A wavelet-packet census algorithm for calculating vortex statistics
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A generalized wavelet-packet based technique for decomposing signals into coherent and
noncoherent parts is presented. The method is tested on the vorticity field of numerical simulations
of weakly decaying two-dimensional turbulence. The easily recognizable coherent vortex structures
that emerge are systematically filtered from the solution. Once extracted, various properties of the
vortices, such as their number, size, circulation, and peak value are computed. The results compare
well with a similar study[J. Fluid Mech.219 361 (1990; Phys. Fluids5, 608 (1993], which
employs a complex pattern recognition technique based exclusivedymiori knowledge of the
properties of the solution—that is, the features typical of the resulting vortex structures. The
similarity of the results is encouraging, suggesting that the wavelet packet technique, by absorbing
much of the complexity into the mathematical features of the transform itself, can provide an
efficient, standardized tool that is readily extendible to more complex problems in two and three
dimensions. ©1997 American Institute of Physid$$1070-663(197)03206-4

I. INTRODUCTION herent structure evolution may then make it possible to con-
struct a simplified model of the turbulence dynamics in terms

Recent high-resolution numerical integrations of theof mutual interactions of the coherent structures that obey the
Navier—Stokes equations have allowed us to investigate thempirically determined constrain¢e.g., Refs. 15-17
coherent structures of high Reynolds number turbulence. The principle obstacle to such quantitative analyses is
Such simulations, together with laboratory experiments, havenhe difficulty of finding a meaningful way to decompose the
provided ample evidence that most important turbulencélow into its coherent and noncoherent parts. Here we present
properties are carried by a few typical “objects” that domi- a technique for carrying out such a decomposition. Our al-
nate the flow'~’ The turbulent transport of heat and momen-gorithm is cast purely in terms of the two-dimensional tur-
tum in the atmospheric boundary layer, for example, seemBulence problem, but its fundamental design is intended to
to occur in intermittent, nonperiodic bursting events associmake it easily generalizable to a range of more complex
ated with convective thermals and the leading edge oproblems.
microfronts®® In rotating Boussinesq convection the heat . . .

. . . . A. Structures in two-dimensional turbulence

transport is believed to be dominated by well-defined plume
structures that originate as vortices at the surface and propa- Two-dimensional turbulence—i.e., high-Re solutions
gate upward through the domainThe vorticity field in  to the two-dimensional incompressible Navier—Stokes
strictly two-dimensional as well as three-dimensional quasiequations—has been a popular subject of research since
geostrophic simulations organizes itself into coherent, typiBatchelor's pioneering worké Batchelor’s interest lay pri-
cally axisymmetric monopole structures that occupy a relamarily in using the two-dimensional 2-D solutions as a sim-
tively small fraction of the domain while containing the plified paradigm for fully 3-D turbulence. His perspective
majority of the enstrophy?'!~1*High-resolution direct nu- was to sacrifice the vorticity stretching dynamics implied by
merical simulations of fully three-dimensional homogeneoushe 3-D equations for a computationally feasible problem
turbulence have given evidence of similar small-scale interthat manifested similar unpredictability and nondiffusive
mittency in the vorticity field, though with apparently more transport.
complex topology(e.g., Ref. 6. At the same time, another class of investigators became

Advances in computer visualization technology have eninterested in the properties of the 2-D solutions for their rel-
abled us to view flow evolution and make important obser-evance to certain large-scale atmospheric and geophysical
vations of typical coherent structure behavior. Such analysgshenomena. The relevance arises from thinking of the 2-D
have undoubtedly enhanced our general understanding efjuations as the limiting form of anisotropic 3-D
turbulence, but their usefulness for model development isurbulence'®?° This approach has proved useful in explain-
somewhat limited by their qualitative nature. A more quan-ing the form of low-wave number atmospheric speétra,
titative analysis would augment these general observationsiodeling the circumpolar vorte®:23 predicting strato-
with calculations of coherent structure properties—for ex-spheric advectiof? and developing inverse-cascade theories
ample, their number, size, shape, mean amplitude, etc., asfér synoptic and mesoscale structuf&&>
function of time. The discovery of the properties of the co- Several important properties of 2-D turbulence can be
deduced either directly or indirectly from the governing
3Electronic mail: siegela@solarz.colorado.edu equations: a net inverse cascade of energy to large scales
PElectronic mail: weiss@paintbrush.colorado.edu resulting in zero energy dissipation in the infinite Re limit,
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and a cascade of enstrophy to small scales via enstrophy- An alternative approach is an algorithm that absorbs
gradient amplificatiod® Additionally, before the earliest much of the complexity of the feature education into a more
computer simulations Batchelor hypothesized that a 2-D flowgeneral, systematic, and standardized set of operations. Such
would evolve into a collection of coherent vortex an algorithm is attractive because it may be more easily ap-
structure€® Visualizations of high-Re 2-D solutions have plicable to the wide variety of coherent structures seen in
supported Batchelor's speculation and provided furthewarious turbulent flows. One general way to approach the
gualitative insights into the role of the coherent structures irquestion is from the perspective of data compression, by as-
the turbulent dynamics. Random initial conditions self-suming that a basis that concentrates the information in the
organize into a collection of coherent vortices, which subsefewest number of modes simultaneously yields information
quently evolve through dissipative vortex interactioh$?’  on the type of structures that comprise the signal. In this
Same-sign vortex mergers result in a larger vortex and filaview compression and pattern recognition are dual aspects of
ments that dissipate significant enstrophy. A relatively smalthe same problem. While it is unlikely that each element in
vortex can be annihilated by the velocity shear induced by &e new basis will correspond to a single coherent structure,
larger vortext® A typical axisymmetric vortex, being stable it is hoped that a structure can be described by a small num-
to many perturbations, can be deformed by large-scale sheler of basis elements. For this to be true requires choosing
and then relax to axisymmetf}. Through this process the basis elements that share certain properties with the coherent
vortices can develop sharp gradients at their edges by a prétructures, for example, in terms of locality and symmetry.
cess known as vortex stripping, which, at least in the finite  In this paper we develop and test a technique based on
Re case, results in diffusion at the vortex edg¥s. the above philosophy. The algorithm is set in the context of

A quantitative analysis of vortex behavior requires somethe two-dimensional vortex identification problem primarily
method of decomposing the solution into vortex and nonvorbecause, given the relative topological simplicity of the co-
tex components. Traditional nonlocal decompositions, sucherent vortices, it is an obvious first step. However, we have
as the Fourier transform, are clearly inadequate for this purdesigned the algorithm with an eye toward the more general
pose since the vortices are localized in physical space. Whelestion of coherent structure extraction in turbulence, since
a collection of vortices is Fourier transformed, it is highly the core of the algorithm can be generalized to treat more
unlikely that any subset of Fourier modes will correspond tocOmplex problems, including three-dimensional structures.
an individual vortex.

Perhaps the most obvious approach is to identify a vorll. DECOMPOSITION ALGORITHM
tex as a region of anomalou_ssly high vor_ticity, and_ to _select The idea of the wavelet packet transfofd/PT) vortex
some threshold for the physical-space field, considering thgecomposition algorithm is based on the empirical observa-
above-threshold part of the signal as the vortex componentjop, reported by Farget al3! and Wickerhauseet al. 32
and the remainder as the background. A simple connectivityhat a small number of the largest wavelet packet coefficients
algorithm can then extract an individual structdeeg., Ref.  correspond to the coherent vortices of 2-D turbulence. We
30). This technique, though useful for rough first analyses, ismphasize that the validity of this assumption rests on the
nonetheless fundamentally deficient in several aspéts: quality of the results that it produces rather than a rigorous
the vortices are stripped of any vorticity beneath the cutofimathematical proof. However, the assumption is certainly
values, which may be a significant amount during a filamenreasonable, since we expect that by selecting the appropriate
tation event, for example(2) the cutoff threshold must be basjs functions that maximize compression, the coherent
adjusteda posteriori from time step to time step to ensure structures will be efficiently captured by the highest-

adequate resultg3) there is no clear way to generalize the amplitude coefficients in the transform space.
technique to more complex problems, such as filtering mul-

tipole structures, or extracting noisy structures. A. Wavelets and wavelet packets

The first systematic effort to improve upon simple A detailed explanation of the the wavelet packet trans-
thresholding was carried out by McWilliam$.His vortex  form and its relation to the wavelet transform is given in Ref.
census algorithm operated by scanning the solution at 83. Here we limit our discussion to issues that are important
given time for certain defining criteria specific to the 2-D to the present application.
problem. The criteria are based on properties that an “objec- The general concept of the wavelet transform is to rep-
tive observer” might associate with a vortex. However, thereresent a function in a localized basis, i.e., one that is nonzero
is potential hazard with basing the decomposition so stronglpnly over some concentrated fraction of the domain. Wave-
on ana priori knowledge of the solution: when the selection lets thus contrast with the Fourier transform, where the sinu-
criteria are overly strict, all of the properties of the extractedsoidal basis elements extend over the entire domain. Use of
structures are already implicit in the selection criteria. Boththe wavelet transform also requires specifying a particular
at early times when the vortex population is large, and anyocalized basis from a rather large and growing library of
time when merging and shearing events are common, whathoices.
should or should not qualify as a vortex is far from unam-  One appealing feature of the wavelet transform is that,
biguous. Nonetheless, given the properties upon whiclike the Fourier transform, all elements of the basis are de-
McWilliams bases his definition of a vortex, the results herived from a single prototype function. With Fourier trans-
achieves are undoubtedly reasonable, and they led to the foierms this is accomplished through dilations of complex ex-
mulation of a scaling theory for decaying 2-D turbulede&®  ponentials, while with wavelets, it is accomplished by both
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dilations and translations of the so-called wavelet motheselected according to some cost-function criterion. Since we
function. Requiring that the composition be complete andwvish to keep only the largest coefficients we introduce a
thus invertible puts limitations on which localized functions truncation operatofT ,,
qualify as wavelet bases. An often unappealing feature of the
nonorthogonal wavelet transform is that it is overcomplete:a  + ¢_
discretely sampled signal af points results in a transform m 0, [fl<m.
with O[n?] coefficients. This oversampling is avoided by
using the orthogonal wavelet transform, which ginvesave-
let coefficients fom data points.

Though a localized transform will in general decompose ZCZWfleZ, 2
an intermittent signal more efficiently than a global trans-
form, a shortcoming of the orthogonal wavelet transform iswhereW ! is the inverse WPT operator.
that the precise location of each basis element is rigidly fixed Evidently, the reconstructed functiafy(x) depends on
a priori. If a structure is poorly aligned with the location of the precise choice of the truncation valoe This depen-
the nearest basis element, the reconstruction of the structugence would be acceptable if eith@y . is relatively insen-
can require a large number of wavelet modes, many of whiclsitive to some range of choices i, or (2) a quasiobjective
are included simply to cancel the artifacts produced by thenethod could be developed to choose a valuenofTo an-
rigid sampling locations. When the reconstruction relies tosswer questior{1l) we performed a series of tests on numeri-
heavily on cancellation, we are no longer likely to find thatcally generated 2-D turbulence fields, applying E2).for a
the largest coefficients correspond to structures. This is bgange ofm, and found an unacceptably high degree of scat-
cause the coefficients involved in cancellation might veryter. For example, choosing values mf ranging from 1%-—
well be of a smaller magnitude than the modes correspondt5% of the maximum value of gives vortex statistics that
ing to the noncoherent background “noise.” This problem isvary by as much as 20%. This scatter can be reduced dra-
resolved by turning to the wavelet packet transfdfma,re-  matically by a posteriori empirical adjustments, but these
cently developed generalization of the wavelet transform. adjustments make the algorithm too problem specific. Re-

The WPT begins with a mother wavelet and forms agarding the second point, we consistently encounter the
basis with certain dilations and translations of the templatgroblem that, no matter how we fim, the results are not
function. However, the WPT at the same time considers diuniversally satisfying across all times in the flow evolution.
lations and translations of an entire class of other basis fundA/e emphasize, however, that for the proper choicenct
tions with varying supports and numbers of oscillations.each time step the results were very encouraging. This indi-
When the signal is decomposed into the WPT basis, as miglates that our initial hypothesis is valid, but underscores the
be expected, the resulting information is overcomplete. It carfiact that we need to systematically quantify the choice of
then be shown that certain subsets of the information correzutoff parameter value at each time step.
spond to complete basis representations in terms of subset To remove the dependence on the truncation parameter,
groups of the basis functions described above. The entireve borrow an idea from a generalized denoising scheme first
decomposition is often called the wavelet packet analysisjeveloped by Wickerhausésee Chap. 11 in Ref. 33Wick-
and the nonredundant, complete basis subset that is choserehauser suggests that extracting the coherence from an ar-
called the wavelet packet transform. The choice of basis sulbitrary signal should be an iterative process, first reconstruct-
set is determined by minimizing a cost function, which caning the signal using a fraction of the wavelet packet
be different for different applications. The new basis func-coefficients[i.e., as in Eq.2)], and subsequently testing to
tions involved in the WPT are derived in a simple, naturalsee if any coherence might remain to be extracted. We have
way from the mother function. Readers interested in preadapted his ideas to construct an iterative WPT-based algo-
cisely how this is accomplished should consultrithm to extract the coherent part of a fiefd
Wickerhause?? Here we wish to emphasize the main conse- At each stem in the algorithm the field has a coherent
quence of the WPT: the domain of the signal can be cut upart {{(x) and a remaindet;'(x), where
much more precisely, and localized structures can be decom- N . 1
posed without significant artifacts due to misalignment with ~ {c=W "TW{ 7, 3
the location of the local basis. 0 el .

é’r = gr - gc .

The initial field ¢ is considered to be completely incoherent,
i.e., =0, = ¢. The reconstruction described (8) takes

We denote the WPT of a scalar function of vector argu-;% as the entire coherent part of the signal. The iterative
ment{(x), with respect to an arbitrary wavelet packet basisalgorithm allows for the possibility that the remaindgr
as contains coherent parts.

_ This algorithm still leaves open the choice raf which

WEe0=£s(1x), _ @) we discuss in detail in the following section. However, its
whereW is the WPT operator, andl denotes the resulting precise value does not affect the overall outcome very much,
wavelet packet coefficients, which depend on a scalar scaleince subsequent steps in the iteration compensate for a poor
I, physical space locatior, and a basis subset which is initial choice of the truncation parameter. For example, if

f, |fl=m,

According to our initial hypothesis, for some valoe the
coherent part of the field;., is given by

B. Global decomposition
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m is chosen too small, thesii will still have significant  cient, but we expect the results to be essentially the same.
coherence that will be be extracted in further iterations of theHowever, if too many coefficients are initially retained, then

algorithm. the algorithm stops after the first iteration and some of the
To complete the iterative algorithm we add a criterion tononcoherent parts of the signal are erroneously extracted.
stop the algorithm at thalth step wher{{“ does not have a It is therefore important to select a value mf at each

significant amount of coherence. Thus, we must introduce atep in the iteration that we are confident does not constitute
new parameterg, which sets a threshold for stopping the an overestimate of the coherent part of the signal. The safest
algorithm. The precise measure of coherence/bfs dis- choice is to retain only the single largest coefficient at each

cussed below. step, but then the number of iterations would be enormous
The total coherent field is now given by the sum of theand the algorithm extremely inefficient. Slightly more effi-
coherent parts, cient is to take some fixed, relatively small number of the
N largest coefficients. This would probably give reasonable re-
(o= Z o (4) sults for the proper choice of cutoff, but it is still Iigble to
n=1 force the algorithm to go through an unnecessarily large

Conceptually, it is helpful to think of the above iterative number of iterations. Our c_hoice Is to adjyst the value Of. the
process as successive “peeling off” of coherent layers of thecutoff at each step depending on properties of the remainder
signal itself.

signal until only the background incoherent part remains: A d f adiust is 1 ider th i f
Wickerhauser suggests such a technique as a method of noi?]e good way ot adjustingn IS 1o consider the entropy o
{ e wavelet coefficients of the signal at each level of the

reduction. In our case, the background vorticity does no _ - .
constitute noise in the traditional sense, but we expect it rderation. The entrapyH of an arbitrary sequenci(k) Is
be seen as incoherent with respect to an appropriate wavelg?nmed by
basis. N
1
H(f)=2 p(k)log - 5
C. Parameter choices k=1 p(k)
The iterative algorithm requires three specific choiceswherep(k) =| f(k)|?| f||? is the normalized squared ampli-
(1) the truncation valuen, which is related to the fraction of tude of thekth element of the sequende and N is the
wavelet packet coefficients used at each step in the recomumber of elements. Exponentiating the entropy gives the
struction; (2) the stopping criterions; and (3) the wavelet theoretical dimension df, d(f ) = e"("). Some simple theo-
packet basis. The initial noniterative algorithm appears simrems show that the value of can be interpreted as a mea-
pler in that it involves onlym and the choice of basis; how- sure of the number of significant coefficients in the sequence
ever, we could find no systematic way to select a value of thée.g., see Ref. 330ur experience shows that reconstructing
truncationm. The advantage of adding an additional param-usingd coefficients tends to underestimate the coherent part
eter is that most of the arbitrariness of the algorithm is nowof the signal. According to the above arguments, this is the
absorbed in the stopping criteridhwhich, as we will argue, only criterion that needs to be met for the truncation param-
is both more robust than the cutoff threshold and easier teter. Furthermore, if we also use the entrdpyas the cost
establish based on heuristic arguments. We make no pretenamction in our WPT decompositiofsee Sec. Il A, then we
of mathematical rigor and precision in the establishment ohave a single consistent measure of significance throughout
the parameter values, as the problem of coherent feature ethe algorithm. We therefore consider it a reasonable choice
traction itself is very ill defined mathematically. Instead, weto base the value ah on H.
rely on heuristic arguments and anposteriori analysis of
the results.

1. Truncation parameter 2. Stopping criterion

The sense in which the results of the algorithm are no At each step in the decomposition we need a method of
longer very sensitive to the choices wf can be seen intu- determining when the remaindgl is no longer coherent and
itively by first considering the limiting case: if at each stepthe algorithm ceases. Intuitively, we take this to be when
we retain only the single largest wavelet packet coefficient{; is no longer efficiently explained by a small number of
then {7 differs only slightly from¢. At step two, then, the high-amplitude wavelet coefficients, i.e. when its wavelet
stopping criterion is presumably not met, since the signal igacket coefficients have high entropy. “High entropy” im-
still coherent, and the iteration proceeds. If at each succeplies some relation to a reference entrdpy;. We consid-
sive iteration the program continues to select only the singl€red the following three choices #f;, the motivation for
largest coefficient, then the algorithm proceeds throughwhich is explained below:
many iterations until all the coherent parts of the signal are

extracted. Hier=10g N—e, (6)
If on the other hand some slightly larger number of co-

efficients is retained at each step, then fewer iterations are H=H({) e, (7)

required to extract the total coherent part of the signal. In this

sense retaining a smaller number of coefficients is less effi- H,=H({). (8)
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In (6) and(7) eis an arbitrary parameter whose value is edges result in relatively slow convergence to the final,
small compared to loQy. The decomposition proceeds until smooth vortex profile, a problem that can be circumvented, if
H(W{T) > H,, for whichever value of  is used, so that it becomes significant, as we explain later.
the stopping criteriod is given bys = H .

The rationale for choosingb) is that logN constitutes  D. Extracting individual vortices

n
the upper bound for the entropy of any processH (W(r) The iterative algorithm discussed above globally extracts

= Iong B E’Ithin W;" are Jusltlﬂet()j in saylr(;g :}ha{t IS TePre-  the coherent part of a signal but is not designed to isolate
seEte poolr?‘/t y the wavelet basis and there IS N0 MOrg, i iqual structures. Adding this capability first requires
coherence left to extract. some quantitative definition of a structure. A natural choice

Ch0|ce.(7) gmrc])unt_s to lth(ar]staltgrlnqnt thgt réo. more coher~m this context takes advantage of the locality of the wavelet
ence remains in the signalwnhen itle IS gainead In a COMPresy, et pasis, relating a structure to any isolated cluster of
sion sense by transforming the remainder. This criterion i

4 . : ) ; avelet packet coefficients in the coherent part of the signal.
much less strict than the previous since it can terminate th%his is accomplished by first finding the location and support
aIgonthr_n, even for values ofentrom_/< logN — e. ) of each wavelet basis element, given by a square of center

Chog:e_(8) Se_ts the threshold of |ncoheren(r:]e \_N'th respecg(o and sizes, and locating other wavelet basis elements with
to the Or'g,'nf"“ signal. We call the remalndglz, , incoher- overlapping or neighboring support. Specifically, if we begin
ent when it is repr.e_sente(_j Iess. ComPaC“y n wavelet pac",%ith an arbitrary wavelet packet basis elementthen its
space than the original signal itself in physical space. Thigy e iate neighborare defined as any other wavelet basis
amounts to saying that the algorithm should be terminate|oments whose domain of support has at least any one of the
when the truncation parameter requires us to retain morgy|ing properties{1) it borders the domain of support of
coefficients than are S|gn|f|_cath in the original signal. _ c: (2) it is a subset of the domain of supportaf (3) it is a

We tested the three criteria above and found (&S o,,arset of the domain of support @f The wavelet packet
far too strict. The consequence of an overly strict criterion isy 5 nsform itself excludes the possibility of overlapping sup-
that the algorithm terminates after too many iterations, ang, s that are not either subsets or supersets. One then begins
considerable fllar_‘n_entatlonlls admitted |n_t0 the cohgrgnt PalLith an arbitrary wavelet coefficient and locates its immedi-
of the decomposition. Chq|cé§) and(8) y|eld very similar ate neighbors. Each of the immediate neighbors is then tested
results for reasonable choice ofn (7). With € = 0 expres- 1, sqq if they have any immediate neighbors that were not in
sion(7) tends to be overly strict, since only after many itera-yne initial group. This process continues until an entire iso-
tions does the WPT fail to obtain any compression at all 0N4e cjyster of wavelet coefficients is obtained. This isolated
the remainder signal. We choose to use crite@®nsince it . ,ster is considered a coherent structure. At each step of the
consistently yields very reasonable results without the neely ~iiye algorithm we carry out the process described above,
for an arbitrary parameter, and hopefully has some universaj, yhe coefficients are assigned either to pre-existing vorti-
applicability over a range of problems. ces, or, if they are not the immediate neighbors of any pre-
existing vortex, to a new vortex.

An ambiguity can arise if a coefficient at stepof the

To this point we have spoken generically of the WPT vortex is an immediate neighbor of two pre-existing vortices
and ignored the issue of the particular choice of basis funcfrom the firstn — 1 steps. This situation is very rare and can
tions. This choice, however, influences the outcome of theccur only if two vortices are very close to one another.
procedure. We would like to choose a basis function that iSince the effect on the final result is negligible, and there
identical to the structures in the signal, in this case ellipticakeems to be no strongly compelling physical rationale for
vortex monopoles, so that one mode in the decompositiochoosing to associate the coefficient with one vortex rather
space corresponds to an individual coherent structure. Strithan the other, we arbitrarily assign the ambiguous coeffi-
limitations on what mathematically constitutes a completecient to the vortex that shares the larger boundary. We ex-
orthogonal basis, however, dictate that we compromiselude the possibility that the cluster constitutes a single vor-
among a certain set of often desirable qualities such as localex based on the assumption that, using the entropy
ity, smoothness, isotropy, and other symmetries. No on¢hresholding criterion, the first level of the decomposition
wavelet basis has them all. captures the majority of the coherence of the signal.

In this analysis we choose to work with a Haar basis, A second complication concerns the effect of the stop-
which is simply a step function, defined as 1 over the ping criterion on the definition of a structure. If the algorithm
interval[ — 1,0] and 1 over the intervdD,1]. In our experi- proceeds through several iterations, our experience shows
ence the final results do not vary significantly for a broadthat at the final stage a very small amount of filamentation
class of reasonable basis choices. Haar is appealing becausay “erroneously” be included in the coherent part of the
of its localization properties in physical space: the sharpsignal. This small addition will have a negligible effect on
edged vortices are most efficiently decomposed by a comthe global decomposition. However, if the filamentation con-
pact basis function. Additionally, the symmetry properties ofstitutes an isolated cluster, then it is counted as an individual
the Haar are similar to a prototypical vortex in that both arestructure. To limit this effect, we may alternatively define a
invariant to rotations ofr/2. Less importantly, the WPT al- structure as any isolated cluster that emerges after only the
gorithm is significantly more efficient with a highly localized first p iterations. This definition is based on the assumption
basis. A shortcoming of using the Haar basis is that its sharthat later stages in the decomposition serve only as succes-

3. Choice of wavelet basis
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sive refinements of the coherent structures. The resultgling artifact is not reduced at subsequent steps in the itera-
shown in this paper use a valuepf= 2. We find that using tion, and the final decomposed field potentially gives mis-
a different value ofp has only a minor affect on the details leading information on the statistical properties of the
of the results, and none whatsoever on conclusions aboltackground filamentation. The advantage of the Coiflet is
vortex scaling. that it produces smoother vortices on the first iteration, but
Finally, if the original structures in the field are smooth since the algorithm generally goes through at least two itera-
but the reconstructed structures are poorly resolved by a sirtions, this is not an advantage with the present technique.
gular basis, it is always _p055|blg at th_e end of the algc_Jrl_thn})\_ Comparison with thresholding
improve the reconstruction by including all the remaining
small-amplitude basis elements whose support lies within We made reference to the shortcomings of using
what the algorithm has defined as a structure. In the currenthysical-space thresholding, even in the relatively simplistic
analysis, this latter operation has an insignificant effect or2-D vortex problem. Here we illustrate a particular example.

the vortex statistics. A typical measure of the intensity of coherence in a sig-
nal is the fraction of some relevant quantity contained in the
Ill. RESULTS coherent structures. Figure 3 compares the physical-space

. . ._thresholding and WPT results for the fraction of the enstro-
The WPT census algorithm described above was applie hy contained in the vortices as a function of time, i.e.,

to the output of the McWilliams 2-D barotropic vorticity Q _ 2
- . t)/Q(t), where Q. (t)= [, L(x,1)° dx and
code!®>° The WPT coefficients were computed using aQEE)):ffg)(x,t)z il figurtce(s)howg tcr(1at t)he X ernd

\T\/I'mlinuk:n er;gm?ty ft.)eft'b asis di se:;r]chf_ %S fdesc;;o_b;d "ices obtained with the WPT algorithm at all times account
Ickernauser,” after irst expanding the hields from {or at least 90% of the total enstrophy, with values approach-

5|122 ';ﬁmg zeC:ob pal\;ljd\'/c%. n Fqur|ertsp§ced The Qumerlfa g 98% at later times. On the other hand, the different cutoff
aigorithm used by NMCVITiams 1S a standard pseudospectr hresholds, chosen as a percentage of the maximum vorticity

integration of the 2-D incompressible vorticity equation, us'amplitude at the given time step, all show a local central

ing a hyperviscous dissipation operator in order to increas?naximum with otherwise relatively small values for the vor-

the effective Reynolds number, i.e., tex enstrophy. Note also the very gradual shift in amplitude
L+ AW, ) =—vV3(V?)), (9)  as the cutoff value is adjusted.
Intuitively, at late times we expedd./() to asymptote
to a value of unity, when the nonlinear terms become small
and all of the enstrophy is eventually carried by the final
dipole structure. When this occurs, though, the vortices are

square with side 2, » = 3.5x 10 °, the resolution is 450 ) . ) ;
- L L relatively expansive, and the thresholding technique appar-
and the initial condition is a narrowly distributed energy . ) A . .
ently fails to include a significant fraction that lies on the

spectrum with random phase and total energy of 0.5. Further . : . .
pec : ' P . -nergy perimeter of the vortex. In Fig. 3 we see a hint of this be-
details of the integration are explained in Ref. 10. . . . .
: - . _havior of the thresholding decomposition@s/() begins to
To gain a sense of the WPT decomposition when applied : . : . :
' ; . . ecrease at intermediate times. At the earliest times, the
to the simulation results, Fig. 1 shows a typical example o . . .
. L : PT algorithm evidently selects many small-amplitude
the final globally decomposed vorticity fields at an interme- . o .

: . T . . structures as coherent vortices that are eliminated in the
diate time. Each individual vortex in the global coherent field sical-space thresholdina because of their small ampli
is labeled independently and can be extracted after the glob Py P 9 b T P

ude, regardless of shape. This observation is meant to un-

field is filtered. Using a standard SGI workstation, the totalderscore the dramatically different results that can be ob-

pr_ocedure takes only seve ral seconds per vorticity fIEIdtained from the two types of algorithms, even in what
Given the computer-intensive nature of typical pattern rec-

ognition routines with an abundance of nested “if” appears to be a relatively simple topology.
statements? this speed is encouraging.

The first reconstruction uses from several percent of th
wavelet packet coefficients at the earliest times to less than In Ref. 10, McWilliams published the results of his vor-
one percent at later times. In general, only several iterationtex census code for the time evolution of certain vortex prop-
are required until the stopping criterion is met, and the suberties. These included vortex numbft), mean vortex ra-
sequent refinement stages retain several percent of the rdius r,(t), mean vortex amplitude/,(t), mean vortex
mainder coefficients at all times. In Fig. 1 the algorithm ap-circulationI",(t), and total enstrophy)(t), where the sub-
pears to yield a qualitatively satisfying decomposition, withscripta denotes the average over the entire vortex population
the exception of small artifacts around the edges of the vorat a given time.
tices, which are the result of the anisotropy and singularity of  In Ref. 16 the authors developed a scaling theory for the
the basis functions. time evolution of the above vortex properties. The theory is

While such artifacts due to the singularity of the basisbased on the assumption that, in addition to the total energy
functions are undesirable, Fig. 2 shows the negative consd=, a second conserved quantity appears in 2-D flows: the
guences of using a smoother wavelet basis. Because of thverticity amplitude inside the vortex core&,, which is
oscillations of the Coiflet 12 wavelet, rippling is introduced shielded from the dissipation and deformation that occurs
around the perimeter of the reconstructed vortices. The ripelsewhere in the flow. The scaling theory thus derived is a

whereW(x,y) is the streamfunction;=—V?W¥ is the vor-
ticity, J(a,b) =a,b, — a,b, is the Jacobian, andis the co-
efficient of hyperviscosity. The domain is a doubly periodic

g. Temporal vortex scaling
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L - © & ; FIG. 1. Attimet = 30 using the WPT algorithm, contour surfacg@t The
‘ total vorticity field £; (b) the coherent part of the vorticity fielé}. ; (c) the
P absolute value of the background, noncoherent part of the vorticity field
e . ™ " .. In (a) and(b) the selected gray levels are identical.

(b)

“mean vortex theory,” based on the conservation of theabove in an attempt to verify the scaling hypothesis. Their
population average of., denoted ag,(t). With this as- overall results reasonably supported the theory. In this sec-
sumption dimensional considerations show thaf\(f) de- tion we test the performance of the WPT census algorithm
creases algebraically with scaling exponen§, thenr, T, on the same data, both to further test the scaling hypothesis
and() have algebraic time dependence as well, with scalingas well as give a detailed comparison of the performance of
exponents of/4, &2, and—¢&/2, respectively. the two vortex extraction methods.

Both in Refs. 15 and 16 the authors applied the McWil-  Figure 4 compares the vortex numbéft) for the WPT
liams census algorithm to the simulation data describeéind McWilliams algorithms, together with their ratéiN(t)
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FIG. 2. The coherent part of the vorticity field using a Coiflet 12 basis. 10 L . L

10 100 .
» t

= Nwp(t)/Npew(t). Using a least-squares fit, the scaling

exponent for the wavelet count was computed as 0.72, whichRIG. 4. Lower part: Vortex countsl(t) using the McWilliams algorithm

is identical to the value obtained using the McWilliams (t”ang'e?_ a”_dhthGIWPT g'g‘z’”t‘mquari?NThe f}o"dd'_i“e ij the 'efaf]t'
H 15 H H uares fit with a slopé = 0.72. er par t), the adjusted ratio of the

algorithm:* As m!ght _be e_xpected, the largest dlscrepan,c)_,\sl\?PT count to the M?:eWiIIiams co?ﬁn, gs defif‘lgd in thejtext.

occurs at the earliest time in the vortex emergence, when it is

most difficult to determine subjectively what should qualify

as a structure. Frorh = 6 throught = 30, the values of
Nwet andNy.w differ by less than 5%, with the WPT algo-
rithm, in general, selecting a slightly higher number. This
difference seems to result from a relatively small number of
structures that the McWilliams code rejects based on a lack
of symmetry about the monopole center, which the code uses
as ana priori selection criteria. Of the few cases where the
wavelet algorithm counts a smaller number of vortices, the
one interesting case occurs when two contiguous, like-sign
vortices (according to McWilliams’ resuljsare counted as
an individual structure by the wavelet code. From tintes

= 30 tot = 40 the discrepancies in the results of the two
algorithms grows to 5%—10% before decreasing significantly
at late times. We attribute this local maximum at intermedi-
ate time to the domination of annihilation and merger events
relative to the total number of vortices in the field.

It is important to emphasize that there is no objective test
for the more correct interpretation of the vortex field. The
philosophy of the wavelet packet algorithm is to have the
L L decomposition itself decide what a structure is, based on the

similarity of the basis function to the vortex structures, hope-

10 100 ; s ;
ully objectifying the entire process to a greater extent and
t facilitating comparisons with other results. In any case, it is
encouraging that the assumption of algebraic scaling for the

FIG. 3. The fractional vortex enstropiy; /() as a function of time. The  vortex number appears to be reasonably verified in either
solid lines are obtained by using physical-space thresholding to extract thease

vortices, each line representing a different cutoff value ranging from 1% to " .
20% of the maximum value of at the given time. The dashed line is the Figure 5 compares both the average vortex radi(s)

result obtained from the WPT algorithm. and circulationI'4(t) for the two algorithms, together with

1.0]

Q/Q
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FIG. 6. Lower part: Average vortex peak value§,wpT (triangles and
Layew (squarel normalized by their respective maximum values. Upper

part: 6Z,(t), the adjusted ratio of the WPT result to the McWilliams result,
as defined in the text.

FIG. 5. Lower part: Average vortex radiug __(triangles andr,  (dia-
monds; average vortex circulatiotlTaWPT (asterisky and FaMcw (plusses
The solid lines have slopé&/2 and &/4. Upper part:ér, (squares and
ST ,(t) (circles, the adjusted ratios of the WPT results to the McWilliams
results, as defined in the text.

the number of vortices. As is expected from the previous

plot, since the vortices are larger, the value of their circula-
the ratiossI” and dr. Note that the WPT results far, and  tion is slightly higher, but the scaling does not differ signifi-
I', appear follow similar scaling laws, but have a slight am-cantly.
plitude shift. Thus, to give a more meaningful comparison of ~ Figure 6 compares the peak vorticity value for the two
the results we choose to plot their ratio by first adjusting thealgorithms. In this casg, . (t) tends to be slightly less than
time averagessr = (r,. __— Fayer T raMcw)/raMcw and ol §aMCW(t), Wh_ich we attribute the fact that some filtering is
= (Paypr = Taypr T Dayen)/Tayg, FO the WPT algorithm being done in the WPT case, where a small amount of vor-

r,(t) was computed by measuring the fraction of the totalticity is lost. Overall, the diffgrences are not very significant,
area that each vortex occupied, and, assuming a circular d@nd the values of(t) remain roughly constant in time.

main for each vortex, dividing byr and taking the square Since dimensional analysis cannot distinguish between
root of the result. Thus we take advantage of the naturaPOWers of averages and averages of powers, the above scal-
definition of area implicit in the wavelet algorithm, which ing theory implicitly assumes that the two have the same
produces as output the exact domain of each vortex. If wécaling, e.g.,

instead choose to mimic McWilliams and define vortex size W=C [r(_t)]ﬂ (10)

as some fraction of the peak value, then the results of the K '

WPT algorithm would differ by very little from the Mcwil- where the overbar indicates an average over the vortex popu-
liams algorithm. However, since the WPT vortex size is al-lation at a given time, e.gq(t) = r(t).** This turns out to be
ready defined by the algorithm, introducing some arbitraryequivalent to a constraint on the probability density function
threshold to determine where the vortex ends is philosophiof the various vortex quantities. Taking the vortex radius as
cally unsatisfying. As Fig. 5 shows, the scaling theory is stillan example(10) implies a self-similar form op(r,t),
reasonably verified, with some fairly significant discrepan- r dr
cies at the earliest times. Overall, the wavelet algorithm de- p(l‘,t)erp(—)
fines a vortex to be slightly larger than McWiliams’ defini- Fa(t)/ ra(t)
tion, which is still consistent with scaling theory since theln Fig. 7 we attempt to gauge the validity of the assumption
scaling addresses only the slope of the line. The averagey showing the quantityp(x) at a number of times in the
circulationI",(t) was computed in a straightforward manner flow evolution. Given the statistical limitations due to a rela-
by calculating the circulation in each vortex and dividing by tively small number of vortices, it is difficult to make a de-

=p(x)dx. (11
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FIG. 7. Probability density functiop(x) vs x for times 5, 15, 25, 40, and FIG. 8. The radially averaged Fourier enstrophy spectrum of the back-
120. ground fieldQ}, (k) multiplied by wave numbek. Times range from = 5 to
t = 40 in increments of 3, as well as time= 120. The different curves are
shifted in amplitude for clarity, with time increasing upward.

finitive statement on the accuracy of assumptiad), but
our results seem to support the finding thEix) has no

apparent trend. enstrophy of a structure of sizekl/In the case of two-
dimensional turbulence the vortex structures are broadband
C. Reinterpreting traditional scaling in wave number space. Thus, a more accurate picture of the

enstrophy of structures of sizekl¢an be obtained from the

In his 1969 papet’ Batchelor made several important decompositiof = =¢. + ¢, , where the! are the structures
predictions on the scaling behavior of decaying, 'SOtrOpICand the enstrophyli ‘(")f a ;'Eructure of r;diuR constitutes’
2-D turbulence. The fir f th ncern he inertial- . C !

W bug ce e first of these conce eq the inertia one point on the discrete coherent structure “enstrophy spec-
range scaling of the enstrophy spectrum. Using argumentts

similar to Kolmogorov 194%° Batchelor hypothesized the rum. In an“mtm_tlve _serlse_ we consider these_ coherent vor-
. X tices to be “noninertial,” since they are relatively close to
existence of a range of scales for high-Re flows, where th

statistical quantities of the turbulence depend only on two?he spectral peak, have significant lifetimes, and carry most

quantities: the enstrophy dissipation rateand the wave- of the enstrophy of the flow. The backgroufids incoherent

numberk. Dimensional arguments then show that the enstrof”lnd not very intermittent, so we naturally hypothesize that it

o has the inertial range scaling predicted (4y).
phy spectrurm(k) in this range must scale as Testing this hypothesis requires that we compute the

Q(k)=Cyx“Kk~, (12 Fourier spectrum after first having eliminated the coherent

vortices from the signal, since otherwise the “noninertial”

vortices will contaminate the spectrum. Bottimade a simi-

lar computation using a thresholding decomposition for the
ase of forced 2D turbulence. His calculations clearly veri-
ied the existence of & 5/3 inverse-cascade scaling regime.

igure 8 shows the background radially averaged spectra

with & = $andB = —1. It is well known that the value
B=-—1 significantly underestimates the spectral slope ob
served in direct numerical simulatiofs.g., Refs. 5 and 36
The reason for this failure is understood to be related to th
emergence of the coherent vortices, not explicitly taken int
account by(12), which arrest energy and enstrophy transfer g c
in physicasl(space and have signifi?:)éntly nonlocgl iﬁteractiongf,(k)' computed using the WPT algorithm. The plot ghows
in Fourier space. If the majority of the enstrophy is carriedev'de,nce Qf B=-1 scal'mg regime fgr a number of differ-
by localized structures in physical space, then we expect nt times in the flow, which lends evidence to the fact that

broad band of the enstrophy spectrum to be dominated by thtge background incoherent part of the flow behaves like an

totality of the contributions from the individual localized "€rtial range. We mention in passing that the coherent en-

vortices®” Thus, a number of authors have proposed revise?t:IOphy sper(]:trumc(k)ni(si qkualitart]i.vilyhver)é similar tt)(l) tr?e q
theories for the value o8 based on the spectrum resulting ' enstrophy spectrum{2(k), which has been publishe

from a collection of quasisingular function®ef. 38 and elsewheré. ,
references therejn Next we consider the form of the coherent-structure

In addition to formulating a more accurate prediction of“spegtrum”ﬂdlscussed above. Its form was predlcte.d. by
B based on the presence of the coherent structures, it is alfignziet al., ba;ed upon a sglf-5|mllar fO”T’ of the vorticity
possible to reinterpret and test Batchelor’s ideas in terms oEIlnd streamfunction of an arbitrary vortex, i.e.
the vortex decomposition. To do so we need to first consider

i —
the concept of a “scale” more generally, rather than as sim- Ce(r)=Laif(r/Ry), (13)
ply an individual Fourier mod&® Traditionally, we associate :
the Fourier enstrophy spectrum at wave numberith the ()= ¢oi9(r/Ry),
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- , ‘ ‘ There appears to be a broad region-e2 scaling at the
large-scale end, supporting the hypotheses of Benai. For

E smaller vortices, however, the enstrophy appears to fall off
more rapidly, suggesting that either one or both of the hy-
potheses above is not strictly valid. Since the authors them-
selves established very convincingly the self-similar form of
] the typical vortex, it seems reasonable to assume that the
. smaller vortices tend to be of lower amplitude than the larger
ones. Figure 9 shows this explicitly in a plot of vortex am-

] plitude as a function of R; for a wide range of times. While

E the large vortices have approximately constant amplitude
] with R;, there is a noticeable falloff for smaller radii.

1000.0 -
100.0 F
100}

1.0+

0.1 e —
10 100
R, We have attempted to use the compression properties of
the recently developed wavelet packet transfdkPT) to
FIG. 9. Vortex enstrophy\. and vortex amplitude;,; as a function of ~ develop a generalizable algorithm that extracts individual co-
inverse vortex radius B . The different curves correspond to the vortices herent structures in turbulent flows. The motivation for de-
chosen from different times, ranging fram= 5 tot = 40 in increments of 3. veloping a WPT-based algorithm comes from the realization
Timet = 120 is also plotted. The straight line has a slope-a®. Here{; is that data compression and feature education are not indepen-
scaled by a factor of 5 to make the plot less crowded. . . , .
dent concepts; rather, the details of the signal’'s compression
can yield information on its coherent components. Our gen-

_ o eral idea is simple: to choose an appropriate basis for the
where o; and ¢ are the amplitudes of the vorticity and gecomposition and retain only a small subset of the largest
streamfunction associated with thiéa vortex,R; is the vor-  cqefficients in the transform space. The need for a more sys-
tex radius, andj; is the vortex streamfunction. The func- tematic algorithm via the elimination aid hoc parameter
tionsf andg are presumed to be universal with no explicit gjystments leads us to a few simple refinements of the fun-
time dependence. damental idea.

Equations(13) imply that the ratio of the enstrophy to As the algorithm currently stands, we have little doubt
the squared circulation of an individual vortex must scale aspat it can be gainfully applied to the results of any two-
R % a fact that was well supported by the calculations ingimensional fluid simulation as an efficient and standardized
Benzi et al. Another consequence ¢13) is that the enstro-  method of computing vortex statistics. Much of our confi-

IV. CONCLUSION

phy of an individual vortex{);, scales aR/; that is dence on this matter comes not only from our general expe-
_ R rience with manipulating the results, but from the favorable
Q'C=J LN dr=Cql§R?, (14 comparisons to McWilliams’ vortex properties, which we
0 documented in Sec. Ill. In this sense those tests constitute an
where C, is independent oRR;. Evidently, if {;; depends important first step in the use of the algorithm.
only weakly onR;, then a plot ofQ); versus scale R, Furthermore, we were able to apply the global decom-

should decay aRi’z. Neither this scaling relation nor the position to test traditional theories on the behavior of the
hypothesis of weak dependence {f was tested explicitly inertial and energy-containing regions of the flow. We found
by the authors. that a region of Batcheldk ! scaling seems to exist when
Since Eq.(14) relates the enstrophy of the flow to the the spectra are computed after first extracting the vortices
size of the structure containing the enstrophy, we prefer térom the flow. Additionally, the low-wave number energy-
think of (14) as predicting the form of the enstrophy- containing range of the turbulence can then be interpreted as
containing range of the enstrophy “spectrum.” Of course,a coherent structure “spectrum,” whose scaling closely fol-
this will look much different from the low-wave number part lows the predictions of Benzt al?’
of the Fourier enstrophy spectrum, since the vortices are lo- Finally, we must consider the important question of gen-
calized in physical space and therefore spread enstrophy overalizing the WPT algorithm to operate on a more complex
a broad band of wave numbers. The “spectrum” in terms ofset of problems, particularly those in three dimensions. We
coherent structures, on the other hand, corresponds more dielieve that the feasibility of success of such an extension
rectly to typical conceptual pictures such as “the enstrophydepends greatly on the topology of the structures in question,
of eddies of sizeR;,” upon which a number of traditional since this exactly determines the selection of the wavelet
turbulence theories have been baged., Ref. 35 We reit-  basis function. Certainly, the rudiments of the WPT algo-
erate this point here only to emphasize that the importance afthm are readily extendible to three dimensions, as the WPT
relation (14) goes beyond its implied ability to test the hy- itself becomes no more complex, and retains its high degree
potheses of self-similar vortices and weak dependence aif efficiency. Nor are the other elements of the algorithm
oi ONR;. specific to two dimensions. However, we are currently lim-
In Fig. 9 the vortex enstrophy is plotted as a function ofited mathematically by the nature of the functions that are
inverse scale R; for a number of different times in the flow. proven to qualify as wavelet bases. In the case of the two-
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