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ABSTRACT

Stochastic dynamical systems have been used to model a broad range of atmospheric and oceanic
phenomena. Previous work has focused on the stochastic differential equation formulation of these
systems, has largely remained in a single coordinate system, and has highlighted the role of non-
normality of the deterministic dynamics. Here, the coordinate independent properties of stochastic
dynamical systems are studied. The properties previously attributed to non-normality, which can be
removed by a coordinate transformation, are more fundamentally seen to be coordinate-dependent
manifestations of violations of detailed balance. Systems violating detailed balance can both amplify
and rectify the random forcing. New coordinate-invariant measures of noise amplification are introduced
and shown to achieve their lower bound when detailed balance is satisfied. Rectification results in a
coherent phase space velocity which gives rise to a structured nonzero flux of all physically important
quantities such as energy and momentum. The qualitative and quantitative features of these fluxes
provide new predictions which can be used to further validate previously proposed stochastic models
of geophysical systems.

1. Introduction

The idea of modeling a complex physical system
with a random process is several centuries old and
remains attractive today. By treating part of a system as
random, one can avoid following its complex, detailed
behavior and focus instead on its statistics. The result
is an enormous simplification. This strategy is most
successful when the dynamics can be divided into a
physically interesting slow component forced by a fast
component with high-dimensional chaotic dynamics.
One then considers the fast component as a random
perturbation on the deterministic dynamics of the slow
component.

The use of stochastic dynamics in atmospheric sys-
tems goes back several decades to work by Epstein
(1969) and Leith (1974). More recently the stochastic
paradigm has been applied to a number of geophysi-
cal systems. A partial list includes baroclinic waves
(Farrell and Ioannou, 1993; 1994), El Niño dy-
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namics (Penland and Magorian, 1993; Penland and
Sardeshmukh, 1995; Moore and Kleeman, 1996),
the Gulf Stream (Moore and Farrell, 1993) quasi-
geostrophic jets (DelSole and Farrell, 1996), low-
frequency variability (Newman et al., 1997), synoptic
eddies (Whitaker and Sardeshmukh, 1998), climate
statistics (DelSole and Hou, 1999), storm tracks
(Zhang and Held, 1999), ocean gyres (Moore, 1999),
atmospheric chemistry (Farrell and Ioannou, 2000),
and atmospheric angular momentum (Weickmann
et al., 2000).

The recent interest in stochastic systems arises in
part from the discovery that deterministically stable
systems can amplify random noise if the determinis-
tic part of the dynamics is non-normal (Farrell and
Ioannou, 1996a,b). Prior to this observation, it was
commonly thought that the large variability seen in
geophysical systems could only be maintained by ei-
ther large external forcing, random or otherwise, or in-
ternal instabilities of the mean state. Amplification of
small perturbations, however, provides another mech-
anism for large variability. The broad use of stochastic
models means that a better understanding of the theory
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of stochastic dynamical systems will impact a large
part of atmospheric and oceanic science.

Despite previous successes, a fundamental question
about the role of non-normality remains unanswered.
Noise amplification occurs when the linearized de-
terministic dynamics is non-normal. However, a non-
normal matrix can be made normal by an appropriate
coordinate change. According to long-standing prin-
ciples, a fundamental property of a system should not
depend on an arbitrary choice of coordinates. A re-
lated issue is that analyses of geophysical systems are
carried out in a variety of coordinate systems. The di-
versity of coordinate systems often reflects attempts to
focus on different aspects of the same phenomena. It is
thus important to understand how stochastic dynami-
cal systems behave under coordinate transformations.

There are two complementary ways to view stochas-
tic dynamical systems. The first view is that of stochas-
tic ordinary differential equations (SDEs). In an SDE,
the state of the system is described by a differential
equation which contains random forcing, and one nat-
urally writes equations for the moments of the tra-
jectories. In a system with Gaussian statistics, all the
information is contained in the first two moments.

The second view of stochastic dynamical systems
is called the Fokker–Planck view. Here, one focuses
on the probability distribution function (pdf) of the
system and obtains a linear deterministic partial dif-
ferential equation, the Fokker–Planck equation (FPE),
for its evolution. This has two advantages: (1) the FPE
is deterministic as opposed to the random SDE, and (2)
the FPE is linear in the pdf, rather than the possibly
nonlinear SDE. The price, however, is that the FPE
is a partial differential equation instead of the sim-
pler SDE, which is an ordinary differential equation.
These trade-offs mean that some questions are more
naturally answered in the SDE view, while others are
more naturally answered in the FPE view.

Most previous applications of stochastic dynamics
to geophysical systems have taken the SDE view. Here,
we consider the FPE view as well. This leads to pre-
viously unexplored, coordinate invariant properties of
the system, and to new predictions that, for the most
part, have not been tested against the phenomena being
modeled. It should be noted that in an information-
theoretic sense an FPE contains no information not
already contained in its associated SDE. However, as
we see below, looking at the FPE leads one to investi-
gate issues that are not obvious in the SDE view. The
converse is also no doubt true, but, so far, the SDE has
received the majority of the attention.

In this paper we focus on the simplest multivari-
ate stochastic dynamical system: linear determinis-
tic dynamics perturbed by additive Gaussian white
noise. Throughout the paper we will mostly use vector
and matrix notation, where a single symbol describes
multidimensional quantities. Occasionally, however,
it is more convenient to use index notation, where the
components of the vectors and matrices are explicitly
identified, and summation over repeated indices is as-
sumed. We will switch between these notations where
appropriate without comment.

2. Stochastic differential equations

In this section we review the mathematics of
stochastic differential equations (SDEs), also called
Langevin equations. More detail can be found in a
number of sources (Gardiner, 1983; Farrell and Ioan-
nou, 1996a,b). Although fluid systems such as the at-
mosphere and ocean are fundamentally described by
partial differential equations, it is often convenient
(and necessary for numerical modeling) to discretize
the system to a finite number of dimensions, result-
ing in an ordinary differential equation. We take such
truncated ordinary differential equations as our start-
ing point.

The SDE for a real stable linear deterministic dy-
namical system with additive Gaussian white noise is

dx(t)

dt
= A x(t) + Fξ(t), (1)

where x (t) is the real N dimensional vector describ-
ing the state of the system, A is the real N × N -
dimensional matrix describing the linear deterministic
dynamics, ξ(t) is a real N dimensional vector describ-
ing the noise process, and F is the so-called forcing
function, a real N × N -dimensional matrix describ-
ing how the noise impacts the state vector. For the
dynamical system to have stable solutions, A must be
stable, i.e., all of the eigenvalues of A must have neg-
ative real parts. The requirement that ξ be Gaussian
white noise implies that it is completely described by
its first two moments,

〈ξ(t)〉 = 0, 〈ξ(t)ξT (t ′)〉 = Iδ(t − t ′), (2)

where I is the N × N identity matrix, and the super-
script T denotes the transpose. The requirement that
the covariance of ξ be proportional to the identity is
completely general, since any other covariance can
be absorbed into the forcing function F. We restrict
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ourselves to real SDEs because the associated FPE is
simpler. Since an N-dimensional complex SDE can al-
ways be transformed into a 2N -dimensional real SDE
the case of real SDEs is completely general.

The solution of the SDE (1) is easily seen to be

x(t) = eAt x(0) +
∫ t

0
dseA(t−s)Fξ(s), (3)

which gives the positive definite covariance matrix
C = 〈xxT 〉

C(t) = eAt C(0)eAT t +
∫ t

0
dseA(t−s)FFT eAT (t−s), (4)

whose time evolution is given by

dC(t)

dt
= AC(t) + C(t)AT + 2D, (5)

where the diffusion matrix D is defined to be D =
FFT /2. Since the covariance only depends on FFT ,
it is invariant under orthogonal transformations of
the noise, ξ̂ = Rξ, where R is an orthogonal matrix,
RT = R−1.

In the limit t → ∞ the system reaches equilibrium
and the moments become independent of time. Since
the focus of this paper is on the equilibrium state, we
will not use any special notation to indicate equilib-
rium quantities; any quantity without explicit time de-
pendence will denote the equilibrium value. Since the
deterministic equilibrium x = 0 is stable the mean
equilibrium position is 〈x〉 = 0. From eq. (5) the equi-
librium covariance satisfies

AC + CAT + 2D = 0. (6)

Equation (6) is one of the primary equations in this
paper. A matrix equation with this structure is called
a Lyapunov equation and can be solved with a va-
riety of numerical techniques (Lu and Wachspress,
1991). Physically, eq. (6) is called the fluctuation–
dissipation relation (FDR) because it relates the equi-
librium fluctuations (C) and the deterministic dissipa-
tion (A). These two names are not synonymous; in one
dimension the FDR is not a Lyapunov equation but a
simple scalar equation. Because we wish to emphasize
the physical content of the equation we will refer to
eq. (6) as the FDR.

When A is stable, all eigenvalues have negative real
parts and all eigenvectors decay exponentially. If the
eigenvectors are orthogonal, then all initial conditions
decay exponentially and no amplification is possible.
However, when A does not commute with its trans-
pose, AAT − AT A = 0, it is called non-normal and its

eigenvectors are not orthogonal (Horn and Johnson,
1985). In this case interference between the expo-
nentially decaying eigenvectors can cause transient
amplification. Typically, fluid systems such as the at-
mosphere and ocean give non-normal operators when
linearized about physically relevant mean states, and
thus exhibit transient amplification.

In a continuously forced system, such as the SDE
studied here, the continuous excitation by random
noise results in the system maintaining a finite vari-
ance in equilibrium. Previous theoretical work has fo-
cused on the case where the diffusion matrix is pro-
portional to the identity matrix, e.g., Ioannou (1995)
and Farrell and Ioannou (1996a). In such systems with
normal deterministic dynamics, all excitations decay
and the equilibrium variance of the system is of the
same order as the size of the noise. In such systems
with non-normal deterministic dynamics, the continu-
ous amplification of the random noise can result in an
equilibrium variance much larger than the size of the
noise (Ioannou, 1995).

One difficulty with this view is that a non-normal
system can always be made normal by an appropri-
ate choice of norm, or equivalently, by an appropriate
coordinate change. Thus, transient amplification and
increased equilibrium variance depend solely on an
arbitrary choice of coordinates. According to long-
standing principles, fundamental properties of a sys-
tem should be independent of such arbitrary choices
and, in this view, non-normality should not influence
the basic properties of the dynamics.

3. The Fokker–Planck equations

An ensemble of systems governed by the same
SDE can be described by their pdf, p(x, t), where
p(x, t) dN x is the probability of finding a member of
the ensemble in a phase space volume dN x around
the state x at time t. The equation describing the
evolution of p, called the Fokker–Planck equation,
can be derived from the SDE governing the system
(Gardiner, 1983; Risken, 1984; van Kampen, 1992).
The Fokker–Planck equation corresponding to the
SDE (1) is

∂p(x, t)

∂t
= −∇[Ax p(x, t)] + ∇D∇ p(x, t). (7)

In the previous section we saw that the covariance is in-
dependent of orthogonal transformations of the noise.
Since the FPE depends only on D and not on F itself,
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all properties of the stochastic system are independent
of such transformations.

The FPE can be rewritten in terms of a velocity,

∂p(x, t)

∂t
+ ∇ · [u(x, t)p(x, t)] = 0, (8)

where

u(x, t) = A x − D∇ ln p(x, t). (9)

The natural logarithm in the above equation arises
from factoring a p from the diffusion term in the FPE,
resulting in a factor of (1/p) ∇ p. This continuity equa-
tion form of the FPE expresses the fact that probabil-
ity is neither created nor destroyed, but is advected
through phase space by u. The phase space velocity u
has two parts: the velocity produced by the determinis-
tic dynamics, Ax, which is independent of the pdf; and
a velocity arising from down-gradient diffusion, −D∇
ln p(x, t), which depends on p. The quantity J(x, t) =
u (x, t) p(x, t) is called the probability current.

In equilibrium the pdf is independent of time, and
thus the divergence of the equilibrium probability cur-
rent is zero. For linear systems with additive Gaussian
noise, the equilibrium pdf is itself Gaussian,

p(x) = N (Q)e−xT Qx/2, (10)

where N (Q) is the normalization factor and the posi-
tive definite matrix Q is the inverse of the covariance
matrix, Q = C−1. Gradients of p are given by ∇ p(x) =
−Qx p(x), and the phase space velocity is then linear
in x, u(x) = Ωx, where Ω ≡ (A + DQ) is a matrix of
frequencies. The equilibrium FPE requires

Trace(Ω)p(x) − xT QΩx p(x) = 0. (11)

Since the two terms in eq. (11) have different powers of
x, and the equation must hold for all x, each term must
be zero separately. One can show that the second term
is equivalent to the FDR (6), and that the second term
being zero implies the first term is also zero. Thus, the
equilibrium solution of the FPE is precisely that pdf
which satisfies the FDR

4. Coordinate transformations

We now investigate how stochastic dynamical sys-
tems transform under different norms, or equivalently,
in different coordinate systems. A positive definite ma-
trix M defines an inner product (x, x) ≡ xT Mx, and
an associated vector norm ||x|| = (xT Mx)1/2. Since

M is positive definite it can be decomposed into M
= RT R, where R is non-singular. This defines a new
vector x̂ = Rx, and a new, Euclidean, norm, ||x̂|| =
(x̂T x̂)1/2 = (xT Mx)1/2 = ||x||. Thus, considering dif-
ferent norms in one coordinate system is equivalent to
considering different coordinate systems with a single
norm. Here we use the Euclidean norm and consider
the effect of coordinate transformations.

Let x̂ = Rx be a new coordinate system obtained by
some transformation matrix R. For simplicity, we re-
strict ourselves to non-singular transformations, which
is consistent with associating coordinate transforma-
tions and norms. To consider transformations which
project onto a subspace of the system, and are associ-
ated with semi-norms, one would have to generalize
the current work. One can perform coordinate trans-
formations within the FPE Gardiner (1983); Risken
(1984), but it is simpler to first transform the SDE and
then study the associated FPE. In x̂ coordinates, the
SDE (1) becomes

dx̂(t)

dt
= Âx̂(t) + F̂ξ(t), (12)

where Â = RAR−1, and F̂ = RF. The transformed
diffusion matrix is then D̂ = F̂F̂

T
/2 = RDRT . The

transformed covariance matrix, Ĉ = 〈x̂x̂T 〉 = RCRT ,
is the solution to the transformed FDR, and its inverse
is Q̂. In the new coordinates the phase space velocity
is û = Ω̂x̂ = Ru, where Ω̂ = Â + D̂Q̂ = RΩR−1.

The choice of coordinate system for studying a par-
ticular physical system is highly subjective. One would
thus like to focus on properties that are coordinate in-
variant and consider their manifestations in various
coordinate system. Here we consider several common
choices for coordinate systems.

One common analysis tool is to study a system’s
empirical orthogonal functions (EOFs). The EOFs of
a system are the eigenvectors of the covariance matrix
C. In EOF coordinates C and its inverse Q are diagonal.
The surfaces of constant probability in the equilibrium
pdf are nested N dimensional ellipsoids whose axes are
the EOFS.

EOF coordinates have the disadvantage that the
dominant EOF can obscure the behavior of EOFs with
smaller variance. It can thus be advantageous to scale
each EOF by the square root of its variance, result-
ing in a coordinate system where each degree of free-
dom has the same variability. In this coordinate sys-
tem the variance is unity in all directions, C = Q = I,
and surfaces of constant probability in the pdf are N
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dimensional spheres. We will call this coordinate sys-
tem identity–covariance coordinates. Here the FDR is
A + AT + 2D = 0, or D = −Asym, where Asym is
the symmetric part of A. The frequency matrix which
defines the phase space velocity is skew-symmetric,
Ω = A + DQ = Askew, where Askew ≡ (A − AT )/2 is
the skew-symmetric part of A.

If one wishes to focus on the eigenvectors of the de-
terministic dynamics, it is natural to use coordinates
where A is normal. In normal coordinates the eigen-
vectors of A are orthogonal and perturbations strictly
decay.

Much of the previous theoretical work considered
the coordinate system where the noise forcing func-
tion is the identity, F = I and D = 1

2 I. This coordinate
system, which we will call identity-noise coordinates,
is the natural choice if one has no knowledge of the
structure of the noise. If, however, the noise arises
from an underlying deterministic chaotic process, one
may want to include the structure of the correlations in
the noise. For example, in stochastic El Niño models,
where the fast chaotic atmospheric forcing of tropical
Pacific sea surface temperatures is modeled as ran-
dom noise, the coordinates used by previous investi-
gators are EOF coordinates, and the diffusion matrix
is not proportional to the identity matrix (Penland and
Sardeshmukh, 1995).

5. Detailed Balance

In Section 3 we have seen that equilibrium requires
the phase space velocity to be divergence free. This
can be achieved in two ways: (1) either u ≡ 0, or
(2) u = 0 but ∇ · u = 0. The first possibility, u ≡ 0,
is a necessary and sufficient condition for the physi-
cal situation called detailed balance (Gardiner, 1983;
Risken, 1984). When a system is in detailed balance,
the probability of a transition between any two states
S1 → S2 is the same as the probability of the reverse
transition S2 → S1. The second possibility, u = 0, oc-
curs when detailed balance is violated. The two possi-
bilities are drawn schematically in Fig. 1. Considering
the two terms that make up u [eq. (9)], detailed bal-
ance occurs when the deterministic component of the
velocity exactly balances the down-gradient diffusion
due to noise. When a system in equilibrium violates
detailed balance the random noise is rectified into a
nonzero probability current.

We now explore the relation between detailed bal-
ance and the matrices defining the dynamical system.
When u = 0 then, from the definition of u [eq. (9)],

S1

S2

S3

u = 0
S1

S2

S3

u =/ 0

Fig. 1. Schematic diagram of a system with three states in
equilibrium indicating the relationship between transition
probabilities and detailed balance. The size of the transition
probability is indicated by the length of the arrow connecting
the two states. (a) Forward and reverse transition probabil-
ities are equal, detailed balance is satisfied, and u = 0. (b)
Forward and reverse transition probabilities are not equal,
detailed balance is violated, and u rotates clockwise.

D−1Ax = ∇ ln p, (13)

which requires that the vector D−1Ax be the gradient
of some scalar function. For a vector v to be a gradient
it must obey ∂ ivj − ∂ jvi = 0, which, in this case,
becomes

AD − DAT = 0. (14)

One can also show that the converse is true, and thus
AD − DAT = 0 if and only if the system satisfies
detailed balance.

The phase space velocity that arises when detailed
balance is violated has some interesting properties.
First, because uT · ∇ p = 0, the phase space velocity
is directed along surfaces of constant probability at all
points in phase space. Further, one can show from the
FDR that the eigenvalues ofΩmust have zero real part.
Thus, u is a pure rotation along surfaces of constant
probability.

Now consider the effect of coordinate changes. In
coordinates x̂ = Rx, the condition for detailed bal-
ance, eq. (14), becomes

ÂD̂ − D̂Â
T = R(AD − DAT )RT = 0. (15)

Thus, whether or not detailed balance is satisfied is co-
ordinate invariant (provided R is nonsingular). Simi-
larly, since û = Ru, whether or not the velocity is zero
is also coordinate invariant.

Considering coordinate changes allows another in-
terpretation of detailed balance. One can show that sat-
isfying detailed balance is equivalent to the existence
of a coordinate transformation which simultaneously
diagonalizes A and D. If A and D are both diago-
nal, then the original N-dimensional system reduces
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to N uncoupled one-dimensional systems. Thus, sys-
tems violating detailed balance are intrinsically multi-
dimensional, while systems satisfying detailed bal-
ance are essentially a collection of one-dimensional
systems.

Many previous studies of stochastic models of geo-
physical systems, where the emphasis was on the non-
normality of A, considered only identity–noise coordi-
nates [e.g., (Farrell and Ioannou, 1996a) and Ioannou
(1995)]. In this case, satisfying detailed balance im-
plies that A is symmetric and hence normal. Thus,
the systems previously considered, where D = 1

2 I and
A is non-normal, necessarily violated detailed bal-
ance. Here we see that the fundamental coordinate
invariant property underlying these systems is not non-
normality, but the violation of detailed balance.

It is important to note that, in general, normal-
ity of the deterministic component of the dynamics,
expressed by the normality of A, and the property
of detailed balance are completely independent. By
choosing an appropriate noise forcing function F that
gives a diffusion matrix D which satisfies eq. (14), one
can satisfy detailed balance with non-normal A. On
the other hand, by transforming a non-normal system
in identity–noise coordinates, which violates detailed
balance, to normal coordinates, one obtains a system
which violates detailed balance but has normal A. Even
in identity–noise coordinates detailed balance and nor-
mality are not equivalent: here systems satisfying de-
tailed balance must be normal, but systems violating
detailed balance can be either normal or non-normal.
The important point which makes detailed balance co-
ordinate invariant but non-normality of A coordinate
dependent is that coordinate changes transform both
the deterministic dynamics and the noise forcing.

6. Energy

In the SDE view of a stochastic system average
quantities are obtained by averaging over realizations
of the random noise. In the FPE view averages are
obtained by averaging over phase space. Thus, in the
SDE view averages combine information about sys-
tems at different points in phase space, while in the
FPE view the dependence of averages on the state of
the system arises naturally.

The generalized energy of a dynamical system is
the Euclidean norm of the state vector, E = xT · x.
This generalized energy corresponds to the physical
energy when x is in the appropriate coordinate system.
As noted by previous authors, the energy is given by

the trace of the covariance matrix, E = Trace (C).
In the SDE view the mean energy is E = 〈xT · x〉
where the average is over all realizations of the noise
and over systems at different points in phase space. In
the FPE view the energy is given by an average over
phase space,

E =
∫

dN xxT · x p(x, t) (16)

which naturally gives rise to the phase space energy
density E(x, t) ≡ xT · x p(x, t).

The time evolution of the energy density can be
written using the continuity form of the FPE (8) to
obtain

∂E
∂t

+ ∇ · (uE) = Es, (17)

where Es = 2(xT · u)p = 2(xT Ωx)p is the energy
density source. The quantity uE can be interpreted as
an energy flux in phase space. In the following we will
refer to Es as a source, with the understanding that a
negative source is an energy density sink. From the
two terms that make up u [eq. (9)] we see that there is
a source from the deterministic dynamics, 2(xT Ax)p,
and a source from the noise, 2(xT DQ x)p. Note that
even though the deterministic dynamics is stable and
the eigenvalues of A have negative real part, its con-
tribution to the energy source can be either positive or
negative. Similarly, even though D and Q are both pos-
itive definite, the noise induced energy source can also
be either a source or a sink. Thus, eq. (17) says that the
energy density is advected through phase space by the
phase space velocity and modified by a deterministic
energy source and a noise induced energy source.

When the system is in equilibrium the energy den-
sity must be constant in time and ∇ · (uE) = 2xT · up.
Thus, a system which satisfies detailed balance in equi-
librium, i.e., u = 0, has no energy flux and no energy
sources. A system that violates detailed balance neces-
sarily has a nonzero energy flux in phase space whose
divergence is balanced by energy sources. Because the
integral over phase space of the flux must be zero, loca-
tions with sources must balance locations with sinks.
If the energy sources are identically zero there is a
nonzero divergence-free energy flux.

The quantitative value of the energy flux uE will de-
pend on the coordinate system, but its presence or ab-
sence, like the detailed balance condition, is invariant
under coordinate transformations. Thus, a coordi-
nate invariant property of the previously studied non-
normal systems is that they have a nonzero phase space
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energy flux. The presence of sources and sinks, on
the other hand, is coordinate dependent. In identity–
covariance coordinates Ω is skew-symmetric and
Es = 0.

One can find the locations in phase space where
the energy density and its sources are maximized or
minimized. Considering xT · ∇E = 0 shows that the
energy density maxima are on the two standard devi-
ation probability surface where xT Qx = 2. Similarly,
the extrema of the energy density sources also occur on
the two standard deviation probability surface. Thus,
these extrema occur when the system is in a relatively
unlikely state corresponding to a two standard devia-
tion event.

More generally, any quantity that is obtained by an
average over phase space will display similar proper-
ties. Consider some property B = ∫

dN xb(x) p(x, t)
with densityB ≡ b(x)p(x, t). Then the density is gov-
erned by an equation ∂tB + ∇ · (uB) = Bs, where the
source is given byBs = (uT · ∇b)p. In a system where
detailed balance is satisfied the flux uB and the source
Bs are zero, while when detailed balance is violated
the system supports a flux and possible sources. Fur-
ther, if b ∼ xn, then the extrema of the density and the
density sources occur on the probability surface cor-
responding to n standard deviations, i.e., at locations
x which satisfy xT Qx = n. Thus, a system violating
detailed balance must have nonzero phase space fluxes
of all quantities for which one can define a phase space
density: energy, momentum, heat, etc.

The nonzero fluxes resulting from violations of de-
tailed balance provide new, mostly unexplored, predic-
tions of previously studied stochastic models of geo-
physical systems. While Farrell and Ioannou (1994),
for example, did study the heat flux in stochastically
excited baroclinic waves, it has not been previously
noted how general these fluxes are and they have not
been studied in most applications. It should be em-
phasized that no additional assumptions are needed to
obtain these fluxes: they are required in any system
violating detailed balance. Testing the predicted flux
of energy and other quantities against observations
will provide new evidence for the success or failure
of stochastic models of atmospheric and oceanic phe-
nomena.

7. Noise amplification

In previous work (Ioannou, 1995) it has been shown
that stochastic dynamical systems in identity–noise co-

ordinates with non-normal deterministic components
can amplify the random noise and, as a result, the sys-
tem can sustain a relatively large variance. Here we
investigate the relationship between noise amplifica-
tion in equilibrium and coordinate transformations.

In a one-dimensional system it is straightforward to
define the gain g as the ratio of the maintained vari-
ance to the diffusion coefficient, g = C/D = −1/A,
where all quantities are scalars. For multi-dimensional
systems the relevant quantities are matrices and there
is no single obvious definition of the gain. Ioannou
(1995) used the energy, E = Trace (C), which is a
reasonable choice when the noise is fixed. Here we
consider coordinate transformations which can pos-
sibly rescale the noise. The FDR (6) shows that for
a fixed deterministic dynamics the covariance matrix
scales with the diffusion matrix. This simply reflects
the fact that larger noise gives a proportionally larger
response. Thus, any measure of gain must, in some
sense, divide by the diffusion matrix. One could de-
fine the gain as the ratio of the system energy to the
noise energy, Trace (C)/ Trace (D), but this quantity
is only invariant under orthogonal coordinate transfor-
mations.

We choose to define the gain matrix G ≡ CD−1,
which is one obvious generalization of the gain in
one-dimensional systems. The eigenvalues of G are
all positive, but it is not necessarily symmetric, and
hence not necessarily positive definite. Another pos-
sible generalization is D−1C = GT . We will focus on
scalar measures of noise amplification which give the
same result for G and GT and are coordinate invari-
ant. The two obvious candidates are gtr ≡ Trace (G)
and gdet ≡ Det (G). Under coordinate transformations
Ĝ = RGR−1 and both gtr and gdet are coordinate in-
variant. At this point, there is no compelling reason
to choose one definition over another. In specific ap-
plications the concept of noise amplification will have
concrete physical manifestations which will inform
the choice of the amplification measure.

The gain is directly related to the violation of de-
tailed balance. By analogy with the one-dimensional
case, we might guess that the gain can be expressed
in terms of G0 ≡ −A−1. Since A is stable, gtr

0 ≡
Trace(G0) and gdet

0 ≡ Det(G0) are positive. As in the
one-dimensional case, as the deterministic dynamics
gets more stable both gtr

0 and gdet
0 decrease. When de-

tailed balance is satisfied, Ω, which can be written as
Ω = A + G−1, is zero and thus G = G0.

One can show that the g0’s are lower bounds on
the respective gains. Since gtr and gdet are coordinate
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invariant, one can pick any convenient coordinate sys-
tem to perform the analysis. In identity-noise coordi-
nates, where D = 1

2 I, one can show that

gtr = 2Trace(C) ≥ −2
N∑

i=1

1

λi + λ∗
i

≥ −Trace(A−1),

(18)

where λi are the eigenvalues of A, the first inequal-
ity is that of Ioannou (1995), and second inequality
follows from the fact that the eigenvalues of A−1 are
1/λi and the λi ’s are either real or complex conjugate
pairs. Thus, gtr ≥ gtr

0 . For the determinant measure,
in identity-covariance coordinates D = −Asym and the
so-called Ostrowski–Taussky inequality (Lütkepohl,
1996) gives gdet ≥ gdet

0 . Thus, the coordinate invariant
gains defined here are minimized when the system sat-
isfies detailed balance and the minimum value is the
obvious generalization of the one-dimensional case.
When detailed balance is violated, the gain can be sig-
nificantly larger. Noise amplification is only possible
when detailed balance is violated.

The determinant defined gain gdet has an interpreta-
tion in terms of the energetics of the system. In EOF
coordinates each eigenvalue of C represents the energy
of the EOF. Thus, eC = (Det(C))1/N can be interpreted
as the geometric mean energy per degree of freedom.
Due to the transformation properties of C this quan-
tity, like the energy itself, is not coordinate invariant.
However, (gdet)1/N = eC/eD, the ratio of the geometric
mean energies per degree of freedom of the response
and the noise, is coordinate invariant. Violation of de-
tailed balance thus can cause an amplification of the
system’s energy over that predicted by gdet

0 in this spe-
cific sense.

8. Examples

In this section we explore the behavior of simple
two-dimensional dynamical systems to illustrate the
theoretical ideas presented above. Although these dy-
namical systems are not models of any particular phys-
ical system, the low dimensionality allows one to eas-
ily visualize the properties of the system.

Consider the stochastic dynamical system
dx(t)/dt = Ax(t) + Fξ(t) [eq. (1)] with matrices

A =
(

−1 −cotθ

0 −2

)
, F = I, (19)
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Fig. 2. Properties of the system described by eq. (19) with
cot(θ ) = 5, which violates detailed balance. The equilibrium
pdf is contoured in gray with darker shades corresponding
to larger probabilities. The eigenvectors of A are indicated
by the thick lines where the double arrows indicate the more
stable eigenvector. The equilibrium phase space velocity field
u/|x| is indicated by the arrows, where the velocity has been
scaled by |x| to remove its linear structure.

which is the example of Farrell and Ioannou (1996a).
When cot(θ ) = 0 the deterministic matrix is non-
normal and the system violates detailed balance.
The FDR (6) can be solved numerically (Lu and
Wachspress, 1991).

The results for cot(θ ) = 5 are shown in Fig. 2. The
non-normality of A is seen by the lack of orthogonality
of its eigenvectors. The equilibrium pdf has elongated
surfaces of constant probability. As the deterministic
non-normality and violation of detailed balance grow
(keeping the diffusion matrix constant) the eigenvec-
tors of A become more parallel and the elongation
of the pdf becomes more extreme. Since the phase
space velocity u = Ωx is linear in x its structure is
best seen by plotting u/|x|. The direction of u follows
surfaces of constant probability, and the magnitude is
large along the flanks of the pdf, and smaller at the
turning points. Although the speed varies around the
pdf, the divergence of u is zero, and the acceleration
is thus due to changes in spacing of the probability
contours.

The energetics are shown in Fig. 3. The energy den-
sity has peaks where the major axis of the pdf intersects
the two standard deviation probability surface. The en-
ergy density source field has maxima and minima on
opposite sides of each energy density peak. As one
follows the phase space velocity u around the pdf, the
energy flux and energy density increase as one goes
through the source regions, reach a peak, and then de-
creases as one goes through the sink regions.

The energetics of the system are perhaps sim-
plest in identity–covariance coordinates, where there
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Fig. 3. Energetics for the system described by eq. (19) with
cot(θ ) = 5. Contours of the energy density are indicated by
solid lines, with equal peaks inside the concentric curves and
values near zero outside the curves. The energy density source
is contoured with a grayscale where dark shades are positive,
and hence are energy density sources, and light shades are
negative and energy density sinks. The energy flux is indi-
cated by the arrows, where only vectors with magnitudes
above a small threshold are drawn.

are no energy density sources and the energy flux
is divergence-free. Since C = I the pdf is simply
p(r ) = (1/2π )e−r2/2 and the probability surfaces are
concentric circles. The energy density and the energy
flux are axisymmetric, and there is a uniform azimuthal
energy flux around the phase space (Fig. 4). The en-
ergy density peaks at the radius of the two standard
deviation probability surface, r = √

2, and the mag-
nitude of the energy flux peaks at a slightly larger
radius.

We next investigate the noise amplification focusing
on the trace definition of gain. Similar results are ob-
tained for the determinant definition. When θ = π/2
the system satisfies detailed balance, has a normal de-
terministic matrix, and thus gtr = gtr

0 . As θ deviates
from π/2 detailed balance is increasingly violated,
the deterministic matrix becomes increasingly non-
normal, and gtr grows (Fig. 5). Now consider a sys-
tem with the same deterministic dynamics but with the
diffusion matrix

D = 1

2

(
1 + 2 cot2(θ ) cot(θ )

cot(θ ) 1

)
. (20)

For this system, detailed balance is satisfied regard-
less of the value of θ and the resulting non-normality
of the deterministic dynamics. Now the gain is con-
stant at gtr

0 (Fig. 5), demonstrating that the amplifica-
tion of the noise depends on the property of detailed
balance and not on the normality of the deterministic
dynamics.
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Fig. 4. Properties of the system described by eq. (19) with
cot(θ ) = 5 in identity-covariance coordinates. The two stan-
dard deviation probability surface is shown as a solid line, the
energy density is indicated by the grayscale, where larger val-
ues are darker, and the energy flux is indicated by the arrows,
where only vectors with magnitudes above a small threshold
are drawn.

9. Discussion

In this paper we have focused on the equilib-
rium state of linear stochastic dynamical systems with
additive Gaussian white noise. By viewing the stochas-
tic dynamical system in terms of its Fokker–Planck

0 π/2 π1

10

100

1000

g

θ

Fig. 5. Gain gtr as a function of θ for a system defined by
eq. (19) which violates detailed balance when θ = π/2 (solid
line), and a system with the same deterministic dynamics but
with the diffusion matrix given by eq. (20) which satisfies
detailed balance for all θ (dashed line).
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equation (FPE), the coordinate invariant property
of detailed balance is seen to be the fundamental
property determining the system’s behavior. When
a system violates detailed balance, transitions have
a preferred direction and the equilibrium state sus-
tains a nonzero phase space velocity. In this case,
the random noise is rectified into a flow with a
preferred direction. The details of this rectified ve-
locity are coordinate dependent, but its existence
is invariant under nonsingular coordinate transfor-
mations.

Previous studies focused on the coordinate depen-
dent property of non-normality of the deterministic
dynamics. These previously studied systems also vio-
lated detailed balance. Here, we take the view that the
coordinate invariant nature of detailed balance makes
it the preferred concept for interpreting the dynam-
ics. The resulting phenomena have different manifes-
tations in different coordinate systems. In the identity–
noise coordinates used in many previous studies,
the phenomena are related to the non-normality of
the deterministic operator and its ability to tran-
siently amplify perturbations. In other coordinate sys-
tems the same underlying phenomena have different
manifestations.

One of the objections to using stochastic dynam-
ical systems to model many geophysical phenom-
ena is that they do not seem all that random. While
phenomena like ENSO and baroclinic life cycles do
have irregular aspects in their behavior, they also
have a definite organization that seems distinctly non-
random. The heuristic image of a random process such
as the stereotypical drunkard’s walk appears at odds
with such organized behavior. However, a drunkard’s
walk satisfies detailed balance: the drunkard is just
as likely to stumble one way as another. Violation of
detailed balance necessarily produces a rectification
of the noise into an organized phase space velocity
which can model the organization seen in geophysical
phenomena.

One new result of this paper is that systems that vi-
olate detailed balance necessarily have nonzero fluxes
of all physical quantities that can be written in terms
of a phase space density. The detailed manifestation of
these fluxes is, like the phase space velocity, coordinate
dependent, but their existence is coordinate invariant.
Further, the fluxes have a very specific structure which
is imposed by dynamics, and they thus provide detailed
predictions which can be used to validate stochastic
models.

An important property of previously studied non-
normal stochastic systems is they can amplify a
small random forcing. Thus, the large variability
seen in geophysical systems can be produced by
stable non-normal deterministic dynamics perturbed
by small noise, rather than requiring instabilities or
large forcing. Here, by defining noise amplification
in a coordinate-invariant manner, we see that, again,
it is the violation of detailed balance rather than
non-normality that gives rise to noise amplification.
Once again, the specific manifestation of the noise-
amplification is coordinate-dependent.

The application of these ideas to the many specific
geophysical systems which have already been mod-
eled by stochastic dynamical systems should yield
important new tests of the validity of these models.
For example a stochastic model of ENSO with sea-
surface temperature and thermocline depth as the state
variables would provide detailed predictions about the
heat stored in the mixed layer, its fluxes, and the heat-
ing and cooling of the mixed layer by the random and
deterministic components, often associated with the
atmosphere and ocean, respectively.

This paper has focused on the equilibrium state.
Stochastic models are often used for predictions from
a given initial condition, as is done, for example,
for tropical sea-surface temperature (Penland and
Magorian, 1993). In this case, the appropriate FPE
describes the time-dependent decay from a pdf repre-
senting the uncertainty in the initial state. Extending
the ideas presented here to such time-dependent cases
could provide predictions of new quantities similar to
the fluxes seen in equilibrium.

Both the deterministic and stochastic components of
the dynamics explored here are as simple as possible.
Improved stochastic models of geophysical systems
may entail further complexity. One can add nonlin-
earity to the deterministic dynamics, and perturb the
dynamics with non-Gaussian, colored or multiplica-
tive noise. All of these complexities can and should be
studied from both the SDE and FPE perspective in a
variety of coordinate systems.
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