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Rotating Rayleigh-Bénard convection exhibits, in the limit of rapid rotation, a turbulent state known as
geostrophic turbulence. This state is present for sufficiently large Rayleigh numbers representing the
thermal forcing of the system, and is characterized by a leading order balance between the Coriolis force
and pressure gradient. This turbulent state is itself unstable to the generation of depth-independent or
barotropic vortex structures of ever larger scale through a process known as spectral condensation. This
process involves an inverse cascade mechanism with a positive feedback loop whereby large-scale
barotropic vortices organize small scale convective eddies. In turn, these eddies provide a dynamically
evolving energy source for the large-scale barotropic component. Kinetic energy spectra for the barotropic
dynamics are consistent with a k−3 downscale enstrophy cascade and an upscale cascade that steepens
to k−3 as the box-scale condensate forms. At the same time the flow maintains a baroclinic convective
component with an inertial range consistent with a k−5=3 spectrum. The condensation process resembles a
similar process in two dimensions but is fully three-dimensional.
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The evolution of large scale vortex structures from a
turbulent state provides a dramatic example of the role
played by coherent structures in geophysical flows [1].
In the traditional picture of this process rotation of the Earth
is assumed so dominant that vertical motions are strongly
suppressed and the flow is modeled by two-dimensional
(2D) hydrodynamics [1]. Strongly forced 2D turbulence
is dominated by the effects of two inviscid conserved
quantities, the energy

R
D juj2dV and the enstrophy

R
D j∇ ×

uj2dV [2]. These conserved quantities are responsible for a
downscale enstrophy cascade to small scales where it is
dissipated and an upscale energy cascade leading to the
appearance of larger and larger scales in the flow [3]. These
may be incoherent or organized into coherent structures.
In freely decaying flows this process manifests itself in the
coalescence of small vortices into larger vortices as the
enstrophy decays while the energy remains bounded [4]. In
driven flows the large scale structures evolve to ever larger
scales until the energy growth in these scales is arrested
by physical processes absent from idealized models, e.g.,
latitudinal variation of the Coriolis force or the presence
of topographic friction at the Earth’s surface [5]. A similar
process arises in wave turbulence and is called spectral
condensation [6,7].
In this Letter we demonstrate the existence of a similar

condensation process in three-dimensional (3D) rapidly
rotating convection. Fully 3D flows differ from 2D flows
by the absence of an enstrophy cascade. In such flows the
energy cascade is downscale and in steady state leads to the
Kolmogorov k−5=3 energy spectrum [3]. With increasing
rotation rate the increasing two-dimensionalization of the

flow may therefore lead to a transition from a 3D-like
energy spectrum to a 2D-like spectrum. For this purpose we
employ a set of reduced equations describing thermal
convection in the rapid rotation limit Ro≡U=LΩ → 0,
where U and L are the characteristic speed and horizontal
scale of the flow, andΩ is the local rotation rate. In this limit
the flow is locally in geostrophic balance (the Coriolis force
is balanced by the pressure gradient at leading order in Ro),
but vertical flows driven by thermal forcing persist
at sufficiently small horizontal scales [8,9]. For suitable
Ro ≪ 1 and a large enough Rayleigh number measuring
the strength of the forcing a statistically stationary state of
geostrophic turbulence (GT) is realized [10,11].
The development of coherent large scale structures has

been observed in experiments on nonrotating isotropic
turbulence in thin fluid layers [12–15] and in 2D simu-
lations [16–19]. Simulations in [20] indicate that this is the
case in forced 3D rotating turbulence as well. In this Letter
we demonstrate that this process is also present in a
convectively forced system whenever GT is present, and
identify a self-sustaining mechanism behind the coexist-
ence of a vortex condensate with GT. Specifically, nonlinear
interactions between 3D (depth-dependent) baroclinic con-
vective eddies provide a nonlocal forcing for the production
of 2D barotropic (depth-independent) vortical motions from
which the condensate emerges. Interactions between the
barotropic and baroclinic components of the flow in turn
organize the convective eddies through advection and
stretching into a baroclinic state that sustains and enhances
the forcing driving the barotropic component (Fig. 1). These
effects grow as nonlinear interactions between the resulting
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barotropic eddies generate upscale energy transfer from the
baroclinic eddy scale to larger scales.
Rapidly rotating Rayleigh-Bénard convection (RRRBC)

is described by the nondimensional equations [8–10]

∂tζ þ J½ψ ; ζ� − ∂Zw ¼ ∇2⊥ζ; (1)

∂twþ J½ψ ; w� þ ∂Zψ ¼ RaE4=3

σ
θ þ∇2⊥w; (2)

∂tθ þ J½ψ ; θ� þ w∂ZΘ̄ ¼ 1

σ
∇2⊥θ; (3)

∂τΘ̄þ ∂ZðwθÞ ¼
1

σ
∂2
ZΘ̄; (4)

where ∇2⊥ ¼ ∂2
x þ ∂2

y and J½ψ ; f�≔∂xψ∂yf − ∂yψ∂xf
denotes advection with the horizontal velocity
u⊥ ≡ ð−ψy;ψx; 0Þ. Here ψ is the pressure, ζ ≡∇2⊥ψ is
the vertical vorticity, w is the vertical velocity and θ is the
temperature fluctuation about the mean temperature profile
Θ̄; this profile adjusts on the slower time τ ¼ OðE−2=3Þ
relative to the Oð1Þ convective time t. The nondimensional
parameters are theRayleigh number Ra≡ gαΔTh3=κν ≫ 1,
Ekman number E≡ ν=Ωh2 ≪ 1, and Prandtl number
σ ≡ ν=κ ¼ Oð1Þ, where κ and ν are the thermal diffusivity
and kinematic viscosity, g is the gravitational acceleration, α
is the coefficient of thermal expansion and ΔT is the desta-
bilizing temperature difference between the bottom and the
top of the layer; the layer depth is h with ðx; yÞ ¼ Oð1Þ
corresponding to OðE1=3Þh horizontal scales. The equations
capture geostrophically balanced convective motions and
slow inertial waves on these scales [9,10] but filter out
computationally prohibitive fast inertial waves and thin
Ekman layers at the top (Z ¼ 1) and bottom (Z ¼ 0). As a
result they extend dramatically the regime accessible to
direct numerical simulation of RRRBC [9,21,22].
Equations (1)–(4)were evolved in time forRa ¼ OðE−4=3Þ

as described in [9,10].We set RaE4=3 ¼ 100 and σ ¼ 1, well

within the parameter region associated with GT [9–11].
The spatial domain is periodic in the horizontal, impenetrable
in the vertical, and has a nondimensional aspect ratio of
20Lc × 20Lc × 1, where Lc ≡ 2π=~kc ≈ 4.8 is the critical
wavelength for linear instability of the conduction state.
Hereinafter, wave numbers ~k are normalized to the box scale
L≡ 20Lc, so k ¼ ~k=~kbox ≡ 20~k=~kc.
In order to observe the development of the condensate

in a controlled fashion the initial condition at t ¼ 0 was
generated by starting from an earlier solution that had
reached a statistically steady state after numerically sup-
pressing the barotropic dynamics. The simulation was
then restarted and the barotropic component allowed to
evolve freely to study its growth in an otherwise saturated
turbulent flow. The growth of the barotropic component
described here occurs on the fast timescale t, during which
the mean temperature profile Θ̄ remains constant and is
robust with respect to changes in the initial condition.
Figure 1 shows an example of the large scale dipole
structure or condensate that develops in the GT regime
at sufficiently large values of Ra E4=3. Figure 2 shows the
development of this condensate from early to late times.
At early times the condensate has a characteristic scale of
order of the convective scale Lc ¼ L=20 [panel (a)]. After
t ¼ 10 it exhibits significant structure at a scale ∼L=5

FIG. 1 (color online). Volume rendering of vertical vorticity ζ
in geostrophic turbulence showing the development of a large
scale dipole and the organization of small-scale convective eddies
for RaE4=3 ¼ 100 and σ ¼ 1 at t ¼ 100.

FIG. 2 (color online). Barotropic vertical vorticity at t ¼ 1, 10,
37.5, and 100, respectively, showing the organization of the
flow into structures at progressively larger scales. The black lines
indicate one-half wavelength of the dynamically-evolving bar-
oclinic forcing scale 1=kf defined in the text.
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[panel (b)]. By t ¼ 37.5 the condensate has organized into a
box-filling dipole [panels (c,d)].
To understand the formation of the condensate, Eq. (1) is

split into barotropic and baroclinic components. The former
obeys the barotropic vorticity equation obtained by depth-
averaging and noting thatw ¼ 0 at the boundaries Z ¼ 0, 1:

∂thζi þ J½hψi; hζi� ¼ −hJ½ψ 0; ζ0�i þ∇2⊥hζi: (5)

Here hfiðx; yÞ ¼ R
1
0 fðx; y; ZÞdZ and f0 ≡ f − hfi denotes

the baroclinic components of the flow. Equation (5) has been
studied in detail in the context of forced 2D turbulence [5].
In the absence of viscous diffusion, ∇2⊥hζi, and baroclinic
forcing, hJ½ψ 0; ζ0�i, Eq. (5) conserves area-averaged baro-
tropic energy and enstrophy. We expect therefore an inverse
energy cascade within the barotropic subspace with a k−5=3

spectrum. We partition the kinetic energy into barotropic
and baroclinic components, K ¼ Kbt þ Kbc, where Kbt ¼
1
2
ðhui2 þ hvi2Þ and Kbc ¼ 1

2
ðu02 þ v02 þ w02Þ. The growth

of barotropic kinetic energy at horizontal wave number k
obeys

∂tKbtðkÞ ¼ Tk þ Fk þDk; (6)

where Tk ≡P
pqTkpq and Fk ≡P

pqFkpq represent, resp-
ectively, the symmetrized transfer of energy betweenFourier
modes within the barotropic component and the transfer
of energy between convective and barotropic modes;
Dk ≡ −ðk~kboxÞ2Kbt is the viscous dissipation of the baro-
tropic mode. Moreover,

Tkpq ¼ bpqRe½hψkihψpihψqi�δkþpþq;0; (7)

Fkpq ¼ bpqRe½hψkihψ 0
pψ

0
qi�δkþpþq;0; (8)

bpq ¼ bqp ¼ 1

2
~k4boxðp2 − q2Þðpxqy − pyqxÞ; (9)

where Re½…� indicates the real part and k≡ jkj etc. The
barotropic fields are functions of horizontal wave number
only, while the baroclinic fields in Eq. (8) are functions of
the horizontal wave number and height, and then depth-
averaged. We shall refer to Tk as the barotropic cascade and
Fk as the baroclinic forcing. Much work has been done to
understand the 2D barotropic vorticity equation and Tk has
beenwell characterized [5,23,24].However, the nature ofFk
for physically realistic forcing and in particular for con-
vective forcing, and its interaction with Tk, has been here-
tofore largely unexplored.
Figure 3 shows the spectra of the kinetic energiesKbt and

Kbc. The inertial range for the baroclinic component (where
energy is the only inviscid invariant) is consistent with the
characteristic Kbc ∼ k−5=3 energy cascade of 3D turbulence
downscale from the convective scale 1=kc. However, the
influence of the barotropic dynamics on the baroclinic
component is evidenced by the growing power at small

wave numbers indicating the genesis of weak large-scale
overturning structures which organize the baroclinic
eddies. To quantify the time evolution of the baroclinic
forcing scale 1=kf we introduce a threshold scale such that
scales smaller than the threshold transfer 75% of the energy
from 3D to 2D. Figure 3 (arrows) shows that this scale
increases strongly with increasing time.
In contrast, the barotropic kinetic energy displays an

inertial range Kbt ∼ k−3 at scales smaller than 1=kc, con-
sistent with a downscale enstrophy cascade [2]. At larger
scales, the growth of the vortex dipole swamps the expected
k−5=3 energy spectrum associated with incoherent baroclinic
motions (Fig. 3, inset); when the dipole reaches the box scale
the spectrum steepens to Kbt ∼ k−3, as observed in simu-
lations of 2D turbulence [16–19], 3D rotating turbulence at
moderate Ro [20], as well as in experiments on nonrotating
turbulence in a thin layer [13].
Figure 4 shows the time evolution of the four largest

scales in Kbt along with the total Kbc. One sees that while
Kbt grows from zero to an order of magnitude larger than
Kbc, Kbc remains approximately constant, indicating that
baroclinic modes serve as a catalyst for transferring energy
from the thermal forcing to the large-scale barotropic flow.
Figure 5 shows the corresponding transfer functions Tkp
and Fkp obtained from the vector transfer functions by
integrating over angle and summing over q: Tkp¼

R
kdθk×R

pdθp
P

qTkpq and similarly forF. Both T and F have also

10
0

10
1

10
2

k

10
-8

10
-6

10
-4

10
-2

10
0

10
2

K
bc

(k
),

 K
bt

(k
)

t =1
t = 10
t = 100

-5/3

-3

-3

k
c

-5/3

k
c

FIG. 3 (color online). Kinetic energy spectra at t ¼ 1, 10 and
100 for the barotropic (black lines) and baroclinic (red lines)
components. The baroclinic component displays an inertial range
Kbc ∼ k−5=3. The baroclinic forcing wave number kf is indicated
by black arrows. Energy injection occurs at box wave number
kc ¼ 20. For small scales Kbt ∼ k−3, consistent with a downscale
enstrophy cascade; for large scales Kbt steepens to Kbt ∼ k−3,
consistent with a large-scale condensate. The inset shows an
Okubo-Weiss decomposition [25] of Kbt at t ¼ 100 showing that
spectral steepening is an effect of the coherent vortex core (○)
while the background (×) reflects the incoherent k−5=3 2D
upscale energy cascade [2].
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been time-averaged over the time spans defined in Fig. 4.
Figures 4 and 5 show that at early times, t < 1 (interval I),
the large-scale barotropic component grows algebraically
while the barotropic transfer function Tkp remains negli-
gible, i.e., no barotropic cascade is present, and likewise for
the dissipation Dk (not shown). Thus ∂tKbtðkÞ ≈ Fk, where
Fk ≡P

pFkp. One sees that Fkp is large and positive over
barotropic wave numbers k ∈ ð5; 10Þ and baroclinic cata-
lyst wave numbers p ∈ ð5; 10Þ, indicating that the latter are
involved in transferring energy from the convective scale to
the barotropic component. The baroclinic component has
yet to experience the feedback from the growing barotropic
component, and Fk shows that the baroclinic forcing is
positive over the range of convectively unstable scales.
During intermediate times, 1 < t < 10 (interval II), a

wholly different behavior is observed as Kbt rises to match
Kbc. The transfer function for the barotropic cascade, Tkp,
acts differently on scales above and below the baroclinic
forcing scale. When the wave numbers k, p are larger than
kf, the barotropic cascade is localized to the immediate off-
diagonal region, where wave numbers p≳ k put energy
into wave number k while p≲ k take energy out of wave
number k. The net effect seen in Tk ≡P

pTkp is that the
barotropic cascade takes energy out of these wave numbers.
For k, p smaller than kf the situation is reversed and the
barotropic cascade puts energy into these scales. Overall,
the barotropic cascade is an inverse cascade moving energy
from small to large scales that occurs on top of an inco-
herent upscale baroclinic cascade characterized by a k−5=3

spectrum (Fig. 3). However, the baroclinic forcing is now
significantly changed by the feedback from the barotropic
component leading to increasing coherence. The forcing
scale has grown and energy is predominantly put into the

barotropic component at large scales (k ∈ ð2; 6Þ) through
interaction with a broad range of baroclinic catalyst wave
numbers p ∈ ð2; 16Þ.
At late times, 10 < t < 100 (interval III), the coherent

box-scale barotropic modes become dominant and the
spectrum steepens to k−3. In this regime the turbulence is
constrained by the computational domain and the behavior
of the barotropic component resembles the 2D case in which
u · ∇u is balanced by ut resulting in a time-evolving box-
scale condensate with k−3 spectrum [17,26]. The baroclinic
forcing is now concentrated in barotropic wave number
k ¼ 1 via a very broad range of baroclinic catalyst modes p.
Large baroclinic scales (p≲ 6) take energy out of the
box-scale barotropic modes, while small baroclinic scales
(p≳ 8) put energy into these modes, the net result being
strong positive baroclinic forcing of the box-scale barotropic
modes. All but the largest scale have reached a statistically
stationary state by t ¼ 100.
In this Letter we have used an asymptotically reduced

equation set to describe the process of spectral condensation
in RRRBC, a system of significant geophysical interest.
The model system captures self-consistently convective
forcing at an internal scale and is fully 3D, in contrast to
experiments and simulations of 2D nonrotating turbulence
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FIG. 4 (color online). The total baroclinic kinetic energy,
KbcðtÞ, and the kinetic energy Kbtðk; tÞ, k ¼ 1, 2, 3, 4, of the four
smallest wave numbers k ¼ jkj of the barotropic component. The
large scale barotropic energy grows rapidly while the baroclinic
energy slowly decreases. Vertical lines define the boundaries of
the time intervals used in Fig. 5.

FIG. 5 (color online). Detailed transfer maps, Tkp and Fkp,
show how the barotropic self-interaction and the baroclinic-to-
barotropic forcing cooperate to move energy to larger scales
over the three time intervals identified in Fig. 4 (indicated in the
upper right of each panel). Here k represents the scale at which
the barotropic component gains energy and p is the scale of the
catalyst. The color is scaled between −0.2 (blue, black) and 0.2
(red, shaded). Sums over p, i.e., summing over a horizontal line,
give Tk and Fk, respectively, which are shown as vertical profiles
at the right of each panel. In the Fkp panels the black arrows show
the approximate forcing scale noted in Fig. 3.
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with artificial forcing that also exhibit spectral
condensation.
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