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An iterated map is constructed that captures the essential features of particle trajectories in a 
class of quasiperiodic traveling waves: large-amplitude single-frequency traveling waves with 
two-dimensional structure perturbed by a wave with a second frequency. The map provides an 
efficient method for numerical calculation of the transport and mixing properties of such 
waves, and is used here to study the properties of a chaotic separatrix layer. It is found that the 
average position increases linearly with time indicating the existence of a well-defined 
transport velocity. The transport velocity grows faster than linearly as the perturbation 
parameter Ic increases. The mixing takes the form of anomalous diffusion where the mean- 
square deviation of position grows as t “, with Y> 1. The data is consistent with the diffusion 
exponent I.’ growing linearly with k. 

I. INTRODUCTION 

Traveling waves are a common feature of many fluid 
systems, including the atmosphere,‘y2 ocean,3 and laborato- 
ry fl~ows.“~ The presence of these waves can have a profound 
influence on the transport and mixing properties of a fluid, 
properties which are important in many physical situations. 
In the atmosphere, for example, the transport and mixing of 
various chemical constituents is a key factor in several major 
problems: the transport and mixing of sulfur dioxide and 
chlorofluorocarbons are related to acid rain and ozone de- 
pletion, respectively. Understanding the role of traveling 
waves in producing transport and mixing is of interest in a 
variety of situations. 

In many cases the traveling waves of interest have an 
approximate two-dimensional structure, allowing use of 
two-dimensional fluid dynamics. In the atmosphere, the rap- 
id rotation of the Earth results in large-scale Rossby waves 
whose structure lies largely in the horizontal plane,” while in 
laboratory convection the structure is in a vertical plane.46 
In either case the two-dimensional structure, together with 
the assumption of incompressibility, allows the flow to be 
described in terms of a streamfunction Y (x,y,t), where (xg) 
is the plane containing the structure of the wave. The trajec- 
tories of small parcels of fluid, henceforth called “fluid parti- 
cles,” are obtained from the streamfunction by integrating 
the equations of motion, 

dx ~~(-wJ) 
t= ay 

f&J I= _ ~*(x.Y,t) . 
’ dt JX 

(1) 

The above equation does not include molecular diffusion. 
While molecular diffusion does introduce some additional 
effects, they are for the most part small and will be largely 
ignored. 

Questions of transport and mixing revolve around the 
motion of fluid particles. The term transport refers to the 
motion of groups of fluid particles from one region to an- 
other. Quantitatively, we shall measure transport by the mo- 
tion of the average position of an ensemble of particles, (x). 
By the term mixing we shall refer to the spreading of fluid 
particles originally concentrated close together. As the fluid 
particles spread, they mix with the surrounding fluid. One 

quantitative measure of such spreading is the growth of the 
mean-square deviation of particle positions as a function of 
time,M(t) = ((x- (x))“). 

Studies of transport and mixing in two-dimensional in- 
compressible fluids benefit from the correspondence be- 
tween two-dimensional incompressible fluid flow and Ham- 
iltonian dynamics.’ The equations of motion ( 1) are 
identical to Hamilton’s equations of motion, with the 
streamfunction corresponding to the Hamiltonian, and the 
particle trajectories in physical space corresponding to tra- 
jectories in phase space. A fluid with a time-independent 
streamfunction is thus an integrable Hamiltonian system, 
and the particle trajectories are then regular (periodic or 
quasiperiodic). A time-periodic streamfunction may be non- 
integrable, giving rise to chaotic particle trajectories. We 
shall be particularly interested in the effect such chaotic tra- 
jectories have on the transport and mixing properties of trav- 
eling waves. 

A preliminary understanding of transport and mixing 
by traveling waves has been obtained by previous studies on 
waves. ‘o-‘* Such work includes both theoretical studies of 
idealized waves, and experimental studies of convective 
waves in binary fluids and nematic liquid crystals. The next 
several paragraphs provide a summary of this understand- 
ing. 

Single-frequency traveling waves with infinitesimal am- 
plitude transport energy and momentum but not particles. 
As the wave amplitude increases, the phenomenon of Stokes’ 
drift appears: particles drift in the direction of the phase 
velocity of the wave, with the drift speed proportional to the 
square of the wave amplitude. At large wave amplitudes par- 
ticle trapping occurs, where, in certain regions of the fluid, 
particles are carried with the wave at the wave’s phase speed. 
The phenomenon of particle trapping can occur whenever 
the streamfunction, in a frame comoving with the wave, has 
the form of a wave superposed on a mean flow. Particle trap- 
ping then occurs when the wave amplitude is greater than 
some threshold amplitude. The value of the threshold de- 
pends on the structure of the wave, but, for the cases studied, 
has always been found to be an 0( 1) number times the veloc- 
ity of the mean flow. 
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Two-dimensional single-frequency traveling waves 
have a time-independent streamfunction in a frame comov- 
ing with the wave. Above the trapping threshold, the fluid is 
divided into regions of trapped particles, which are carried 
with the wave as it propagates, and free particles, which flow 
backward with respect to the wave. These regions are sepa- 
rated by a special trajectory, a separatrix, which, in a frame 
comoving with the wave, is homoclinic to a fixed point lying 
in the interior of the fluid. In studies of waves using free-slip 
boundary conditions, the regions may be separated by a tra- 
jectory that is heteroclinic to a pair of fixed points lying on 
the boundary. However, since the fixed points are in a mov- 
ing frame, they can only lie on the boundary if free-slip 
boundary conditions are used; realistic boundary conditions 
force the fixed points into the interior of the fluid. This dis- 
tinction is not thought to greatly affect the transport and 
mixing properties of the wave. The streamfunction of a typi- 
cal traveling wave in a comoving frame is shown in Fig. 1. 

In an infinite wave train, trapped particles only become 
free through the action of molecular diffusion, at which 
point they are deposited at a location which may be very far 
,from their origin. Similarly, free particles may become 
trapped and carried great distances by diffusing into the 
trapping region of the flow. Although the mixing produced 
by the combination of molecular diffusion and trapping and 
untrapping events is larger than that produced by molecular 
diffusion alone, it is still small compared to that produced by 
the quasiperiodic traveling waves discussed below. 

If a second frequency is present in the wave then the 
possibility of chaotic particle trajectories arises. In this case, 
the separatrix between the trapped and free regions breaks, 
resulting in a chaotic region bounded by Kolmogorov-Ar- 
nold-Moser (KAM) curves. Particles in such a region cha- 
otically alternate between being trapped and carried with the 
wave, and being free and drifting backward relative to the 
wave. The net result is both long-range transport and en- 
hanced mixing. Further, the mixing takes the form of anom- 
alous diffusion, where M(t) grows as t “, with Y > 1. 
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FIG. 1. Traveling wave flow given by ELq. (2). Heavy lines denote homo- 
clinic trajectories. 
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FIG. 2. Pendulum flow. Heavy lines denote homoclinic trajectories. 

Thus, previous work has provided a qualitative picture 
of the transport and mixing properties of waves. It is of great 
interest, however, to understand how these properties de- 
pend quantitatively on the parameters describing the wave. 
Unfortunately, integrating the equations of motion for parti- 
cle trajectories, Eq. ( 1 ), can be very costly, making numeri- 
cal studies of parameter dependence impractical. The aim of 
this paper is to construct an iterated mapping which can be 
used to calculate particle trajectories efficiently, providing a 
tool with which to study the parameter dependence of trans- 
port and mixing properties of waves. 

Perhaps the most studied chaotic Hamiltonian system is 
the periodically forced pendulum. The unforced pendulum 
Hamiltonian, shown in Fig. 2, has many similarities to the 
single-frequency traveling wave we consider here. First, 
both are periodic in one direction; thus phase space may be 
considered to be a cylinder. Comparing Figs. 1 and 2 one sees 
that both the pendulum and traveling wave have trapped 
regions where trajectories circle a fixed point, and free re- 
gions where trajectories circle the phase space cylinder. The 
major difference between the two is that in the pendulum 
there are trajectories circling the phase space cylinder in ei- 
ther direction, while in the traveling wave these trajectories 
only travel in one direction. This property of traveling waves 
is due to the fact that in a fixed reference frame the trapped 
region moves with the phase velocity of the wave, while the 
free region is left behind; thus in a comoving frame all trajec- 
tories in the free region must flow in the direction opposite 
the phase velocity. 

One tool that has proved extremely useful in under- 
standing the properties of the periodically forced pendulum, 
and near-integrable Hamiltonians in general, is the standard 
map. 19~20 The standard map displays behavior typical of 
near-integrable Hamiltonian systems: chaotic and regular 
regions, KAM curves, cantori, etc. One major advantage of 
studying the standard map rather than a set of ordinary dif- 
ferential equations is that it is much faster to numerically 
iterate a map than to integrate differential equations numeri- 
cally. Because of the differences between the pendulum flow 
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and the traveling wave flow, however, the standard map 
does not capture-the essential features of traveling waves. 

In Sec. II we shall construct an iterated map analogous 
to the standard map which does capture the essential fea- 
tures of traveling waves. This map, which we call the travel- 
ing wave map, provides an efficient tool for numerically cal- 
culating the transport and mixing properties of two- 
dimensional large-amplitude quasiperiodic traveling waves. 
In Sec. III the results of some numerical calculations of 
transport and mixing in the traveling wave map are present- 
ed. 

II. THE TRAVELING WAVE MAP 

One method of obtaining the standard map is to start 
with the flow for the unperturbed pendulum and then add a 
periodic delta-function perturbation. Analogously, to obtain 
the traveling wave map we start with a flow that captures the 
essential features of large-amplitude single-frequency travel- 
ing waves with two-dimensional structure: These features 
are known from experimental and theoretical studies of trav- 
eling waves in various physical systems.“‘-” 

Since we are concerned with incompressible waves with 
two-dimensional structure, the flow must be Hamiltonian 
with one degree of freedom. In a frame comoving with the 
single-frequency wave the flow is steady, so we seek a time- 
independent streamfunction. The flow must be periodic in 
the direction along the wave: the phase space is thus a cylin- 
der. The flow should contain regions of trapped particles, 
where the trajectories circle a fixed point, and regions of free 
particles, where trajectories circle the phase space cylinder 
in a single direction. Waves with positive phase velocities 
have free trajectories circling the cylinder in the negative 
direction, and vice versa. Finally, the free and trapped re- 
gions should be separated by a trajectory homoclinic to a 
fixed point lying in the interior of the flow. 

A simple flow which satisfies the above requirements is 

dv +y2- 1, z= - sin X, (2) 

corresponding to a traveling wave moving in the negative x 
direction. Equation (2) describes a wave with arbitrary 
phase speed in a comoving frame, and is shown in Fig. 1. 
Because of the symmetry x-+x + D-, y- - y, the flow con- 
tains two trapped regions centered around stable fixed points 
at (x,y) = (0, 1 ), (z-, - 1) . The trapped regions are separat; 
ed from free regions by trajectories homoclinic to the unsta- 
ble fixed points at (x9) = (0, - 1 ),(-r,l). The Hamilto- 
nian, or streamfunction, of the flow is 

Y, (xy) = (Y3/3) - y - cos x. (3) 
Note that the flow (2) differs from the pendulum flow only 
in the dx/dt equation, where dx/dt = y. The quadratic de- 
pendence on y results from requiring dx/dt to have the same 
sign at both large positive and large negative y. 

We construct the traveling wave map from the above 
flow by following the construction of the standard map from 
the pendulum. The streamfunction (3 ) is perturbed by add- 
ing the time-periodic streamfunction 

\I/, (x,y,t) = cos(x> 1 - 
( 

2 ks(t-nk +) , (4) 
n= --m > 

where the argument of the delta function means the impulse 
occurs just after t = nk. The perturbation parameter k is 
both the period of the perturbation and the strength of the 
delta function. The resulting flow is 

dx -=y2- 1, 
dt 

(5) 
& 
z= 

- sin(x) 2 kS(t - nk +). 
,r= -m 

To obtain the traveling wave map one now integrates 
over one period of the perturbation, resulting in the traveling 
wave map: 

X,+1 =x, + k(y;+, - 11, 
(6) 

Y nil =y, - ksinx,, 

where (x,,y, ) = [x( t),y(t)] If= nk. The traveling wavemap 
(6) approaches the pure traveling wave flow (2) as k-0 in 
the sense that 

l im x,+1 -xn =lim x(t+ k) -x(t) 
k-0 k h-0 k 

flk=l 

dx(t) =--=y(t)2- 1, 
dt 

(7) 

and similarly for they equation. 
Figures 3 and 4 depict the traveling wave map for 

k = 0.1 and k = 0.4, respectively. Each figure results from 
26 initial conditions iterated 500 times, and at each iteration 
x is mapped back to ( - ,~,QQ-). The blank regions can be 
obtained by the symmetryx-x + n; y- - y. At k -= 0.1 the 
map appears almost identical to the unperturbed traveling 
wave (Fig. 1) . As k is increased to 0.4 the typical features of 
chaotic Hamiltonian systems appear; island chains and 
chaotic layers become visible. Of particular importance is 
that the separatrix between the free and trapped regions of 
the wave breaks, resulting in a chaotic separatrix layer. 

3.0 ,I--, 

1.5 

Y 0.0 

l._ 
-n 0 B 

FIG. 3. Traveling wave map for k = 0.1 with x mapped back to ( _ TT,V). 
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FIG. 4. Traveling wave map for k = 0.4 with x mapped back to ( - ~,r). 

These features are present at all nonzero k, but for small k 
are too small to see without magnifying the appropriate re- 
gions of phase space. As k is increased further the chaotic 
regions grow until they merge and fill all of phase space. In 
what follows we shall only be concerned with relatively 
small values of k. 

111. TRANSPORT AND MIXING IN THE TRAVELING 
WAVE MAP 

The perturbation of a single-frequency traveling wave 
by a second frequency can cause the fluid to break into three 
types of regions: trapped regions in which particles are per- 
petually carried with the wave, free regions in which parti- 
cles are perpetually left behind by the wave, and chaotic se- 
paratrix layers between the two in which particles alternate 
between episodes of trapped and free behavior. These re- 
gions are separated by KAM curves that, except for the ef- 
fects of molecular diffusion, prevent the exchange of parti- 
cles between regions. The trapped and free regions are 
similar to corresponding regions in single-frequency travel- 
ing waves. In the remainder of this paper we shall focus on 
particle behavior in a chaotic separatrix layer, a region 
which is not present in a single-frequency wave. 

Particles in the separatrix layer are restricted in their 
motion transverse to the wave, they direction, due to the 
presence of KAM curves. Large-scale motions along the 
wave, in the x direction, are possible because the separatrix 
layer wraps around the phase space cylinder, and thus ex- 
tends from x = - CO to x = -5 CO. It is the transport and 
mixing in the x direction which will occupy our attention. 

The properties of the chaotic separatrix layer were in- 
vestigated through a series of numerical experiments. Each 
experiment started with an ensemble of 100-O initial condi- 
tions chosen randomly along the line x = 0, withy inside the 
chaotic region. Trajectories were then calculated for IO6 iter- 
ations of the traveling wave map (6)) from which the aver- 
age position (x) and mean-square deviation of position M 
were determined. 

Although all initial conditions were started within the 
outermost boundaries of the chaotic region, some may actu- 
ally be inside islands and thus be perpetually trapped or free. 
To exclude these particles, ensemble averages only included 
particles displaying at least one trapped and one free episode. 

Numerical experiments were carried out for k ranging 
from 0.2 to 0.4 in steps of 0.05. As k becomes smaller, the 
duration of trapped and free episodes, measured in number 
of iterations, becomes longer. For k < 0.2, it is felt that IO6 
iterations are not sufficient to adequately characterize the 
chaotic dynamics. At selected values of k, two identical ex- 
periments were run using independent ensembles of initial 
conditions, thus giving an estimate of the uncertainty due to 
finite sample size. 

The average position as a function of iteration number 
fork = 0.3 is plotted in Fig. 5. One sees that (x) grows lin- 
early with time, indicating the existence of a well-defined 
transport velocity v. Since time is given by kn, v is defined by 
the slope of the least-squares fit divided by k. 

The mean-square deviation M is shown for k = 0.3 in 
Fig. 6. The approximately linear growth of M on a log-log 
plot indicates that M( t) - t “. The diffusion exponent Y is the 
slope of a least-squares fit of log(M) vs log(n). Note that the 
variation of M about the fit is noticeably larger than that of 
(x>. 

The behavior shown in Figs. 5 and 6 is typical of the 
range of k studied. We find a well-defined transport velocity 
v(k), and a less well-defined diffusion exponent v(k) due to 
the variation of M about its least-squares fit. 

Figure 7 shows v(k) for the range of k studied. One sees 
that v grows monotonically with k, with nonlinear growth 
apparent at the two largest values of k. Thus, waves corre- 
sponding to larger values of k are more effective at transport- 
ing fluid particles in the chaotic separatrix layer down- 
stream, in the frame of the wave. 

Figure 8 shows y(k) vs k. The variation in the indepen- 
dent ensembles at the same k is larger than that for v. This 

1.6o r----------71. 

FIG. 5. Average position (n) vs n for k = 0.3. Diamonds represent data 
calculated with the traveling wave map, and the dashed line is a least- 
squares fit. 
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PIG. 6. Mean-square deviation of position M  vs n for k  = 0.3. Diamonds 
represent data calculated with the traveling wave map, and the dashed line 
is a least-squares fit. 

indicates that larger ensembles, and perhaps longer trajec- 
tories, would allow a more precise determination of Y. The 
data is consistent with linear growth of Y with k, although 
more data are needed to be certain. One interpretation of 
Y> 1 is in terms of a time-dependent diffusion coefficient. 
Thus, as time progresses, the chaotic separatrix layer of qua- 
siperiodic waves becomes more and more efficient at mixing 
the fluid in the layer. Furthermore, as k increases, the diffu- 
sion coefficient grows faster with time. 

IV. DISCUSSION 
In this paper we have constructed an iterated mapping 

that allows the efficient calculation of the transport and mix- 
ing properties of a class of waves. The map captures the es- 
sential features of large-amplitude single-frequency travel- 

0.8 f 

k 

FIG. 7. Transport velocity u vs k. Diamonds represent values of k  for 
which one ensemble of initial conditions was used. Pius signs indicate values 
of k  where two ensembles were used. Where the two ensembles give very 
similar results the two plus signs overlap and appear as one. 
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FIG. 8. Diffusion exponent Y vs k. Diamonds represent values of k  for 
which one ensemble of initial conditions was used. Plus signs indicate values 
of k  where two ensembles were used. 

ing waves with two-dimensional structure, which are 
perturbed by a two-dimensional wave with a second frequen- 
cy. At sufficiently large amplitude, such unperturbed waves 
contain a homoclinic connection which may break under the 
perturbation, resulting in chaotic particle trajectories. The 
behavior of these chaotic trajectories is well represented by 
the traveling wave map. 

We have used the traveling wave map to investigate the 
transport and mixing properties of the chaotic trajectories, 
We find that as the amplitude of the perturbation increases, 
the transport velocity increases faster than linearly, while 
the diffusion exponent increases in a manner consistent with 
linear growth. The finding that Y> 1 is consistent with pre- 
vious studies showing anomalous diffusion by traveling 
waves. r6,*’ The calculations presented here, however, are, to 
our knowledge, the first results indicating the dependence of 
the transport velocity and diffusion exponent on a parameter 
of the wave. 

We have been concerned in this paper with the transport 
and mixing properties resulting from the complex structures 
present in a chaotic phase space. The addition of molecular 
diffusion will smear out the fine details of these structures, 
allowing trajectories to eventually cross KAM curves and 
pass more easily through cantori. We expect that in the pres- 
ence of molecular diffusion, the traveling wave map captures 
the dynamics for only a finite time. The cutoff time, which is 
determined by the time scale for molecular diffusion to carry 
a particle across a significant fraction of the chaotic layer, is, 
for small molecular diffusion, quite large. 

The traveling wave map constructed here allows an ex- 
ploration of the manner in which the transport and mixing 
properties depend on the parameters in an idealized wave. 
While such details as the exact shapes of the homoclinic or- 
bits and the boundary of the chaotic regions will depend on 
the details of the wave, the phenomenon of enhanced trans- 
port and mixing through the trapping and untrapping of 
fluid particles is quite general. Such trapping and untrapping 
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will occur in any flow with a broken homoclinic connection. 
As parameters of a wave are varied, the structures in 

phase space are altered, resulting in different transport and 
mixing properties. The traveling wave map provides an elli- 
cient tool for understanding how these properties are affect- 
ed by the structures in phase space. By then investigating 
how the variation of parameters in a realistic wave affects the 
structures in phase space, one could determine how a given 
realistic wave affects the transport and mixing properties 
without an extensive calculation of trajectories. 

For example, we have found that as k increases, the 
width of the chaotic layer increases, accompanied by an in- 
crease in both the transport velocity and the diffusion expo- 
nent. This leads us to conjecture that the variation of a pa- 
rameter in a realistic wave which results in a wider chaotic 
layer would have a similar effect. One must be careful, how- 
ever, since it may not be just the width of, the chaotic layer 
that is important here. Such things as the sizes of gaps in the 
cantori, or the density of island chains in the chaotic layer, 
may prove to be dominant. It is unknown whether such 
things scale simply with the width of the chaotic layer. 
Nonetheless, once it is understood how structures in phase 
space affect transport and mixing, it should be much simpler 
to characterize the transport and mixing properties of a var- 
iety of realistic waves. 

ACKNOWLEDGMENTS 

I would like to thank Edgar Knobloch for many inter- 
esting and helpful discussions. 

This work was supported in part by a grant from Cray 
Research, Inc. The National Center for Atmospheric Re- 
search is sponsored by the National Science Foundation. 

‘J. T. Houghton, The Physics of Atmospheres (Cambridge U.P., Cam- 
bridge, 1986). 

‘J. Pedlosky, GeophysicaI Fluid Dynamics (Springer, New York, 1987). 
‘P. H. LeBlond and L. A. Mysak, Waves in the Ocean (Elsevier/North- 

Holland, New York, 1980). 
“R. W. Walden, P. Kolodner, A. Passner, and C. M. Surko, Phys. Rev. 

Lett. 55,496 (1985). 
’ E. Moses and V. Steinberg, Phys. Rev. A 34,693 (1986). 
6R. Heinrichs, G. Ahlers, and D. S. Cannell, Phys. Rev. A 35, 2761 

(1987). 
‘H. Niino and N. Misawa, J. Atmos. Sci. 41, 1992 (1984). 
‘J. Sommeria, S. D. Meyers, and H. L. Swinney, Nature 337, 58 (1989). 
OH. Aref, Annu. Rev. Pluid Mech. 15, 345 (1983). 
lo E. Knobloch and J. B. Weiss, in The InternalSolarAngular Velocity, edit- 

ed by B. R. Durney and S. Sofia (Reidel, Worwell, MA, 1987). 
“E Knobloch and J. B. Weiss, Phys. Rev. A 36, 1522 (1987). 
“T: H. Solomon and J. P. Gollub, Phys. Rev. A 386280 ( 1988). 
“E Moses and V. Steinberg, Phys. Rev. Lett. 60,203O ( 1988). 
I4 D. S. Broomhead and S. C. Ryrie, Nonlinearity 1,409 ( 1988). 
Is S J Linz, M. Lticke, H. W. MiilIer, and J. Niederlander, Phys. Rev. A 38, 

572.7 (1988). 
“J. B. Weiss and E. Knobloch, Phys. Rev. A 40,2579 ( 1989). 
“A. Joets and R. Ribotta, Europhys. Lett.. 10,721 (1989). 
‘*S M Cox P G. Drazin, S. C. ‘Ryrie, and K. Slater, J. Fluid Mech. 214, 

67 ;199oj.. 
I9 A J Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion . . 

(Springer, New York, 1983). 
‘a R. S. Mackay and J. D. Meiss, Hamiltonian Dynamical Systems (Hilger, 

Bristol, 1987). 

1384 Phys. Fluids A, Vol. 3, No. 5, May 1991 Jeffrey B. Weiss 1384 

Downloaded 26 Jul 2005 to 128.138.145.71. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


