables y and fast
variables w, x†= �y† ,w†�.

In these diagonal-A coordinates, the covariance matrix
can be obtained by direct integration of Eq. �6� to obtain
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Ctij
=

2Dij

�i� + � j�
� �exp���i� + � j�

��t� − 1� , �35�

where the asterisk denotes complex conjugate and the eigen-
values are unscaled. For the order of 1 times, exp��fast� t�
�exp�−1 /���0, and the deterministic Green function is

eAt = �e�st 0

0 0
� . �36�

Then, the covariance matrices take the form

Ct = � Ctyy �C0yw

�C0wy �C0ww
�, C0 = � C0yy �C0yw

�C0wy �C0ww
� , �37�

where the subscripts y or w indicate fast or slow modes, the
subscripts t or 0 indicate whether the covariance submatrix is
time dependent or steady state, and all submatrices are O�1�.
Thus, the time-dependent covariance matrix is decomposed
into an O�1� slow-slow covariance which depends on time,
and its complement which is small and equal to the steady-
state value. Note that this analysis assumes that all compo-
nents of the diffusion matrix D are O�1�. It may be the case
that the fast modes have larger noise than the slow modes. If
the noise in the fast modes is O�1 /�� then this asymptotic
expansion breaks down.

Using this decomposition in the equations leading to R
and W, and making frequent use of matrix identities for
block matrices, leads to the following results. For any given
trajectory segment with end points x0

†= �y0
† ,w0

†�, x1
†= �y1

† ,w1
†�,

the irreversibility z†Rz depends on both the fast and slow
variables. On the other hand, the characteristic function for
the irreversibility pdf depends to first order only on the slow
variables. Thus, the statistics of the irreversibility are, to low-
est order, unaffected by truncating the fast variables. These
two results may seem contradictory. However, the fast eigen-
values have two effects: the correlations decay rapidly and,
as seen in Eq. �37�, the covariance of the fast modes is small.
Thus, the typical size of the fast variables is small and its
contribution to the irreversibility is a higher-order effect.
While large rare fluctuations in the fast modes do effect the
irreversibility of isolated trajectory segments, they do not, to
lowest order, impact the statistics. Thus, in considering irre-
versibility, and provided the diffusion matrix is O�1�, one
can safely neglect fast modes and reduce the dimensionality
of the dynamics to just the slow modes of the system.

VII. DISCUSSION

Fluctuation theorems in nonequilibrium systems have fo-
cused attention on the irreversibility of trajectory segments,
and provide a constraint for their distributions. Theories of
climate subsystems provide motivation for analyzing the
nonequilibrium fluctuations of linear stochastic dynamical
systems in more detail. Here we combined these two per-
spectives and obtained information about the trajectory irre-
versibility that is not constrained by the fluctuation theorem.

For linear stochastic dynamics with additive Gaussian
white noise, the irreversibility was shown to be governed by
an irreversibility concentration matrix R which is expressed

in terms of the fundamental matrices governing the dynam-
ics. The moments of the irreversibility pdf can be written
explicitly and the pdf is seen to be non-Gaussian. For non-
equilibrium steady states, the average irreversibility grows
from zero as the trajectory time span increases, with the ini-
tial growth rate being equal to the average entropy produc-
tion rate, which is related to the noise amplification. In non-
equilibrium steady states, there is a finite time where the
average irreversibility is maximal, and it decays back to zero
as time goes to infinity. For a system with a separation of
time scales in the deterministic dynamics and without as-
ymptotically large noise in the fast modes, only the slow
modes contribute to the irreversibility statistics, while modes
faster than the trajectory time span contribute higher order
corrections. There is, however, evidence that in at least some
climate subsystems the noise in fast modes is indeed large,
and thus this approach to dimensional reduction may not be
applicable �5,34�.

It is important to note that the irreversibility depends on
the multivariate nature of both the deterministic dynamics
and the random noise. Nonequilibrium, the violation of de-
tailed balance, and the noncommutivity relation AD−DAT

�0 are all equivalent, and determining the irreversibility re-
quires knowledge of both parts of the dynamics.

These results were obtained in the idealized context of a
linear dynamical system forced by additive Gaussian white
noise. However, the definition of the irreversibility and the
constraint provided by the fluctuation theorem are general.
Thus, one can ask similar questions about the distribution of
irreversibility in more complex systems. It remains to be
seen which of the above results generalize. In the context of
climate, the fact that many climate subsystems can be mod-
eled by such simple stochastic dynamical systems indicates
that the properties obtained here are at least approximately
valid for these climate subsystems. Further, even for climate
phenomena that are not well approximated by such simple
models, the behavior of these models provides a null hypoth-
esis for the phenomenon.

Fluctuations in climate subsystems are complex, multidi-
mensional phenomena with many characteristics. It is often
convenient to reduce this behavior down to a single scalar,
referred to as an index. These indices are usually based on
subjectively chosen phenomenological features of the fluc-
tuations. For example, one common index used in El-Niño
studies is the NINO3 index, defined as the mean sea surface
temperature anomaly from climatology over the region 5°N-
5°S, 90°W-150°W �35�. Different indices capture different
aspects of a phenomenon, and if the character of the phe-
nomenon changes as climate changes, then any particular
index may lose its utility.

The irreversibility provides an interesting alternative to
traditional indices. Like an index, irreversibility is a scalar
defined in terms of the time series of the system. However,
unlike traditional indices, the irreversibility reflects funda-
mental properties of the nonequilibrium dynamics. The time
scale of climate phenomena is often understood in terms of
the specific physical properties of the system of interest. El-
Niño time scales, for example, involve the time for waves to
propagate across the tropical Pacific Ocean. Other time
scales such as the growth rates of perturbations based on
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singular vector analysis, depend on the subjective coordinate
system used. By virtue of its coordinate independence, the
time of maximum average irreversibility provides an objec-
tive choice for a fluctuation time scale.

A major obstacle to the practical use of irreversibility is
that its direct measurement from Eq. �2� will require ex-
tremely long time series. In order to compute r directly from
a time series, one must quantify the probability of finding
rare events, which means one must have a time series long
enough to contain those rare events. Even with the long time
series produced by numerical models, direct computation of
the irreversibility may be prohibitive for all but the very
simplest models. There are techniques that have been used to
accelerate nonequilibrium computations, but it remains to be
seen if these techniques can be applied to climate models.
The most promising avenue may be to use climate time se-
ries to estimate the parameters of the linear stochastic model
in Eq. �1�. This is the technique used, for example, in con-
structing linear inverse models of El-Niño �4�. Then, the ir-
reversibility could be computed using the expressions ob-
tained here.

In many climate subsystems the phenomena modeled here
by stationary random noise have a strong seasonal compo-

nent. A better stochastic model for these phenomena would
then be cyclostationary noise. Additional complexities to be
considered are red-noise processes and multiplicative noise
processes. All of these modifications will probably impact
the results obtained here.

As climate changes, the nonequilibrium steady-state
changes. Many climate subsystems have time scales shorter
than the time scale for climate change, and the change in the
steady state can be considered to be adiabatic. By obtaining
relations between the parameters defining the steady state
and the fluctuations, we have solved part of the question of
how climate subsystem fluctuations will be affected by cli-
mate change. The question of how the steady state itself
evolves under climate change remains. However, it may be
possible that climate models do a better job of capturing the
evolving steady state than the fluctuations. If so, this work
may lead to improved climate change forecasts.
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