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Abstract 

Structures such as waves, jets, and vortices have a dramatic impact on the transport properties of a flow. 
Passive tracer transport in incompressible two-dimensional flows is described by Hamiltonian dynamics, and, for 
idealized structures, the system is typically integrable. When such structures are perturbed, chaotic trajectories 
can result which can significantly change the transport properties. It is proposed that the transport due to the 
chaotic regions can be efficiently calculated using Hamiltonian mappings designed specifically for the structure 
of interest. As an example, a new map is constructed, appropriate for studying transport by propagating isolated 
vortices. It is found that a perturbed vortex will trap fluid parcels for varying lengths of time, and that the 
distribution of such trapping times has slopes which are independent of the amplitudes of both the vortex and 
the perturbation. 

1. Introduction 

Many fluid flows are highly structured, con- 
taining a variety of vortices, waves, jets, and 
fronts. These structures can exist over an ex- 
tremely wide range of parameter values, from 
nonturbulent flows with relatively weak forcing 
such as Rayleigh-Benard convection beyond 
the first bifurcation, to extremely turbulent 
flows such as planetary atmospheres and oceans. 
Structures can have a profound impact on the 
transport properties of flows through a variety 
of mechanisms: jets can act as barriers to trans- 
port, while vortices and waves can trap fluid 
parcels and carry them large distances. These 
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phenomena are of great importance in geophys- 
ical flows. The Gulf Stream can act as a barrier 
to transport, affecting both heat and salinity 
transport in the North Atlantic [1 ], the strato- 
spheric polar night vortex traps fluid within its 
boundaries where chemical reactions result in 
ozone depletion [2], and vortices in the ocean 
can carry water far from its original source af- 
fecting the overall transport in the ocean [3,4]. 

Studying the transport properties of a fluid re- 
quires the use of two different descriptions of  
a flow. The Eulerian description specifies the 
fluid properties (velocity, temperature, etc.) in 
a fixed reference frame, while the Lagrangian de- 
scription specifies properties in a frame moving 
with each fluid parcel. The Eulerian velocity is 
uE (x, t), where x can be, for example, a position 
fixed in the frame of the laboratory for a labora- 
tory experiment, or a position fixed to the Earth 
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for a geophysical flow. Lagrangian properties are 
determined by X (x0, t), the position at time t of  
the fluid parcel labeled by its initial position x0, 
X (x 0, 0) = x 0. The relationship between the two 
descriptions is the fact that an ideal fluid parcel 
is transported by the local Eulerian velocity, 

d X / d t  = u E ( X ,  t ) .  (1) 

In this paper we shall only be concerned with 
the transport of  ideal passive tracers that are 
described by ( 1 ). Real contaminants may have 
other forces acting on them such as drag or 
buoyancy which modify the relation ( 1 ). These 
effects are addressed by other contributions in 
this volume. Another simplification we shall 
make is that we only consider two-dimensional 
flows. Many geophysical flows are constrained 
by rapid rotation and stable stratification, re- 
suiting in flows which are approximately two- 
dimensional. In addition, some laboratory flows 
have a symmetry which makes them effectively 
two-dimensional. The question of extension to 
three dimensions is certainly interesting, but we 
defer it to later work. In Section 2 of this paper 
we discuss the general notion of  using Hamilto- 
nian maps to study transport. In Section 3 we 
introduce a new map to study the geophysically 
important phenomenon of transport by isolated 
vortices. 

2. Hamiltonian maps 

The typical pathway for theoretically studying 
transport is to determine u e  and then use ( 1 ) to 
study the Lagrangian behavior of  fluid parcels. 
In many situations, accurately determining the 
Eulerian flow field is a difficult task in its own 
right. Laboratory measurements and geophysical 
observations are often too sparse to determine 
u e  over a large region. For simple flow situa- 
tions one may be able to determine the Eulerian 
flow analytically through such tools as bifurca- 
tion theory. In the case of complex flows, how- 
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ever, one must usually resort to numerical sim- 
ulation. 

Even if one knows the Eulerian flow, study, 
ing transport requires integrating ( 1 ) for a long 
time using a large number of initial conditions. 
These computations, even for a single set of  flow 
parameters, can often be too expensive to be 
currently practical. In this paper we discuss the 
use of Hamiltonian maps to efficiently calculate 
transport properties of  two-dimensional struc- 
tured flows. One such map has been previously 
used to study transport in waves [5,6]. Here we 
present the viewpoint that this technique is ap- 
plicable to a wider variety of structured flows, 
with each class of structures requiring a different 
specific Hamiltonian map. 

The relationship between Hamiltonian dy- 
namics and transport is due to the incompress- 
ibility of the flow [7 ]. In incompressible two- 
dimensional flows the Eulerian velocity u e  = 

uJ  + v~ is determined by a streamfunction 
~ , ( x , y , t ) :  

u = - O ~ , l O Y ,  v = O~, lOx .  (2) 

Eqs. (1) and (2) imply that the parcel trajecto- 
ries X = x~ + y)) are given by Hamilton's equa- 
tions with g acting as the Hamiltonian: 

= -O ,lOy, = O ,lOx. (3) 

The entire theory of  Hamiltonian dynamics 
can now be applied to questions of transport in 
two-dimensional incompressible flows [8]. One 
important fact is that if ~u is independent of 
time then (3) is integrable and the fluid tra- 
jectories are regular. Steadily propagating pat- 
terns are also integrable since the streamfunc- 
tion is stationary in a moving reference frame. 
If an integrable streamfunction has fixed points 
connected by a separatrix (i.e. a homoclinic or 
heteroclinic connection) then a periodic pertur- 
bation will typically result in chaotic fluid tra- 
jectories. Furthermore, the chaos will have the 
usual fractal structure of resonant islands, KAM 
curves, and cantori. An interesting aspect of  this 
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is due to the fact that the phase space in (3) is 
the physical space of the fluid. Thus, the phase 
space structures appear in the fluid itself and can 
be observed experimentally [ 8 ]. 

It is often the case that a pure idealized fluid 
structure can be described by a stationary or 
steadily propagating streamfunction. The trans- 
port due to this idealized structure is not too dif- 
ficult to discern, as the streamfunction is inte- 
grable and the trajectories are regular. If the am- 
plitude of a structure becomes sufficiently large, 
then the streamfunction can undergo a bifurca- 
tion creating fixed points connected by separa- 
trices, and the separatrices can divide the fluid 
into regions which have very different transport 
behavior. For example, if the amplitude of a sin- 
gle frequency traveling wave is sufficiently large, 
then the fluid is divided by a separatrix into two 
regions: a region where parcels are trapped by 
the wave and carried long distances, and a re- 
gion where parcels flow backwards with respect 
to the wave [ 9 ]. Two parcels starting nearby, but 
on different sides of the separatrix will thus have 
very different fates. 

An important point is that the qualitative 
nature of transport by fluid structures is de- 
termined by the topology of the separatrices 
in the time-independent idealized structure, 
i.e. how the separatrices are connected to each 
other. Geometrical features such as the exact 
shape or location of a separatrix will only af- 
fect quantitative aspects of  the transport. Thus, 
one has a certain freedom in characterizing 
the streamfunction of  a structure. As long as a 
streamfunction correctly captures the topology 
of separatrices it will qualitatively reproduce the 
transport. Additionally, if the streamfunction's 
geometry can be varied by changing parameters 
then one can study how quantitative aspects of 
transport depend on the geometry. Thus, one 
can profitably study transport using an approxi- 
mate streamfunction, bypassing the difficulty of 
accurately determining the Eulerian flow. 

Once the idealized structure is modeled by 
an integrable streamfunction the next step is to 
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study the effect of  perturbations. Here we use the 
hypothesis that the chaotic behavior of weakly 
perturbed integrable Hamiltonian systems is rel- 
atively insensitive to the details of  the perturba- 
tion. This hypothesis is extremely useful in that 
it both allows one to choose particularly conve- 
nient perturbations and it frees one from hav- 
ing to study in detail the types of perturbations 
which affect a given structure in its natural en- 
vironment. By carefully choosing a periodic per- 
turbation one can obtain a system which can 
be analytically integrated over a single period of 
the perturbation, transforming the original set 
of  Hamiltonian ordinary differential equations 
into a Hamiltonian map. This is advantageous 
since it is significantly easier and faster to com- 
pute iterations of maps than integrations of ordi- 
nary differential equations. This procedure was 
originally used to study chaotic behavior in the 
pendulum where it results in the standard map 
[10,11]. 

While the hypothesis of  insensitivity to details 
of the perturbation is certainly true for periodic 
perturbations, it is unclear how valid it is for 
other types of perturbations. Belgie et al. [12], 
studied transport in quasiperiodically perturbed 
flows, and discussed how their ideas apply to 
more general perturbations. Babiano et al. [ 13 ], 
studied advection in flows with more complex 
time dependence, looking at both collections of 
point vortices, whose motion is chaotic, and at 
two-dimensional turbulence. In all these cases, 
the separatrices of the unperturbed structures 
are found to break producing chaotic behavior. 
However, it is still unknown how sensitive trans- 
port behavior in chaotic regions is to the time- 
dependence of the perturbation. The method we 
present here allows one to efficiently study trans- 
port in a periodically perturbed flow. The use of 
this technique should help in understanding the 
differences between periodic and non-periodic 
flows. 

Thus, the strategy for efficiently calculating 
transport in the chaotic regions of a structured 
flow is as follows. First, one constructs a simple 
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time-independent streamfunction whose topol- 
ogy of  separatrices matches those of  the struc- 
ture of  interest. Second, one adds a periodic per- 
turbation which can be analytically integrated, 
creating a Hamiltonian map. The resulting map 
can then be iterated numerically for very long 
times, using large numbers of  initial conditions, 
and for a wide range of parameter values. 

3. Isolated vortices 

Isolated vortices appear in many regions of  
the Earth's ocean and play a significant role 
in the ocean's transport of  heat and salinity. 
One well-known type of  ocean vortex is a Gulf 
Stream ring, created when a meander in the 
Gulf  Stream grows in amplitude and pinches off 
[ 3 ]. The pinched-off meander becomes a vortex 
whose interior contains water that was origi- 
nally on the opposite side of  the jet. Since the 
Gulf  Stream acts as a barrier to heat and salinity 
transport, these vortices provide a mechanism 
for transport across the jet. Gulf Stream rings 
typically have diameters of  a few hundred kilo- 
meters, and lifetimes of  1-4 years. Similar vor- 
tices also detach from intense currents in other 
parts of  the ocean. Another type of  vortex, called 
a Meddie (Mediterranean eddie), is found in 
the North Atlantic and is associated with out- 
flow from the Mediterranean Sea [ 14 ]. Meddles 
have large heat and salinity anomalies, diame- 
ters of  about 100 km, and have been tracked for 
up to 2 years. It is thus of  great geophysical in- 
terest to learn how water is exchanged between 
the interior and exterior of  isolated vortices. 

Isolated vortices on the Earth travel westward 
due to the "beta-effect", the variation in the 
Coriolis force with latitude [ 15,16 ]. In a frame 
comoving with the vortex, the streamfunction of 
an idealized vortex has a single fixed point with 
a homoclinic orbit [4] (Fig. 1 ). Fluid parcels 
inside the homoclinic orbit are trapped and car- 
ried with the vortex while parcels outside are left 
behind by the vortex. Parcels outside the vortex 
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Fig.  1. S t r e a m f u n c t i o n  ~0 w i t h  A = 2.0. 

but on the stable manifold of the fixed point 
are carried with the vortex forever, but these 
parcels form a set of  measure zero and are not 
significant. What is significant is that parcels 
close to the stable manifold slow down (in the 
comoving reference frame) on approaching the 
fixed point and are thus carried with the vortex 
for a while before being left behind. 

Ocean vortices are subject to a variety of  per- 
turbations: they emit Rossby waves as they prop- 
agate producing a periodic perturbation, they 
exist in a turbulent background flow, and they 
propagate over a complex topography. It is ex- 
pected that these perturbations break the ho- 
moclinic orbit and produce chaotic trajectories. 
While the transport due to an unperturbed vor- 
tex has previously been considered [4], the im- 
pact of the chaotic trajectories has not to our 
knowledge been studied. 

To construct a Hamiltonian map for an iso- 
lated vortex, a "vortex map", we start with the 
streamfunction for an unperturbed vortex. Many 
quantitatively different but qualitatively similar 
streamfunctions have been used to study isolated 
vortices [ 17-19 ]. Here we choose a Gaussian 
streamfunction, used in [ 17 ] as their standard 
profile, which has the advantage of  having zero 
net circulation and hence leaves the flow unaf- 
fected at infinity. We assume the vortex has am- 
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plitude A and is propagating westward (towards 
negative x).  In a frame comoving with the vor- 
tex the streamfunction is 

~ o ( x , y )  = Ae -~x2+y2) - y, (4) 

where distances are measured in units such that 
the vortex size is unity and time is measured in 
units such that the propagation speed is unity. 
The streamfunction undergoes a saddle-node bi- 
furcation when A = Ac = el/Z/v'~ ,~ 1.16; be- 
low Ac there are no fixed points while above A¢ 

there is a stable fixed point at x = 0, y = Ys and 
an unstable fixed point at x = 0, y = yu. The 
fixed points are solutions of 2Ay exp ( -y2)  = 1 
and Yu < Ys. The existence of closed streamlines 
and stagnation points in ocean vortices indicates 
that they have amplitudes above the bifurcation 
value. Fig. 1 shows ~u0 for A = 2.0. 

The next step is to pick a periodic perturba- 
tion ~ul that allows the explicit construction of 
a map. This can be done if the addition of ~ul 
results in a streamfunction which has separate 
terms acting at different times, each of which 
can be analytically integrated. One perturbation 
which accomplishes this is 

q / l ( x , y , t )  = Ae -~x2+y2) 

where ~ denotes the Dirac delta function, and 
nk + denotes letting the delta-function act at 
time nk + e and taking the limit e ~ 0 after 
doing the integration. The total streamfunction, 
~v = ~v0 + ~v~, is 

(3O 

= A k e  -~x2+y2) ~ d ( t - n k  + ) - y ,  (6) 
n ~ - - o o  

which is of the form described above since the 
exponential part only acts at times t = nk + , and 
the linear part acts during the remainder of the 
time. 

In Cartesian coordinates the equations of mo- 
tion (3) cannot be integrated through the delta- 
function because the equations are coupled and 
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require the value o f x  and y at the time the delta- 
function acts. In polar coordinates, however, the 
equations of motion are 

t ~ = COS 0 ,  

0 = - 2 A k e  -r2 
o o  

Z 
n ~ - - O 0  

~ ( t -  nk  +) - sinO/r, 

(7) 

and the delta-function appears only in the t) 
equation with an amplitude that depends only 
on r. To integrate the equations from t = nk to 
t = (n + 1 )k one first integrates in polar coor- 
dinates from t = nk past the delta-function to, 
say, t = nk + 2e, resulting in 

r (nk  + 2c) = r (nk  ) + O(e), 

O(nk + 2e) = O(nk)  - 2 A k e  -r2~nk) + 0 (~) .  
(8) 

Transforming back to Cartesian coordinates, in- 
tegrating to t = (n + 1 )k, and letting e --, 0 
results in the vortex map: 

Xn+l = rn COS(0n -- 2Ake -r2.) + k, 

Yn+l = rn sin(0n - 2Ake-r~" ), (9) 

where the subscript n refers to quantities at t = 
nk. 

The streamfunction ~1 is, in the limit k -* 0, a 
high-frequency perturbation to ~t 0. In addition, 
~u~ is a perturbation in the sense that for small k 
the map (9) is a finite difference approximation 
to the equations of motion given by g0 alone. 
Both the standard map [ 10,11] and the travel- 
ing wave map [5] are obtained by adding the 
same type of perturbation. Note that unlike the 
standard map and the traveling wave map, the 
vortex map is neither periodic in x nor y. 

For very small k the vortex map, like other 
chaotic maps, has very thin chaotic layers which 
grow as k increases. The chaotic layer which 
has the most significant impact on transport 
is the one that appears around the stable and 
unstable manifolds of the unstable fixed point. 
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Fig. 2. Trajector ies  o f  the  vor tex  m a p  wi th  A = 2.0 and  
k = 0.5 for 500 initial condi t ions  s tar t ing at x = - 1 . 5  and  
evenly spaced across the  chaotic  layer. 

This chaotic separatrix layer is due to the break- 
ing by the perturbation of  the homoclinic orbit 
in ~u0, resulting in intersections of  lobes of the 
manifolds creating a homoclinic tangle [11,20]. 
Fig. 2 shows iterations of  the vortex map (9) 
for initial conditions in the separatrix layer. 
The sharp boundary of  the chaotic region due 
to KAM curves and the existence of  islands and 
lobes is clearly seen. The importance of  the sep- 
aratrix layer is that it allows the vortex to trap 
and release fluid parcels, a phenomenon which 
is absent in ~t0. The trapping manifests itself by 
parcels rotating about the core of  the vortex for 
a while before being released. Since the vortex 
is propagating, this trapping results in spatial 
transport of  fluid parcels. 

The transport in regions outside the chaotic 
layer is essentially unchanged from the unper- 
turbed case. Inside the vortex there remains a 
core of  fluid where particles are permanently 
trapped, while far from the vortex particles 
flow past the vortex without ever being trapped. 
These regions both have chaotic layers, but they 
do not affect the trapping behavior of  the vortex. 
The core of  permanently trapped fluid is simi- 
lar to that seen by Babiano et al. [13], in more 
complex flows. The size of  the core decreases as 
the separatrix layer grows. 
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Fig. 3. T rapp ing  t ime  z(y;xo, x]) for A = 2.0, k = 0.5, 
x0 = - 2 . 0  and  xl  = 2.0. 

In what follows, we shall study the dependence 
of  transport in the separatrix layer on the the 
amplitude of  the perturbation k and amplitude 
of the vortex A. As we are concerned with the 
effects of  small perturbations on the vortex, we 
shall only investigate k up to 0.7. 

The trapping time z (y; x0, Xl ) is defined as the 
time r = ntk, where nt is the number of itera- 
tions for a parcel starting at (xo,y) to reach xl. 
If  x0 and xl are on either side of  the vortex then 
z is a good measure of  the time spent being car- 
ried by the vortex. Fig. 3 shows one example of  
z (y). One sees multiple peaks where parcels are 
trapped for very long times, separated by regions 
where parcels travel relatively quickly through 
the vortex. The peaks are distributed in a self- 
similar manner typical of  structure in chaotic re- 
gions. 

Using r (y) and defining a threshold z0 allows 
measurement of  the width of  the chaotic layer: 
w = y~ - Y0, where Yl and Yo are, respectively, 
the largest and smallest y with z(y)  > Zo. We 
find that the measured width is relatively insen- 
sitive to z0 for z0 sufficiently large. Fig. 4 shows 
w (k) for three values of  A, indicating that the 
width grows with both k and A. At smaller val- 
ues of  k, the growth of w is extremely fast. 

As a vortex travels through the fluid it picks 
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Fig. 4. W i d t h  o f  the  chaot ic  layer at x = - 2 . 0  us ing  
a th reshold  t rapping  t ime  o f  z0 = 50, x0 = - 2 . 0 ,  and  
3( 1 ---- 2.0. 

up parcels, carries them a while, and deposits 
them elsewhere. The final spatial distribution in 
x of  an initial small region of  fluid is given by 
the distribution of  trapping times p (z), with the 
speed of  the vortex providing the transforma- 
tion between time and distance. Fig. 5 shows 
the distribution of  trapping times for A = 2.0 
and a range of  k. The distributions show a sig- 
nificant amount of  structure and appear to be 
composed of  many individual steep exponentials 
which merge together at larger z resulting in a 
shallow exponential tail. This merging occurs at 
smaller z for larger k. The separate exponentials 
all appear to have the same slopes, and the slope 
of  the tail appears independent of  k. 

Fig. 6 shows p(z) for a range of  A at fixed k. 
One sees that the slopes of  both the individual 
exponentials and the smooth tails are roughly in- 
dependent of  A. At lower A the individual expo- 
nentials remain well resolved out to larger z. 

A flow with a single unstable periodic orbit, 
such as ~'0 with its unstable fixed point, results 
in a p (z) with a single exponential. The slope 
of  that exponential for ~'0 matches that of  the 
steep exponentials in Figs. 5 and 6. We conjec- 
ture that the individual steep exponentials can 
each be associated with the slowing down due to 
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Fig. 5. Dis t r ibu t ions  o f  t rapping  t imes  p ( ~ )  for A = 2.0, 
x0 = - 2 . 0 ,  Xl = 2.0 and  a range k, each c o m p u t e d  f rom 
106 initial condi t ions  evenly spaced in y. The  b ins  in the  
h i s tograms  have  a width  o f  one  i terat ion,  At = k. Successive 
d is t r ibu t ions  are shif ted vertically to ease compar i son .  
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Fig. 6. Same as Fig. 5, bu t  f o r  k = 0.6 and a range o f  A.  

a single periodic orbit in the chaotic layer. Since 
the Smale horseshoe producing the chaotic layer 
has an infinite number of  periodic orbits with 
orbits of  all periods [21] one expects the fine 
structure o f p  (r) to be quite complex. The con- 
nection between periodic orbits and transport is 
currently an active area of investigation, see for 
example [22,23]. The constancy of  the slopes in 
Figs. 5 and 6 indicates that in some sense the 
structure of the periodic orbits is independent 
of both A and k. This raises the possibility that 
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not only is the qualitative phenomenon of trap- 
ping independent of the details of the vortex and 
perturbation, but that some quantitative aspects 
such as the slopes in p (r) are also robust. 

4. Discussion 

Understanding the transport properties of 
structured flows is extremely important to many 
geophysical problems. The method described 
here of constructing Hamiltonian maps should 
provide a useful tool for the first step in reach- 
ing such understanding. However the method 
is only a first step in that the map is a signif- 
icant simplification of the true flow. First, the 
resulting maps are kinematic, in that they use 
an assumed Eulerian evolution, rather than the 
true dynamic evolution of the flow. Indeed, the 
simple flows which allow the explicit construc- 
tion of maps are typically not solutions of the 
Eulerian dynamical equations. The validity of 
the approach rests on the ansatz that the chosen 
flow captures those aspects which are important 
to transport: the topology of the streamlines in 
the time-independent idealized structure, and 
the existence of small perturbations. Second, 
the maps are two-dimensional, and thus ex- 
clude any structures where the third dimension 
is important for transport. The degree to which 
transport under the true Eulerian evolution in 
both two and three-dimensional flows differs 
from that in simple Hamiltonian maps is an 
important question which must be investigated. 

There is evidence, however, that Hamilto- 
nian maps do capture some important aspects 
of transport, del-Castillo-Negrete and Morri- 
son [6] used a Hamiltonian map to reproduce 
the transport seen in laboratory experiments on 
Rossby waves in rotating fluids [24]. Labora- 
tory experiments of vortices on a r-plane [18] 
show similar behavior to the above vortex map 
(9). In particular, the lobes seen in their ex- 
periment match the lobes found in homoclinic 
tangles and visible in the vortex map (Fig. 2). 
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However, the lobes in the experiment contain 
potential vorticity, an active rather than passive 
tracer, and the lobes subsequently roll up into 
secondary vortices. This roll-up is absent from 
the vortex map due to the purely kinematic as- 
pect of the formulation. Thus, while kinematic 
Hamiltonian mappings are only an approxima- 
tion to the true behavior of fluid structures, they 
are relatively simple to construct for a variety of 
structures and allow one to efficiently calculate 
transport properties. 
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