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A generalized wavelet-packet based technique for decomposing signals into coherent and
noncoherent parts is presented. The method is tested on the vorticity field of numerical simulations
of weakly decaying two-dimensional turbulence. The easily recognizable coherent vortex structures
that emerge are systematically filtered from the solution. Once extracted, various properties of the
vortices, such as their number, size, circulation, and peak value are computed. The results compare
well with a similar study@J. Fluid Mech.219, 361 ~1990!; Phys. Fluids5, 608 ~1993!#, which
employs a complex pattern recognition technique based exclusively ona priori knowledge of the
properties of the solution—that is, the features typical of the resulting vortex structures. The
similarity of the results is encouraging, suggesting that the wavelet packet technique, by absorbing
much of the complexity into the mathematical features of the transform itself, can provide an
efficient, standardized tool that is readily extendible to more complex problems in two and three
dimensions. ©1997 American Institute of Physics.@S1070-6631~97!03206-6#
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I. INTRODUCTION

Recent high-resolution numerical integrations of t
Navier–Stokes equations have allowed us to investigate
coherent structures of high Reynolds number turbulen
Such simulations, together with laboratory experiments, h
provided ample evidence that most important turbule
properties are carried by a few typical ‘‘objects’’ that dom
nate the flow.1–7 The turbulent transport of heat and mome
tum in the atmospheric boundary layer, for example, see
to occur in intermittent, nonperiodic bursting events asso
ated with convective thermals and the leading edge
microfronts.3,8 In rotating Boussinesq convection the he
transport is believed to be dominated by well-defined plu
structures that originate as vortices at the surface and pr
gate upward through the domain.9 The vorticity field in
strictly two-dimensional as well as three-dimensional qua
geostrophic simulations organizes itself into coherent, ty
cally axisymmetric monopole structures that occupy a re
tively small fraction of the domain while containing th
majority of the enstrophy.10,11–14High-resolution direct nu-
merical simulations of fully three-dimensional homogeneo
turbulence have given evidence of similar small-scale in
mittency in the vorticity field, though with apparently mo
complex topology~e.g., Ref. 6!.

Advances in computer visualization technology have
abled us to view flow evolution and make important obs
vations of typical coherent structure behavior. Such analy
have undoubtedly enhanced our general understandin
turbulence, but their usefulness for model developmen
somewhat limited by their qualitative nature. A more qua
titative analysis would augment these general observat
with calculations of coherent structure properties—for e
ample, their number, size, shape, mean amplitude, etc.,
function of time. The discovery of the properties of the c

a!Electronic mail: siegela@solarz.colorado.edu
b!Electronic mail: weiss@paintbrush.colorado.edu
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herent structure evolution may then make it possible to c
struct a simplified model of the turbulence dynamics in ter
of mutual interactions of the coherent structures that obey
empirically determined constraints~e.g., Refs. 15–17!.

The principle obstacle to such quantitative analyses
the difficulty of finding a meaningful way to decompose t
flow into its coherent and noncoherent parts. Here we pre
a technique for carrying out such a decomposition. Our
gorithm is cast purely in terms of the two-dimensional tu
bulence problem, but its fundamental design is intended
make it easily generalizable to a range of more comp
problems.

A. Structures in two-dimensional turbulence

Two-dimensional turbulence—i.e., high-Re solutio
to the two-dimensional incompressible Navier–Stok
equations—has been a popular subject of research s
Batchelor’s pioneering work.18 Batchelor’s interest lay pri-
marily in using the two-dimensional 2-D solutions as a si
plified paradigm for fully 3-D turbulence. His perspectiv
was to sacrifice the vorticity stretching dynamics implied
the 3-D equations for a computationally feasible proble
that manifested similar unpredictability and nondiffusi
transport.

At the same time, another class of investigators beca
interested in the properties of the 2-D solutions for their r
evance to certain large-scale atmospheric and geophy
phenomena. The relevance arises from thinking of the 2
equations as the limiting form of anisotropic 3-
turbulence.19,20 This approach has proved useful in explai
ing the form of low-wave number atmospheric spectra21

modeling the circumpolar vortex,22,23 predicting strato-
spheric advection,22 and developing inverse-cascade theor
for synoptic and mesoscale structures.24,25

Several important properties of 2-D turbulence can
deduced either directly or indirectly from the governin
equations: a net inverse cascade of energy to large sc
resulting in zero energy dissipation in the infinite Re lim
)/1988/12/$10.00 © 1997 American Institute of Physics
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and a cascade of enstrophy to small scales via enstro
gradient amplification.18 Additionally, before the earlies
computer simulations Batchelor hypothesized that a 2-D fl
would evolve into a collection of coherent vorte
structures.26 Visualizations of high-Re 2-D solutions hav
supported Batchelor’s speculation and provided furt
qualitative insights into the role of the coherent structures
the turbulent dynamics. Random initial conditions se
organize into a collection of coherent vortices, which sub
quently evolve through dissipative vortex interactions.10,5,27

Same-sign vortex mergers result in a larger vortex and
ments that dissipate significant enstrophy. A relatively sm
vortex can be annihilated by the velocity shear induced b
larger vortex.23 A typical axisymmetric vortex, being stabl
to many perturbations, can be deformed by large-scale s
and then relax to axisymmetry.28 Through this process th
vortices can develop sharp gradients at their edges by a
cess known as vortex stripping, which, at least in the fin
Re case, results in diffusion at the vortex edges.23,29

A quantitative analysis of vortex behavior requires so
method of decomposing the solution into vortex and nonv
tex components. Traditional nonlocal decompositions, s
as the Fourier transform, are clearly inadequate for this p
pose since the vortices are localized in physical space. W
a collection of vortices is Fourier transformed, it is high
unlikely that any subset of Fourier modes will correspond
an individual vortex.

Perhaps the most obvious approach is to identify a v
tex as a region of anomalously high vorticity, and to sel
some threshold for the physical-space field, considering
above-threshold part of the signal as the vortex compon
and the remainder as the background. A simple connecti
algorithm can then extract an individual structure~e.g., Ref.
30!. This technique, though useful for rough first analyses
nonetheless fundamentally deficient in several aspects~1!
the vortices are stripped of any vorticity beneath the cu
values, which may be a significant amount during a filam
tation event, for example;~2! the cutoff threshold must be
adjusteda posteriori from time step to time step to ensu
adequate results;~3! there is no clear way to generalize th
technique to more complex problems, such as filtering m
tipole structures, or extracting noisy structures.

The first systematic effort to improve upon simp
thresholding was carried out by McWilliams.10 His vortex
census algorithm operated by scanning the solution a
given time for certain defining criteria specific to the 2-
problem. The criteria are based on properties that an ‘‘ob
tive observer’’ might associate with a vortex. However, the
is potential hazard with basing the decomposition so stron
on ana priori knowledge of the solution: when the selectio
criteria are overly strict, all of the properties of the extract
structures are already implicit in the selection criteria. Bo
at early times when the vortex population is large, and a
time when merging and shearing events are common, w
should or should not qualify as a vortex is far from una
biguous. Nonetheless, given the properties upon wh
McWilliams bases his definition of a vortex, the results
achieves are undoubtedly reasonable, and they led to the
mulation of a scaling theory for decaying 2-D turbulence.15,16
Phys. Fluids, Vol. 9, No. 7, July 1997
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An alternative approach is an algorithm that abso
much of the complexity of the feature education into a mo
general, systematic, and standardized set of operations.
an algorithm is attractive because it may be more easily
plicable to the wide variety of coherent structures seen
various turbulent flows. One general way to approach
question is from the perspective of data compression, by
suming that a basis that concentrates the information in
fewest number of modes simultaneously yields informat
on the type of structures that comprise the signal. In t
view compression and pattern recognition are dual aspec
the same problem. While it is unlikely that each element
the new basis will correspond to a single coherent struct
it is hoped that a structure can be described by a small n
ber of basis elements. For this to be true requires choo
basis elements that share certain properties with the cohe
structures, for example, in terms of locality and symmetr

In this paper we develop and test a technique based
the above philosophy. The algorithm is set in the context
the two-dimensional vortex identification problem primari
because, given the relative topological simplicity of the c
herent vortices, it is an obvious first step. However, we ha
designed the algorithm with an eye toward the more gen
question of coherent structure extraction in turbulence, si
the core of the algorithm can be generalized to treat m
complex problems, including three-dimensional structure

II. DECOMPOSITION ALGORITHM

The idea of the wavelet packet transform~WPT! vortex
decomposition algorithm is based on the empirical obser
tion, reported by Fargeet al.31 and Wickerhauseret al.,32

that a small number of the largest wavelet packet coefficie
correspond to the coherent vortices of 2-D turbulence.
emphasize that the validity of this assumption rests on
quality of the results that it produces rather than a rigoro
mathematical proof. However, the assumption is certai
reasonable, since we expect that by selecting the approp
basis functions that maximize compression, the cohe
structures will be efficiently captured by the highes
amplitude coefficients in the transform space.

A. Wavelets and wavelet packets

A detailed explanation of the the wavelet packet tra
form and its relation to the wavelet transform is given in R
33. Here we limit our discussion to issues that are import
to the present application.

The general concept of the wavelet transform is to r
resent a function in a localized basis, i.e., one that is nonz
only over some concentrated fraction of the domain. Wa
lets thus contrast with the Fourier transform, where the si
soidal basis elements extend over the entire domain. Us
the wavelet transform also requires specifying a particu
localized basis from a rather large and growing library
choices.

One appealing feature of the wavelet transform is th
like the Fourier transform, all elements of the basis are
rived from a single prototype function. With Fourier tran
forms this is accomplished through dilations of complex e
ponentials, while with wavelets, it is accomplished by bo
1989A. Siegel and J. B. Weiss
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dilations and translations of the so-called wavelet mot
function. Requiring that the composition be complete a
thus invertible puts limitations on which localized functio
qualify as wavelet bases. An often unappealing feature of
nonorthogonal wavelet transform is that it is overcomplete
discretely sampled signal ofn points results in a transform
with O@n2# coefficients. This oversampling is avoided b
using the orthogonal wavelet transform, which givesn wave-
let coefficients forn data points.

Though a localized transform will in general decompo
an intermittent signal more efficiently than a global tran
form, a shortcoming of the orthogonal wavelet transform
that the precise location of each basis element is rigidly fi
a priori. If a structure is poorly aligned with the location o
the nearest basis element, the reconstruction of the struc
can require a large number of wavelet modes, many of wh
are included simply to cancel the artifacts produced by
rigid sampling locations. When the reconstruction relies
heavily on cancellation, we are no longer likely to find th
the largest coefficients correspond to structures. This is
cause the coefficients involved in cancellation might ve
well be of a smaller magnitude than the modes correspo
ing to the noncoherent background ‘‘noise.’’ This problem
resolved by turning to the wavelet packet transform,33 a re-
cently developed generalization of the wavelet transform

The WPT begins with a mother wavelet and forms
basis with certain dilations and translations of the temp
function. However, the WPT at the same time considers
lations and translations of an entire class of other basis fu
tions with varying supports and numbers of oscillation
When the signal is decomposed into the WPT basis, as m
be expected, the resulting information is overcomplete. It
then be shown that certain subsets of the information co
spond to complete basis representations in terms of su
groups of the basis functions described above. The en
decomposition is often called the wavelet packet analy
and the nonredundant, complete basis subset that is chos
called the wavelet packet transform. The choice of basis s
set is determined by minimizing a cost function, which c
be different for different applications. The new basis fun
tions involved in the WPT are derived in a simple, natu
way from the mother function. Readers interested in p
cisely how this is accomplished should cons
Wickerhauser.33 Here we wish to emphasize the main cons
quence of the WPT: the domain of the signal can be cut
much more precisely, and localized structures can be dec
posed without significant artifacts due to misalignment w
the location of the local basis.

B. Global decomposition

We denote the WPT of a scalar function of vector arg
mentz(x), with respect to an arbitrary wavelet packet ba
as

Wz~x!5 z̃s~ l ,x!, ~1!

whereW is the WPT operator, andz̃ denotes the resulting
wavelet packet coefficients, which depend on a scalar s
l , physical space locationx, and a basis subsets, which is
1990 Phys. Fluids, Vol. 9, No. 7, July 1997
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selected according to some cost-function criterion. Since
wish to keep only the largest coefficients we introduce
truncation operator,Tm ,

Tmf5 H f ,0, u f u>m,
u f u,m.

According to our initial hypothesis, for some valuem the
coherent part of the field,zc , is given by

zc5W21Tmz̃, ~2!

whereW21 is the inverse WPT operator.
Evidently, the reconstructed functionzc(x) depends on

the precise choice of the truncation valuem. This depen-
dence would be acceptable if either~1! zc is relatively insen-
sitive to some range of choices ofm, or ~2! a quasiobjective
method could be developed to choose a value ofm. To an-
swer question~1! we performed a series of tests on nume
cally generated 2-D turbulence fields, applying Eq.~2! for a
range ofm, and found an unacceptably high degree of sc
ter. For example, choosing values ofm ranging from 1%–
15% of the maximum value ofz̃ gives vortex statistics tha
vary by as much as 20%. This scatter can be reduced
matically by a posteriori empirical adjustments, but thes
adjustments make the algorithm too problem specific. R
garding the second point, we consistently encounter
problem that, no matter how we fixm, the results are no
universally satisfying across all times in the flow evolutio
We emphasize, however, that for the proper choice ofm at
each time step the results were very encouraging. This i
cates that our initial hypothesis is valid, but underscores
fact that we need to systematically quantify the choice
cutoff parameter value at each time step.

To remove the dependence on the truncation parame
we borrow an idea from a generalized denoising scheme
developed by Wickerhauser~see Chap. 11 in Ref. 33!. Wick-
erhauser suggests that extracting the coherence from a
bitrary signal should be an iterative process, first reconstr
ing the signal using a fraction of the wavelet pack
coefficients@i.e., as in Eq.~2!#, and subsequently testing t
see if any coherence might remain to be extracted. We h
adapted his ideas to construct an iterative WPT-based a
rithm to extract the coherent part of a fieldz.

At each stepn in the algorithm the field has a cohere
part zc

n(x) and a remainderz r
n(x), where

zc
n5W21TmWz r

n21,
~3!

z r
n5z r

n212zc
n .

The initial field z is considered to be completely incoheren
i.e.,zc

0 5 0,z r
0 5 z. The reconstruction described by~2! takes

zc
1 as the entire coherent part of the signal. The iterat
algorithm allows for the possibility that the remainderz r

1

contains coherent parts.
This algorithm still leaves open the choice ofm, which

we discuss in detail in the following section. However,
precise value does not affect the overall outcome very mu
since subsequent steps in the iteration compensate for a
initial choice of the truncation parameter. For example,
A. Siegel and J. B. Weiss
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m is chosen too small, thenz r
1 will still have significant

coherence that will be be extracted in further iterations of
algorithm.

To complete the iterative algorithm we add a criterion
stop the algorithm at theNth step whenz r

N does not have a
significant amount of coherence. Thus, we must introduc
new parameter,d, which sets a threshold for stopping th
algorithm. The precise measure of coherence ofz r

n is dis-
cussed below.

The total coherent field is now given by the sum of t
coherent parts,

zc5 (
n51

N

zc
n . ~4!

Conceptually, it is helpful to think of the above iterativ
process as successive ‘‘peeling off’’ of coherent layers of
signal until only the background incoherent part remai
Wickerhauser suggests such a technique as a method of
reduction. In our case, the background vorticity does
constitute noise in the traditional sense, but we expect i
be seen as incoherent with respect to an appropriate wa
basis.

C. Parameter choices

The iterative algorithm requires three specific choic
~1! the truncation valuem, which is related to the fraction o
wavelet packet coefficients used at each step in the re
struction; ~2! the stopping criteriond; and ~3! the wavelet
packet basis. The initial noniterative algorithm appears s
pler in that it involves onlym and the choice of basis; how
ever, we could find no systematic way to select a value of
truncationm. The advantage of adding an additional para
eter is that most of the arbitrariness of the algorithm is n
absorbed in the stopping criteriond, which, as we will argue,
is both more robust than the cutoff threshold and easie
establish based on heuristic arguments. We make no pret
of mathematical rigor and precision in the establishmen
the parameter values, as the problem of coherent feature
traction itself is very ill defined mathematically. Instead, w
rely on heuristic arguments and ana posteriori analysis of
the results.

1. Truncation parameter

The sense in which the results of the algorithm are
longer very sensitive to the choices ofm can be seen intu
itively by first considering the limiting case: if at each st
we retain only the single largest wavelet packet coefficie
then z r

1 differs only slightly fromz. At step two, then, the
stopping criterion is presumably not met, since the signa
still coherent, and the iteration proceeds. If at each suc
sive iteration the program continues to select only the sin
largest coefficient, then the algorithm proceeds throu
many iterations until all the coherent parts of the signal
extracted.

If on the other hand some slightly larger number of c
efficients is retained at each step, then fewer iterations
required to extract the total coherent part of the signal. In
sense retaining a smaller number of coefficients is less
Phys. Fluids, Vol. 9, No. 7, July 1997
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cient, but we expect the results to be essentially the sa
However, if too many coefficients are initially retained, th
the algorithm stops after the first iteration and some of
noncoherent parts of the signal are erroneously extracte

It is therefore important to select a value ofm at each
step in the iteration that we are confident does not consti
an overestimate of the coherent part of the signal. The sa
choice is to retain only the single largest coefficient at ea
step, but then the number of iterations would be enorm
and the algorithm extremely inefficient. Slightly more ef
cient is to take some fixed, relatively small number of t
largest coefficients. This would probably give reasonable
sults for the proper choice of cutoff, but it is still liable t
force the algorithm to go through an unnecessarily la
number of iterations. Our choice is to adjust the value of
cutoff at each step depending on properties of the remain
signal itself.

A good way of adjustingm is to consider the entropy o
the wavelet coefficients of the signal at each level of
iteration. The entropyH of an arbitrary sequencef (k) is
denoted by

H~ f !5 (
k51

N

p~k!log
1

p~k!
, ~5!

wherep(k) 5u f (k)u2/i f i2 is the normalized squared ampl
tude of thekth element of the sequencef , and N is the
number of elements. Exponentiating the entropy gives
theoretical dimension off , d( f ) 5 eH( f ). Some simple theo-
rems show that the value ofd can be interpreted as a me
sure of the number of significant coefficients in the seque
~e.g., see Ref. 33!. Our experience shows that reconstructi
usingd coefficients tends to underestimate the coherent
of the signal. According to the above arguments, this is
only criterion that needs to be met for the truncation para
eter. Furthermore, if we also use the entropyH as the cost
function in our WPT decomposition~see Sec. II A!, then we
have a single consistent measure of significance throug
the algorithm. We therefore consider it a reasonable cho
to base the value ofm on H.

2. Stopping criterion

At each step in the decomposition we need a method
determining when the remainderz r

n is no longer coherent and
the algorithm ceases. Intuitively, we take this to be wh
z r
n is no longer efficiently explained by a small number
high-amplitude wavelet coefficients, i.e. when its wave
packet coefficients have high entropy. ‘‘High entropy’’ im
plies some relation to a reference entropyH ref . We consid-
ered the following three choices ofH ref , the motivation for
which is explained below:

H ref5 log N2e, ~6!

H ref5H~z r
n!2e, ~7!

H ref5H~z!. ~8!
1991A. Siegel and J. B. Weiss
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In ~6! and~7! e is an arbitrary parameter whose value
small compared to logN. The decomposition proceeds un
H(Wz r

n) . H ref , for whichever value ofH ref is used, so that
the stopping criteriond is given byd 5 H ref .

The rationale for choosing~6! is that logN constitutes
the upper bound for the entropy of any process. IfH(Wz r

n)
. logN 2 e, then we are justified in saying thatz r

n is repre-
sented poorly by the wavelet basis and there is no m
coherence left to extract.

Choice~7! amounts to the statement that no more coh
ence remains in the signal when little is gained in a comp
sion sense by transforming the remainder. This criterion
much less strict than the previous since it can terminate
algorithm, even for values of entropyH ! logN2 e.

Choice~8! sets the threshold of incoherence with resp
to the original signalz. We call the remainder,z r

n , incoher-
ent when it is represented less compactly in wavelet pa
space than the original signal itself in physical space. T
amounts to saying that the algorithm should be termina
when the truncation parameter requires us to retain m
coefficients than are significant in the original signal.

We tested the three criteria above and found that~6! is
far too strict. The consequence of an overly strict criterion
that the algorithm terminates after too many iterations, a
considerable filamentation is admitted into the coherent
of the decomposition. Choices~7! and~8! yield very similar
results for reasonable choice ofe in ~7!. With e 5 0 expres-
sion ~7! tends to be overly strict, since only after many iter
tions does the WPT fail to obtain any compression at all
the remainder signal. We choose to use criterion~8! since it
consistently yields very reasonable results without the n
for an arbitrary parameter, and hopefully has some unive
applicability over a range of problems.

3. Choice of wavelet basis

To this point we have spoken generically of the WP
and ignored the issue of the particular choice of basis fu
tions. This choice, however, influences the outcome of
procedure. We would like to choose a basis function tha
identical to the structures in the signal, in this case ellipti
vortex monopoles, so that one mode in the decomposi
space corresponds to an individual coherent structure. S
limitations on what mathematically constitutes a compl
orthogonal basis, however, dictate that we comprom
among a certain set of often desirable qualities such as lo
ity, smoothness, isotropy, and other symmetries. No
wavelet basis has them all.

In this analysis we choose to work with a Haar bas
which is simply a step function, defined as2 1 over the
interval @ 2 1,0# and 1 over the interval@0,1#. In our experi-
ence the final results do not vary significantly for a bro
class of reasonable basis choices. Haar is appealing bec
of its localization properties in physical space: the sha
edged vortices are most efficiently decomposed by a c
pact basis function. Additionally, the symmetry properties
the Haar are similar to a prototypical vortex in that both a
invariant to rotations ofp/2. Less importantly, the WPT al
gorithm is significantly more efficient with a highly localize
basis. A shortcoming of using the Haar basis is that its sh
1992 Phys. Fluids, Vol. 9, No. 7, July 1997
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edges result in relatively slow convergence to the fin
smooth vortex profile, a problem that can be circumvented
it becomes significant, as we explain later.

D. Extracting individual vortices

The iterative algorithm discussed above globally extra
the coherent part of a signal but is not designed to iso
individual structures. Adding this capability first require
some quantitative definition of a structure. A natural cho
in this context takes advantage of the locality of the wave
packet basis, relating a structure to any isolated cluste
wavelet packet coefficients in the coherent part of the sig
This is accomplished by first finding the location and supp
of each wavelet basis element, given by a square of ce
x0 and sizes, and locating other wavelet basis elements w
overlapping or neighboring support. Specifically, if we beg
with an arbitrary wavelet packet basis elementc, then its
immediate neighborsare defined as any other wavelet ba
elements whose domain of support has at least any one o
following properties:~1! it borders the domain of support o
c; ~2! it is a subset of the domain of support ofc; ~3! it is a
superset of the domain of support ofc. The wavelet packet
transform itself excludes the possibility of overlapping su
ports that are not either subsets or supersets. One then b
with an arbitrary wavelet coefficient and locates its imme
ate neighbors. Each of the immediate neighbors is then te
to see if they have any immediate neighbors that were no
the initial group. This process continues until an entire is
lated cluster of wavelet coefficients is obtained. This isola
cluster is considered a coherent structure. At each step o
iterative algorithm we carry out the process described abo
and the coefficients are assigned either to pre-existing vo
ces, or, if they are not the immediate neighbors of any p
existing vortex, to a new vortex.

An ambiguity can arise if a coefficient at stepn of the
vortex is an immediate neighbor of two pre-existing vortic
from the firstn 2 1 steps. This situation is very rare and c
occur only if two vortices are very close to one anoth
Since the effect on the final result is negligible, and the
seems to be no strongly compelling physical rationale
choosing to associate the coefficient with one vortex rat
than the other, we arbitrarily assign the ambiguous coe
cient to the vortex that shares the larger boundary. We
clude the possibility that the cluster constitutes a single v
tex based on the assumption that, using the entr
thresholding criterion, the first level of the decompositi
captures the majority of the coherence of the signal.

A second complication concerns the effect of the sto
ping criterion on the definition of a structure. If the algorith
proceeds through several iterations, our experience sh
that at the final stage a very small amount of filamentat
may ‘‘erroneously’’ be included in the coherent part of th
signal. This small addition will have a negligible effect o
the global decomposition. However, if the filamentation co
stitutes an isolated cluster, then it is counted as an individ
structure. To limit this effect, we may alternatively define
structure as any isolated cluster that emerges after only
first p iterations. This definition is based on the assumpt
that later stages in the decomposition serve only as suc
A. Siegel and J. B. Weiss
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sive refinements of the coherent structures. The res
shown in this paper use a value ofp 5 2. We find that using
a different value ofp has only a minor affect on the detai
of the results, and none whatsoever on conclusions a
vortex scaling.

Finally, if the original structures in the field are smoo
but the reconstructed structures are poorly resolved by a
gular basis, it is always possible at the end of the algorit
improve the reconstruction by including all the remaini
small-amplitude basis elements whose support lies wi
what the algorithm has defined as a structure. In the cur
analysis, this latter operation has an insignificant effect
the vortex statistics.

III. RESULTS

The WPT census algorithm described above was app
to the output of the McWilliams 2-D barotropic vorticit
code.10,15,5 The WPT coefficients were computed using
minimum entropy best-basis search as described
Wickerhauser,33 after first expanding the fields from 4502 to
5122 using zero padding in Fourier space. The numeri
algorithm used by McWilliams is a standard pseudospec
integration of the 2-D incompressible vorticity equation, u
ing a hyperviscous dissipation operator in order to incre
the effective Reynolds number, i.e.,

z t1J~C,z!52n¹2~¹2z!, ~9!

whereC(x,y) is the streamfunction,z52¹2C is the vor-
ticity, J(a,b)5axby 2 aybx is the Jacobian, andn is the co-
efficient of hyperviscosity. The domain is a doubly period
square with side 2p, n 5 3.531029, the resolution is 4502,
and the initial condition is a narrowly distributed ener
spectrum with random phase and total energy of 0.5. Fur
details of the integration are explained in Ref. 10.

To gain a sense of the WPT decomposition when app
to the simulation results, Fig. 1 shows a typical example
the final globally decomposed vorticity fields at an interm
diate time. Each individual vortex in the global coherent fie
is labeled independently and can be extracted after the gl
field is filtered. Using a standard SGI workstation, the to
procedure takes only several seconds per vorticity fie
Given the computer-intensive nature of typical pattern r
ognition routines with an abundance of nested ‘‘i
statements,34 this speed is encouraging.

The first reconstruction uses from several percent of
wavelet packet coefficients at the earliest times to less t
one percent at later times. In general, only several iterat
are required until the stopping criterion is met, and the s
sequent refinement stages retain several percent of th
mainder coefficients at all times. In Fig. 1 the algorithm a
pears to yield a qualitatively satisfying decomposition, w
the exception of small artifacts around the edges of the v
tices, which are the result of the anisotropy and singularity
the basis functions.

While such artifacts due to the singularity of the ba
functions are undesirable, Fig. 2 shows the negative co
quences of using a smoother wavelet basis. Because o
oscillations of the Coiflet 12 wavelet, rippling is introduce
around the perimeter of the reconstructed vortices. The
Phys. Fluids, Vol. 9, No. 7, July 1997
lts

ut

in-

in
nt
n

d

in

l
al
-
e

er

d
f
-

al
l
.
-

e
n
s
-
re-
-

r-
f

e-
the

p-

pling artifact is not reduced at subsequent steps in the it
tion, and the final decomposed field potentially gives m
leading information on the statistical properties of t
background filamentation. The advantage of the Coifle
that it produces smoother vortices on the first iteration,
since the algorithm generally goes through at least two ite
tions, this is not an advantage with the present technique

A. Comparison with thresholding

We made reference to the shortcomings of us
physical-space thresholding, even in the relatively simplis
2-D vortex problem. Here we illustrate a particular examp

A typical measure of the intensity of coherence in a s
nal is the fraction of some relevant quantity contained in
coherent structures. Figure 3 compares the physical-sp
thresholding and WPT results for the fraction of the enst
phy contained in the vortices as a function of time, i.
Vc(t)/V(t), where Vc(t)5*xzc(x,t)

2 dx and
V(t)5*xz(x,t)

2 dx. The figure shows that the coherent vo
tices obtained with the WPT algorithm at all times accou
for at least 90% of the total enstrophy, with values approa
ing 98% at later times. On the other hand, the different cu
thresholds, chosen as a percentage of the maximum vort
amplitude at the given time step, all show a local cent
maximum with otherwise relatively small values for the vo
tex enstrophy. Note also the very gradual shift in amplitu
as the cutoff value is adjusted.

Intuitively, at late times we expectVc /V to asymptote
to a value of unity, when the nonlinear terms become sm
and all of the enstrophy is eventually carried by the fin
dipole structure. When this occurs, though, the vortices
relatively expansive, and the thresholding technique app
ently fails to include a significant fraction that lies on th
perimeter of the vortex. In Fig. 3 we see a hint of this b
havior of the thresholding decomposition asVc /V begins to
decrease at intermediate times. At the earliest times,
WPT algorithm evidently selects many small-amplitu
structures as coherent vortices that are eliminated in
physical-space thresholding because of their small am
tude, regardless of shape. This observation is meant to
derscore the dramatically different results that can be
tained from the two types of algorithms, even in wh
appears to be a relatively simple topology.

B. Temporal vortex scaling

In Ref. 10, McWilliams published the results of his vo
tex census code for the time evolution of certain vortex pr
erties. These included vortex numberN(t), mean vortex ra-
dius r a(t), mean vortex amplitudeza(t), mean vortex
circulationGa(t), and total enstrophyV(t), where the sub-
scripta denotes the average over the entire vortex popula
at a given time.

In Ref. 16 the authors developed a scaling theory for
time evolution of the above vortex properties. The theory
based on the assumption that, in addition to the total ene
E, a second conserved quantity appears in 2-D flows:
vorticity amplitude inside the vortex coresze , which is
shielded from the dissipation and deformation that occ
elsewhere in the flow. The scaling theory thus derived i
1993A. Siegel and J. B. Weiss
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FIG. 1. At timet 5 30 using the WPT algorithm, contour surface of~a!. The
total vorticity field z; ~b! the coherent part of the vorticity fieldzc ; ~c! the
absolute value of the background, noncoherent part of the vorticity fi
z r . In ~a! and ~b! the selected gray levels are identical.
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‘‘mean vortex theory,’’ based on the conservation of t
population average ofze , denoted asza(t). With this as-
sumption dimensional considerations show that, ifN(t) de-
creases algebraically with scaling exponent2j, then r , G,
andV have algebraic time dependence as well, with sca
exponents ofj/4, j/2, and2j/2, respectively.

Both in Refs. 15 and 16 the authors applied the McW
liams census algorithm to the simulation data descri
1994 Phys. Fluids, Vol. 9, No. 7, July 1997
g

-
d

above in an attempt to verify the scaling hypothesis. Th
overall results reasonably supported the theory. In this s
tion we test the performance of the WPT census algorit
on the same data, both to further test the scaling hypoth
as well as give a detailed comparison of the performance
the two vortex extraction methods.

Figure 4 compares the vortex numberN(t) for the WPT
and McWilliams algorithms, together with their ratiodN(t)
A. Siegel and J. B. Weiss
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[ NWPT(t)/NMcW(t). Using a least-squares fit, the scalin
exponent for the wavelet count was computed as 0.72, w
is identical to the value obtained using the McWilliam
algorithm.15 As might be expected, the largest discrepan
occurs at the earliest time in the vortex emergence, when
most difficult to determine subjectively what should qual

FIG. 2. The coherent part of the vorticity fieldzc using a Coiflet 12 basis.

FIG. 3. The fractional vortex enstrophyVc /V as a function of time. The
solid lines are obtained by using physical-space thresholding to extrac
vortices, each line representing a different cutoff value ranging from 1%
20% of the maximum value ofz at the given time. The dashed line is th
result obtained from the WPT algorithm.
Phys. Fluids, Vol. 9, No. 7, July 1997
h
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as a structure. Fromt 5 6 throught 5 30, the values of
NWPT andNMcW differ by less than 5%, with the WPT algo
rithm, in general, selecting a slightly higher number. Th
difference seems to result from a relatively small number
structures that the McWilliams code rejects based on a l
of symmetry about the monopole center, which the code u
as ana priori selection criteria. Of the few cases where t
wavelet algorithm counts a smaller number of vortices,
one interesting case occurs when two contiguous, like-s
vortices ~according to McWilliams’ results! are counted as
an individual structure by the wavelet code. From timet
5 30 to t 5 40 the discrepancies in the results of the tw
algorithms grows to 5%–10% before decreasing significan
at late times. We attribute this local maximum at interme
ate time to the domination of annihilation and merger eve
relative to the total number of vortices in the field.

It is important to emphasize that there is no objective t
for the more correct interpretation of the vortex field. T
philosophy of the wavelet packet algorithm is to have t
decomposition itself decide what a structure is, based on
similarity of the basis function to the vortex structures, hop
fully objectifying the entire process to a greater extent a
facilitating comparisons with other results. In any case, i
encouraging that the assumption of algebraic scaling for
vortex number appears to be reasonably verified in eit
case.

Figure 5 compares both the average vortex radiusr a(t)
and circulationGa(t) for the two algorithms, together with

he
o

FIG. 4. Lower part: Vortex countsN(t) using the McWilliams algorithm
~triangles! and the WPT algorithm~squares!. The solid line is the least-
squares fit with a slopej 5 0.72. Upper part:dN(t), the adjusted ratio of the
WPT count to the McWilliams count, as defined in the text.
1995A. Siegel and J. B. Weiss



m
o
th

ta
d

r
h
w
iz
th

al
ar
ph
til
n
de
i-
he
a
er
by

us
la-
fi-

o
n
is
or-
nt,

een
scal-
me

opu-

on
as

ion

a-
-

s

er
lt,
the ratiosdG anddr . Note that the WPT results forr a and
Ga appear follow similar scaling laws, but have a slight a
plitude shift. Thus, to give a more meaningful comparison
the results we choose to plot their ratio by first adjusting
time averages:dr [ (r aWPT

2 r aWPT
1 r aMcW)/r aMcW anddG

[ (GaWPT
2 GaWPT

1 GaMcW
)/GaMcW

. For the WPT algorithm
r a(t) was computed by measuring the fraction of the to
area that each vortex occupied, and, assuming a circular
main for each vortex, dividing byp and taking the square
root of the result. Thus we take advantage of the natu
definition of area implicit in the wavelet algorithm, whic
produces as output the exact domain of each vortex. If
instead choose to mimic McWilliams and define vortex s
as some fraction of the peak value, then the results of
WPT algorithm would differ by very little from the McWil-
liams algorithm. However, since the WPT vortex size is
ready defined by the algorithm, introducing some arbitr
threshold to determine where the vortex ends is philoso
cally unsatisfying. As Fig. 5 shows, the scaling theory is s
reasonably verified, with some fairly significant discrepa
cies at the earliest times. Overall, the wavelet algorithm
fines a vortex to be slightly larger than McWiliams’ defin
tion, which is still consistent with scaling theory since t
scaling addresses only the slope of the line. The aver
circulationGa(t) was computed in a straightforward mann
by calculating the circulation in each vortex and dividing

FIG. 5. Lower part: Average vortex radiusr aWPT
~triangles! andr aMcW ~dia-

monds!; average vortex circulationGaWPT
~asterisks! and GaMcW

~plusses!.
The solid lines have slopej/2 and j/4. Upper part:dr a ~squares! and
dGa(t) ~circles!, the adjusted ratios of the WPT results to the McWilliam
results, as defined in the text.
1996 Phys. Fluids, Vol. 9, No. 7, July 1997
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the number of vortices. As is expected from the previo
plot, since the vortices are larger, the value of their circu
tion is slightly higher, but the scaling does not differ signi
cantly.

Figure 6 compares the peak vorticity value for the tw
algorithms. In this casezaWPT

(t) tends to be slightly less tha
zaMcW(t), which we attribute the fact that some filtering
being done in the WPT case, where a small amount of v
ticity is lost. Overall, the differences are not very significa
and the values ofza(t) remain roughly constant in time.

Since dimensional analysis cannot distinguish betw
powers of averages and averages of powers, the above
ing theory implicitly assumes that the two have the sa
scaling, e.g.,

rm~ t !5cm@r ~ t !#m, ~10!

where the overbar indicates an average over the vortex p
lation at a given time, e.g.,r a(t) [ r (t).15This turns out to be
equivalent to a constraint on the probability density functi
of the various vortex quantities. Taking the vortex radius
an example,~10! implies a self-similar form ofr(r ,t),

r~r ,t !dr5rS r

r a~ t !
D dr

r a~ t !
5p~x!dx. ~11!

In Fig. 7 we attempt to gauge the validity of the assumpt
by showing the quantityp(x) at a number of times in the
flow evolution. Given the statistical limitations due to a rel
tively small number of vortices, it is difficult to make a de

FIG. 6. Lower part: Average vortex peak valueszaWPT
~triangles! and

zaMcW ~squares!, normalized by their respective maximum values. Upp
part:dza(t), the adjusted ratio of the WPT result to the McWilliams resu
as defined in the text.
A. Siegel and J. B. Weiss
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finitive statement on the accuracy of assumption~11!, but
our results seem to support the finding thatp(x) has no
apparent trend.2

C. Reinterpreting traditional scaling

In his 1969 paper,18 Batchelor made several importa
predictions on the scaling behavior of decaying, isotro
2-D turbulence. The first of these concerned the inert
range scaling of the enstrophy spectrum. Using argum
similar to Kolmogorov 1941,35 Batchelor hypothesized th
existence of a range of scales for high-Re flows, where
statistical quantities of the turbulence depend only on t
quantities: the enstrophy dissipation ratex and the wave-
numberk. Dimensional arguments then show that the ens
phy spectrumV(k) in this range must scale as

V~k!5Cxakb, ~12!

with a 5 2
3 andb 5 21. It is well known that the value

b521 significantly underestimates the spectral slope
served in direct numerical simulations~e.g., Refs. 5 and 36!.
The reason for this failure is understood to be related to
emergence of the coherent vortices, not explicitly taken i
account by~12!, which arrest energy and enstrophy transf
in physical space and have significantly nonlocal interacti
in Fourier space. If the majority of the enstrophy is carri
by localized structures in physical space, then we expe
broad band of the enstrophy spectrum to be dominated by
totality of the contributions from the individual localize
vortices.37 Thus, a number of authors have proposed revi
theories for the value ofb based on the spectrum resultin
from a collection of quasisingular functions~Ref. 38 and
references therein!.

In addition to formulating a more accurate prediction
b based on the presence of the coherent structures, it is
possible to reinterpret and test Batchelor’s ideas in term
the vortex decomposition. To do so we need to first cons
the concept of a ‘‘scale’’ more generally, rather than as s
ply an individual Fourier mode.39 Traditionally, we associate
the Fourier enstrophy spectrum at wave numberk with the

FIG. 7. Probability density functionp(x) vs x for times 5, 15, 25, 40, and
120.
Phys. Fluids, Vol. 9, No. 7, July 1997
c
l-
ts

e
o

-

-

e
o
s
s

a
he

d

f
lso
of
er
-

enstrophy of a structure of size 1/k. In the case of two-
dimensional turbulence the vortex structures are broadb
in wave number space. Thus, a more accurate picture of
enstrophy of structures of size 1/k can be obtained from the
decompositionz 5 (zc

i 1 z r , where thezc
i are the structures

and the enstrophyVc
i of a structure of radiusRi constitutes

one point on the discrete coherent structure ‘‘enstrophy sp
trum.’’ In an intuitive sense we consider these coherent v
tices to be ‘‘noninertial,’’ since they are relatively close
the spectral peak, have significant lifetimes, and carry m
of the enstrophy of the flow. The backgroundz r is incoherent
and not very intermittent, so we naturally hypothesize tha
has the inertial range scaling predicted by~12!.

Testing this hypothesis requires that we compute
Fourier spectrum after first having eliminated the coher
vortices from the signal, since otherwise the ‘‘noninertia
vortices will contaminate the spectrum. Borue40made a simi-
lar computation using a thresholding decomposition for
case of forced 22D turbulence. His calculations clearly ver
fied the existence of a25/3 inverse-cascade scaling regim
Figure 8 shows the background radially averaged spe
V r(k), computed using the WPT algorithm. The plot sho
evidence of ab 5 21 scaling regime for a number of differ
ent times in the flow, which lends evidence to the fact th
the background incoherent part of the flow behaves like
inertial range. We mention in passing that the coherent
strophy spectrumVc(k) is qualitatively very similar to the
full enstrophy spectrumV(k), which has been publishe
elsewhere.5

Next we consider the form of the coherent-structu
‘‘spectrum’’ discussed above. Its form was predicted
Benziet al.,27 based upon a self-similar form of the vorticit
and streamfunction of an arbitrary vortex, i.e.

zc
i ~r !5z0i f ~r /Ri !,

~13!

cc
i ~r !5c0ig~r /Ri !,

FIG. 8. The radially averaged Fourier enstrophy spectrum of the ba
ground fieldV r(k) multiplied by wave numberk. Times range fromt 5 5 to
t 5 40 in increments of 3, as well as timet 5 120. The different curves are
shifted in amplitude for clarity, with time increasing upward.
1997A. Siegel and J. B. Weiss
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where z0i and c0i are the amplitudes of the vorticity an
streamfunction associated with thei th vortex,Ri is the vor-
tex radius, andcc

i is the vortex streamfunction. The func
tions f andg are presumed to be universal with no expli
time dependence.

Equations~13! imply that the ratio of the enstrophy t
the squared circulation of an individual vortex must scale
Ri

22, a fact that was well supported by the calculations
Benzi et al. Another consequence of~13! is that the enstro-
phy of an individual vortex,Vc

i , scales asRi
2; that is

Vc
i 5E

0

Ri
zc
i ~r !2 dr5CVz0i

2 Ri
2, ~14!

whereCV is independent ofRi . Evidently, if z0i depends
only weakly onRi , then a plot ofV i versus scale 1/Ri

should decay asRi
22. Neither this scaling relation nor th

hypothesis of weak dependence ofz0i was tested explicitly
by the authors.

Since Eq.~14! relates the enstrophy of the flow to th
size of the structure containing the enstrophy, we prefe
think of ~14! as predicting the form of the enstroph
containing range of the enstrophy ‘‘spectrum.’’ Of cours
this will look much different from the low-wave number pa
of the Fourier enstrophy spectrum, since the vortices are
calized in physical space and therefore spread enstrophy
a broad band of wave numbers. The ‘‘spectrum’’ in terms
coherent structures, on the other hand, corresponds mor
rectly to typical conceptual pictures such as ‘‘the enstrop
of eddies of sizeRi , ’’ upon which a number of traditiona
turbulence theories have been based~e.g., Ref. 35!. We reit-
erate this point here only to emphasize that the importanc
relation ~14! goes beyond its implied ability to test the h
potheses of self-similar vortices and weak dependence
z0i on Ri .

In Fig. 9 the vortex enstrophy is plotted as a function
inverse scale 1/Ri for a number of different times in the flow

FIG. 9. Vortex enstrophyVc
i and vortex amplitudez0i as a function of

inverse vortex radius 1/Ri . The different curves correspond to the vortic
chosen from different times, ranging fromt 5 5 to t 5 40 in increments of 3.
Time t 5 120 is also plotted. The straight line has a slope of2 2. Herez0i is
scaled by a factor of 5 to make the plot less crowded.
1998 Phys. Fluids, Vol. 9, No. 7, July 1997
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There appears to be a broad region of22 scaling at the
large-scale end, supporting the hypotheses of Benziet al.For
smaller vortices, however, the enstrophy appears to fall
more rapidly, suggesting that either one or both of the
potheses above is not strictly valid. Since the authors th
selves established very convincingly the self-similar form
the typical vortex, it seems reasonable to assume that
smaller vortices tend to be of lower amplitude than the lar
ones. Figure 9 shows this explicitly in a plot of vortex am
plitude as a function of 1/Ri for a wide range of times. While
the large vortices have approximately constant amplitu
with Ri , there is a noticeable falloff for smaller radii.

IV. CONCLUSION

We have attempted to use the compression propertie
the recently developed wavelet packet transform~WPT! to
develop a generalizable algorithm that extracts individual
herent structures in turbulent flows. The motivation for d
veloping a WPT-based algorithm comes from the realizat
that data compression and feature education are not inde
dent concepts; rather, the details of the signal’s compres
can yield information on its coherent components. Our g
eral idea is simple: to choose an appropriate basis for
decomposition and retain only a small subset of the larg
coefficients in the transform space. The need for a more
tematic algorithm via the elimination ofad hocparameter
adjustments leads us to a few simple refinements of the
damental idea.

As the algorithm currently stands, we have little dou
that it can be gainfully applied to the results of any tw
dimensional fluid simulation as an efficient and standardi
method of computing vortex statistics. Much of our con
dence on this matter comes not only from our general ex
rience with manipulating the results, but from the favorab
comparisons to McWilliams’ vortex properties, which w
documented in Sec. III. In this sense those tests constitut
important first step in the use of the algorithm.

Furthermore, we were able to apply the global deco
position to test traditional theories on the behavior of t
inertial and energy-containing regions of the flow. We fou
that a region of Batchelork21 scaling seems to exist whe
the spectra are computed after first extracting the vorti
from the flow. Additionally, the low-wave number energ
containing range of the turbulence can then be interprete
a coherent structure ‘‘spectrum,’’ whose scaling closely f
lows the predictions of Benziet al.27

Finally, we must consider the important question of ge
eralizing the WPT algorithm to operate on a more comp
set of problems, particularly those in three dimensions.
believe that the feasibility of success of such an extens
depends greatly on the topology of the structures in quest
since this exactly determines the selection of the wav
basis function. Certainly, the rudiments of the WPT alg
rithm are readily extendible to three dimensions, as the W
itself becomes no more complex, and retains its high deg
of efficiency. Nor are the other elements of the algorith
specific to two dimensions. However, we are currently li
ited mathematically by the nature of the functions that
proven to qualify as wavelet bases. In the case of the t
A. Siegel and J. B. Weiss
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dimensional problem there were only relatively minor pro
lems in finding a suitable archetypal basis, but we exp
these problems to become more significant as the struct
become more complex. Our perspective is that the 3
quasigeostrophic vortex field is the logical next step, and
most likely tractable within the present state of mathemat
knowledge.
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