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Summary

Geophysical flows are characterized by the presence of coherent vortices, lo-
calized concentrations of energy and vorticity that have a lifetime much longer
than the local turbulence time (sometimes called the eddy turnover time).

In the ocean, coherent vortices, or eddies, are ubiquitous features whose
size varies between several to a few hundred kilometers, and that account for
a large portion of the ocean turbulent kinetic energy [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17]. The presence of vortices can be revealed in various
ways. Vortices at the ocean surface imprint their signature on the sea surface
height and can be tracked by satellite, while floats with looping trajectories
can help revealing the presence of vortices at depth.

Coherent vortices significantly affect the dynamics and the statistical prop-
erties of ocean flows, with important consequences on transport processes. In
this contribution, we shall briefly review some of these issues, focusing on the
simplified conceptual model provided by two-dimensional turbulence.

1 Coherent Vortices and Background Turbulence

The dynamics of vortex-dominated geophysical flows can be simulated by
adopting the overly simplified configuration of two-dimensional, barotropic
turbulence, where the motion is purely horizontal and vertical derivatives van-
ish. The dynamics of two-dimensional turbulence is described by the vorticity
equation

∂ω

∂t
+ u · ∇ω = F +D
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where ω(x, t) = ∂v/∂x − ∂u/∂y is vorticity, u = (u, v) is the fluid velocity,
x = (x, y) is space and t is time. The terms F and D represent forcing and
dissipation respectively.

The dynamics of two-dimensional turbulence is characterized by the spon-
taneous emergence, and subsequent dominance, of a population of strong co-
herent vortices that concentrate most of the energy and vorticity of the flow
[6, 19, 18]. In past years we have advocated the view that two-dimensional
turbulence can be pictured as a two-component fluid: a sea of coherent vor-
tices immersed into a background turbulence that is quite Kolmogorovian.
This two-component view forms the basis of how we interpret Lagrangian
(and Eulerian) measurements and how we infer flow properties from them
[20, 21, 22].

An important issue is how we identify the two components. Until now,
the best way to identify vortices is found to be the direct identification by
some vortex census algorithm based on the analysis of local vorticity patches
in physical space. A variety of such methods exists [23, 24, 25, 26, 27, 28]; all
of them require the knowledge of the full vorticity field. A simplified version
of a vortex census, which requires the knowledge of just a few Eulerian time
series and provides the gross features of the vortex statistics such as the vortex
density and the average vortex size, has also been proposed [22].

Although coherent vortices are local vorticity concentrations, their effects
are non-local: The velocity field generated by a coherent vortex is non-local
as it extends to large distances from the vortex center, well beyond the region
where vorticity is significant. The range where the effect of the vortex on the
velocity field is significant depends on the vortex shape and on the degree
of baroclinicity: Barotropic vortices extend their influence to far distances,
while baroclinic lenses (such as Meddies) have a shorter range of influence.
Indeed, the Green’s function associated with a barotropic (point) vortex is
proportional to log(r), where r is the distance from the core of the vortex.
For a baroclinic (point) vortex, the Green’s function goes as 1/r. Therefore
baroclinic vortices have a shorter range of influence than barotropic ones [29].
In terms of the velocity field (and particle dispersion), the two-component
view of mesoscale turbulence should not be seen as a purely spatial decom-
position of space into separate vortex and non-vortex areas, but rather as the
superposition of two dynamical components which can simultaneously act at
the same spatial position.

The far-field influence of coherent vortices can be seen in the probability
distribution function (PDF) of the velocity. At high Reynolds numbers, when
vortices are intense and have sharp profiles, velocity PDFs in barotropic tur-
bulence have non-Gaussian tails indicating that high velocities are more prob-
able than would be the case for a Gaussian field [21, 30]. This non-Gaussianity
has been previously discussed in the context of point vortices, which can be
thought of as a simplified model of vortex dominated flows at very large
Reynolds number [31, 32, 33]. In this context, it has been shown that small
velocities have a Gaussian distribution but the PDF has a non-Gaussian tail
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related to the slow decay with distance of the velocity induced by a single
vortex. Convergence to a Gaussian PDF is obtained only in systems with an
extremely large number of vortices, orders of magnitude more than exist in
the ocean [33].

Float trajectories in the North Atlantic [30] and in the Adriatic Sea [34, 35],
indicate that velocity PDFs are non-Gaussian. Typically, they have larger
kurtosis than a normal distribution: they have a Gaussian-like core and non-
Gaussian tails for high velocities. Similar results have been found from mid-
latitude fluid particle trajectories along isobaric surfaces in a simulation of
the Atlantic Ocean dynamics at high resolution [36]. Note that we are here
referring to either Eulerian or Lagrangian velocity PDFs under the assump-
tion that Lagrangian particles sample the whole domain. In this case, in fact,
Lagrangian velocity PDFs in the ocean must converge to the Eulerian ones.
This similarity in velocity PDFs between float data, ocean GCMs, simplified
turbulence models, and point vortex systems suggests that the non-Gaussian
nature of the velocity PDFs is due to the vortex component of ocean mesoscale
turbulence.

2 Dynamics of Lagrangian Tracers

The Lagrangian equation of motion for an individual fluid particle moving in
a two-dimensional flow is

dXi

dt
= Ui(t) = u(Xi(t), t) (1)

where Xi(t) and Ui(t) are the Lagrangian position and velocity of the ith
particle, and u(Xi, t) is the Eulerian velocity at the particle position. In this
equation, we do not equate force to mass times particle acceleration, but rather
particle velocity to the push of the flow. This happens because the particle is
assumed to have negligible size and vanishing inertia with respect to the ad-
vecting fluid, i.e., to be a fluid element. When particles have finite size and/or
non-vanishing inertia, the equations of motion become more complicated, see
e.g. [37, 38] for a discussion of the dynamics of inertial and finite-size particles
in vortex-dominated flows.

Numerical simulation of barotropic and of baroclinic (stratified) quasi-
geostrophic turbulence and of point-vortex systems indicate that the cores
of coherent vortices are associated with islands of regular (non-chaotic)
Lagrangian motion that trap particles for times comparable with the vortex
lifetime [39], and that vortices are characterized by a strong impermeability to
inward and outward particle fluxes, see e.g. Elhmaidi et al. [40] or Provenzale
[38] for a review. Particles can have more complex behavior and can eventually
migrate from inside to outside of a vortex or vice versa only when highly (and
relatively rare) dissipative events take place, as the deformation of a vortex
due to the interaction with a nearby vortex, or the formation of a filament.
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For this reason, an initially inhomogeneous particle distribution becomes ho-
mogeneous only on a very long time scale, which is determined by the typical
lifetime of the vortices rather than by their typical eddy turnover time.

The trapping behavior of coherent vortices can be rationalized in terms
of potential vorticity (PV) conservation [41]. For an ideal fluid with irrota-
tional external forcing PV is conserved. When some little dissipation and/or
rotational forcing is acting on the fluid, as it usually happens, PV is not
conserved. If the PV-changing effects are small, PV is quasi-conserved. This
means that in regions where PV changes slightly, the particles will be able
to shift from one PV surface to another. However, strong PV gradients are
much more difficult to overcome, as the change in PV that the particle should
achieve to climb (or descend) the gradient may be too large compared to the
effect of the forcing and dissipation present in the system. As a result, strong
PV gradients can act as transport barriers. This is the main physical reason
why intense jets, associated with strong PV gradients, can act as efficient bar-
riers to transport. The same happens for isolated vortices: Vortex edges act
as barriers to transport because vortices are regions of anomalous potential
vorticity, usually embedded in a background where PV oscillates around a ref-
erence value with low variance. The vortex edges are therefore characterized
by a large potential vorticity gradient, which fluid particles can rarely cross.
This behavior is clearly illustrated by the dynamics of the stratospheric polar
vortex over Antarctica [42].

Another important effect of coherent vortices concerns the convergence of
Lagrangian time-averages. Lagrangian particles can have a very long mem-
ory when coherent structures, whose lifetime is long compared to other time
scales in the problem, are present. For instance, if a Lagrangian particle is
initially released in the background turbulence outside vortex cores, it will
move around without entering any of the vortex cores present in the turbu-
lent flow, until, in a quite rare event such as the formation of a new vortex,
the particle will get trapped inside a newly forming vortical structure. From
that moment on, the particle will stay inside the vortex for times comparable
with the vortex lifetime.

The above example indicates that the temporal convergence of the statisti-
cal properties of a set of Lagrangian trajectories can take place on rather long
timescales, related to the lifetime of the coherent structures. Of course, en-
semble averages over a large number of homogeneously distributed Lagrangian
particles do not suffer from this problem and they usually give a more complete
picture of the flow. This illustrates the fact that ergodicity (i.e., equivalence
of time and ensemble averages) is reached only on very long times, if ever,
for Lagrangian statistics of particles moving in vortex-dominated flows, as
discussed by Weiss et al. [33] for point vortices and by Pasquero et al. [22]
for the vortices of two-dimensional turbulence. An interesting question, then,
concerns the trade-off between the number of particles required to provide a
meaningful picture of the flow (i.e., a correct estimate of the statistical proper-
ties of the flow) and the length of the trajectories. This issue has been discussed
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in some detail in [22], together with the comparison between Lagrangian and
Eulerian second-order statistics (i.e., spectra and decorrelation times).

3 Lagrangian Dispersion in Vortex-Dominated Flows

Lagrangian particles in a Gaussian, homogeneous, stationary and uncorre-
lated velocity field undergo a Brownian random walk. Under such conditions,
the second-order moment of the distribution of particle displacements grows
linearly with time:

A2(τ ; t0) ≡< (Xi(t0 + τ) − Xi(t0))2 >= 2Kτ (5)

where K is the dispersion (or diffusion) coefficient. Here, Xi(t) is the posi-
tion of the ith particle at time t, and the angular brackets denote an ensem-
ble average over all particles. The function A2(τ, t0) measures the absolute
(or single-particle) dispersion. For a statistically stationary flow, the absolute
dispersion A2 does not depend on the starting time t0. Relaxing any of the
above assumptions (Gaussianity, homogeneity, stationarity, lack of temporal
and spatial correlations) can significantly alter the dispersion law described
above.

On short timescales, in particular, the Brownian dispersion law is modi-
fied by spatial and temporal correlations in the advecting flow, which induce
Lagrangian velocity correlations over a substantial time range. The velocity
autocorrelation function for an individual particle (labeled by the index i) is
defined as

Ri(τ) =
(Ui(t) − Ui) · (Ui(t+ τ) − Ui)

σ2
i

, (3)

where Ui(t) is the velocity of the ith particle at time t, Ui and σ2
i are the mean

and variance of the velocity of the ith trajectory, and the overbar indicates an
average over time t. Hence, Ri(0) = 1 and Ri(τ) goes to zero for large τ , when
the particle velocity loses memory of its initial value. The flow field as a whole
is characterized by the ensemble-averaged velocity autocorrelation function,
R(τ), defined by averaging over all trajectories. One simple measure of the
memory of Lagrangian particles is the Lagrangian integral time, defined as

T =
∫ ∞

0

R(τ)dτ. (4)

Over times much shorter than the Lagrangian integral time, the velocity
is almost constant and one observes a ballistic dispersion phase,

A2(τ) = 2Eτ2 (6)

where E is the mean kinetic energy of the advecting flow. A standard way
of representing absolute dispersion is to define a time-dependent dispersion
coefficient, K(τ), as
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K(τ) =
A2(τ)

2τ
. (7)

In the ballistic phase, K(τ) → Eτ as τ → 0, while in the Brownian disper-
sion phase K(τ) → K for τ → ∞. The ballistic regime is sometimes visible
in the dispersion curves computed from surface drifter data [43]. Subsurface
float trajectories are often characterized by a well-defined ballistic regime,
associated with very steep Lagrangian spectra at small times [44].

Lagrangian stochastic models (LSM) are employed to reproduce the main
statistical properties of particle trajectories in turbulent flows, without re-
solving the full Eulerian dynamics. Individual trajectories computed by an
LSM usually do not have the same characteristics of the particles advected by
a realistic flow. The similarity is recovered—if ever!—only statistically, after
averaging over particle ensembles and over different realizations of the turbu-
lent flow. Thus, one should not expect an individual stochastic trajectory to
resemble an individual float trajectory.

One simple class of stochastic models describes the process of single-
particle dispersion. In this case, the spatial correlations of the advecting flow
are discarded insofar as they do not translate into temporal correlations of
the Lagrangian velocities (see also Rupolo et al. [44] for a discussion of how
Eulerian spatial correlations are related to Lagrangian time correlations). A
more complex approach deals with particle separation processes, i.e., relative
dispersion. In this case, the stochastic model describes the time evolution of
the separation of a particle pair, and spatial correlations of the turbulent flow
become an essential ingredient of the picture. In the following, we shall con-
sider only single-particle dispersion and the related stochastic descriptions. An
exhaustive discussion of the atmospheric applications of Lagrangian stochas-
tic models can be found in the monograph by Rodean [45]; for oceanographic
applications see Griffa [46] and Brickman and Smith [47].

The simplest stochastic model for single-particle dispersion is the random
walk (or Markoff-0 model). In this approach, the particle displacements are
randomly extracted from a Gaussian distribution, and there is no temporal
correlation between subsequent displacements. If we assume that there is no
mean flow advecting the particles and that the turbulent flow is statistically
isotropic, we can write a Lagrangian stochastic differential equation for the
random walk as

dXi =
√
KdWi(t). (8)

where X is the position of the ith particle and the diffusivity, K, is not allowed
to vary in space and time. The incremental Wiener random vector, dWi, has
zero mean and it is δ-correlated in space and time, 〈dWi(t) · dWj(t′)〉 =
δij δ(t− t′)dt.

The single-particle stochastic description illustrated above can be framed
in terms of a deterministic partial differential equation for the time evolution of
the probability density function of particle positions, P (X|X(0), t). Defining
the particle concentration at x as ρ(x, t) =

∫
P (X = x|X(0), t) dX(0), the
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Fokker–Planck equation for the evolution of P gives the well-known diffusion
equation:

∂ρ(x, t)
∂t

=
1
2
K∇2[ρ(x, t)]. (9)

The assumption of uncorrelated displacements is equivalent to the assump-
tion that the Eulerian fluid velocities decorrelate instantaneously, i.e., that the
turbulent structure of the flow has no correlations. In general, this assumption
is not appropriate for ocean mesoscale flows, where the temporal correlations
of the advecting velocity field cannot be discarded. The simplest way of ac-
counting for a memory in Lagrangian velocities is to consider a Markoff-1
model. In this approach, the time evolution of the Lagrangian velocity of the
ith particle, Ui, is described by an Ornstein–Uhlenbeck (OU) process:

dUi = −Ui

T
dt+

√
2σ2

T
dWi. (10)

where T is the Lagrangian correlation time and σ2 is the variance of the
Lagrangian velocities. The first term on the r.h.s. is the (deterministic) fading-
memory term, and the second term is the “stochastic kick,” or random com-
ponent, of the velocity fluctuation. For this process, the velocity distribution
is a Gaussian with zero mean and variance σ2, and the velocity autocorre-
lation is an exponential, R(τ) = exp(−τ/T ). The (time-dependent) diffusion
coefficient can be computed analytically,

K(τ) = σ2T

[
1 − T (1 − e−τ/T )

t

]
, (11)

see Griffa [46] for a discussion of this type of stochastic model in the context
of oceanographic applications.

In a study of particle dispersion in two-dimensional turbulence, Pasquero
et al. [21] showed that the linear Ornstein–Uhlenbeck model provides a good
representation of absolute dispersion at short and large times (respectively in
the ballistic and Brownian regimes), while at intermediate times it provides
estimates of the dispersion coefficient which differ by at most 25% from the
values obtained by direct integration of particle dynamics in the turbulent
flow. If this discrepancy is acceptable, due for example to uncertain or poorly
resolved data, then the use of the Ornstein–Uhlenbeck model is sufficient. To
obtain a more precise estimate of the dispersion coefficient, however, a stochas-
tic model that more closely represents the processes of particle dispersion in
vortex-dominated mesoscale turbulence is warranted.

Major differences between the Ornstein–Uhlenbeck process and particle
dispersion in mesoscale turbulence are related to the facts that the velocity dis-
tribution is non-Gaussian [20], the velocity autocorrelation is non-exponential
[21], and particles get trapped in vortices for long times [39, 40]. Given these
differences, it is indeed surprising that just a 25% discrepancy between the
turbulent and the modeled dispersion coefficient is detected.
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In an attempt to improve stochastic parameterizations of particle dis-
persion in mesoscale ocean turbulence, various extensions of the Ornstein–
Uhlenbeck model have been proposed. The indications that Lagrangian
accelerations in the ocean are correlated in time [44] have stimulated the
development of Markoff-2 models where an Ornstein–Uhlenbeck formulation
is written for the acceleration a, with dU = a dt [46]. Higher order models
have also been proposed, with the aim of better reproducing other statistical
properties of Lagrangian motions such as the sub- or super-diffusive behavior
at intermediate times [48]. Superdiffusion has also been obtained by Reynolds
[49], using a variation of a Markoff-2 model that includes spin.

Models that include spin have been designed to explicitly describe particle
motion in and around coherent structures. In the presence of coherent vortices,
particle motion has a rotational component, as evident in the looping trajec-
tories of floats deployed inside mesoscale eddies. The rotational component of
the velocity vector along a Lagrangian trajectory is characterized by an accel-
eration orthogonal to the trajectory. Simple geometrical arguments show that
the introduction of the spin in Markoff-1 models corresponds to adding a new
term in the stochastic equation for the velocity increment, proportional to the
orthogonal velocity component [49, 50]. The individual trajectories produced
by these models display spiraling motion, although the ensemble averaged ve-
locity autocorrelation function is not necessarily oscillatory [49]. This model
has recently been used to reproduce some statistical properties of Northwest
Atlantic float trajectories [51].

On the other hand, it is not clear whether particle spinning inside vortices
has any effect on space and timescales larger than those of the vortices them-
selves. In general, rotational motion inside vortices does not contribute to the
large-scale spreading of particles; it is only the motion of the vortex itself that
is responsible for particle displacements at large scales. In turn, vortices move
because they are advected by other vortices and there is no self-induction of
the vortices themselves [33]. As a result, the large-time dispersion properties of
Lagrangian particles inside or outside the vortices of two-dimensional turbu-
lence are the same. Thus, for the purpose of understanding particle dispersion
at scales larger than the size of the individual vortices, the parameterization of
particle motion inside a vortex can probably be neglected. Note, however, that
the situation can be very different if the scale of motion of interest are large
enough that variations with latitude of the Coriolis parameter, equal to twice
the component of the Earth’s angular velocity, cannot be neglected [52]. Vor-
tices, indeed, move differently with respect to fluid particles in the background
turbulence in presence of differential rotation. Here, significant differences be-
tween long-time dispersion properties of particles inside and outside vortices
can be detected [52].

In a study of single-particle dispersion in two-dimensional turbulence, Pas-
quero et al. [21] proposed a parameterization of dispersion in two-dimensional
turbulence at scales larger than those of the individual vortices. In doing so,
no a priori difference between particles inside and outside vortices is drawn.
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The main point of the approach followed in [21] is the observation that the
Eulerian velocity at any point is determined by the combined effect of the far
field of the vortices and the contribution of the local vorticity field in the
background [20]. Thus, even outside vortices, the velocity field induced by
the coherent vortices cannot be discarded: on average, 80% of the kinetic en-
ergy in the background turbulence outside vortices is due to the velocity field
induced by the vortex population. In addition, the non-Gaussian velocities
measured in the background turbulence outside vortices are entirely due to
the action of the surrounding vortices, which extend their influence far away
from their inner cores. This is a signature of the non-locality of the velocity
field: a particle moving in a vortex-dominated flow is heavily affected by the
vortex dynamics even if it is not located inside them.

In this approach, the stochastic Lagrangian velocity of a particle at the
position X(t) is produced by the sum of two components,

U(X) = UB(X) + UV(X) , (12)

where UB(X) is the velocity induced by the background turbulence and
UV(X) is that induced by the vortices. The background-induced velocity is
characterized by small energy and slow dynamics (i.e., long temporal correla-
tions), while the vortex-induced component has large energy and it undergoes
fast dynamics (whose temporal scale is of the order of the eddy turnover time).
In addition, the vortex-induced component is characterized by a non-Gaussian
velocity PDF.

A different stochastic equation has then to be used for each of the two
components. Since the background-induced velocity component, UB(X), has
a Gaussian distribution, a standard stochastic OU process can be used to
describe it. As for the non-Gaussian, vortex-induced component UV(X), a
proper description is easily obtained by considering a non-linear Markoff-1
model [21]. In this case, one needs to consider a generalized Langevin equation

dUV = a(UV)dt+ b(UV)dW (13)

where the functions a and b are functions of the velocity UV. The choice of the
function a(UV) is (not uniquely) determined by the corresponding Fokker–
Planck equation, with the use of the well-mixed condition [53]. In the end,
the model proposed by Pasquero et al. becomes (we omit the particle index i
for simplicity of notation):

dX = (UB + UV) dt

dUB = −UB

TB
dt+

√
2σ2

B

TB
dWB (14)

dUV = − 2 + |UV|/σV

(1 + |UV|/σV)2
UV

TV
dt+

√
2σ2

V

TV
dWV
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where TB > TV, σ2
V 	 σ2

B, and WB and WV are two independent Wiener
processes.

Interestingly, the parameters of the stochastic model depicted above can
be obtained from fits to an ensemble of Lagrangian trajectories (i.e., assum-
ing no knowledge of the advecting velocity field). Comparison with parti-
cle advection in two-dimensional turbulence shows that this model captures
single-particle dispersion with an error of less than 5%, and it does also
capture statistical quantities measuring higher-order moments of the disper-
sion statistics (e.g., the distribution of first-exit times). Note that both the
non-linear nature of the vortex-induced velocity and the presence of a low-
energy background-induced velocity are essential ingredients of the model. At
shorter times, the vortex-induced velocity dominates and it entirely deter-
mines statistical properties such as the non-Gaussian velocity distribution. At
longer times, the vortex-induced velocity becomes rapidly uncorrelated and
the lower-energy background-induced velocity gives a significant contribution
to particle dispersion.

One advantage of the model illustrated above is that it has been built
from a detailed knowledge of the dynamics of vortex-dominated flows. That
is, it is not obtained by ignoring the structure of the flow, but from an at-
tempt to reproduce, in a stochastic framework, some of the essential ingre-
dients of mesoscale turbulence. In particular, this model fully exploits the
two-component nature of mesoscale turbulence.

4 Dynamics of Passive and Active Tracers

Transport processes can be approached from an Eulerian perspective, focusing
on the advection–diffusion equation for an advected tracer field concentration:

∂ρ

∂t
+ u · ∇ρ = Fρ +Dρ

where ρ is the concentration of the advected tracer, and Fρ and Dρ are
respectively source and sink terms for the tracer.

There is a deep difference between the dynamics of active and passive
tracers. A passive tracer does not feed back on the velocity field, as in the case
of the concentration of a (dispersed) pollutant or of plankton in the ocean. An
active tracer, on the other hand, does feed back on the fluid dynamics, think
of temperature in a convecting fluid or vorticity in two-dimensional turbulence
(which indeed defines the velocity field by the Biot-Savart law ω = ∇2ψ and
u = −∂ψ/∂y, v = ∂ψ/∂x). Clearly, to some extent all tracers are “active,”
either dynamically or thermodynamically. However, it is often assumed that
when the feedback is small, or indirect, it can be discarded.

In the absence of sources and sinks, both the spatial average, 〈ρ〉, and
the variance, 〈(ρ− 〈ρ〉)2〉, of the tracer concentration are conserved. Without
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loss of generality, we can put 〈ρ〉 = 0. In a statistically stationary flow, the
dynamics of a passive tracer in two-dimensional turbulence is characterized by
a direct cascade of tracer variance from large to small scales. In the inertial
range, far from the characteristic scales of sources and sinks, dimensional
arguments indicate that the tracer variance spectrum, Pρ(k) where k is the
wavenumber, is characterized by a form Pρ(k) ∝ k−1 [54].

The situation for vorticity is complicated by the presence of two quadratic
invariants when F = D = 0: enstrophy, Z = 〈ω2〉 (again we have made
the safe assumption that 〈ω〉 = 0), analogous to tracer variance, and en-
ergy, E = 〈(u2 + v2

)〉/2. The simultaneous conservation of these two quan-
tities induces a direct cascade of enstrophy, analogous to the direct cascade
of tracer variance, and an inverse cascade of energy, a specific property of
two-dimensional turbulence [55, 56]. In the case that the scales of small-scale
dissipation, lD, of forcing, lF, and of large-scale boundary effects, L, are suf-
ficiently far from each other, dimensional arguments can be used to deter-
mine the form of the spectrum. The inverse energy cascade takes place at
scales l that are larger than the forcing scale, lF < l < L, and it is asso-
ciated with an energy spectrum E(k) ∝ k−5/3. At scales smaller than the
forcing scales, lD < l < lF, a direct cascade of enstrophy appears, asso-
ciated with an energy spectrum E(k) ∝ k−3 and an enstrophy spectrum
Z(k) ∝ k−1.

Direct numerical simulation of forced-dissipated two-dimensional turbu-
lence indicates that the spectrum of passive tracer variance follows with a
good approximation the predicted scaling form Pρ ∝ k−1. On the other hand,
the enstrophy spectrum in the range of the direct enstrophy cascade is usually
steeper than the prediction from dimensional arguments.

This difference has recently been explored by Babiano and Provenzale
[57], who investigated why the direct cascade is weaker for vorticity than
for a passive tracer. The analysis of the vorticity field by means of the
local value of the Okubo–Weiss parameter [58, 59], Q = s2 − ω2, where
s2 = (∂u/∂x− ∂v/∂y)2 + (∂u/∂y+ ∂v/∂x)2, has shown that the enstrophy
cascade is reversed in elliptic regions characterized by dominance of rotation
over strain (Q < 0). In the cores of the vortices and in small elliptic patches in
the background, at finite scales in the enstrophy inertial range one observes an
inverse enstrophy cascade. In turn, this is associated with gradient-smoothing
processes and an inverse energy cascade.

This behavior is consistent with the weaker spectral enstrophy flux, com-
pared to the passive tracer variance flux, and with the steeper logarithmic
slope of the enstrophy spectrum. The inversion of the enstrophy cascade in
elliptic regions is the main difference between the dynamics of passive tracer
and vorticity. In particular, Babiano and Provenzale speculated that the in-
version of the enstrophy cascade can be one important mechanism associated
with the formation of coherent vortices.
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5 Conclusions

Geophysical turbulence is populated with long-lived, energetic structures: vor-
tices, fronts, jets, and waves. Among these, coherent vortices play an especially
important role, and affect transport processes in many ways.

As a consequence, transport processes cannot be understood in detail by
resorting to simple stochastic parameterizations, but require the development
and use of new approaches. In this chapter we have discussed some possible
options, that include non-linear stochastic processes and an explicit consider-
ation of the turbulent cascades.

Of course, many issues are still open. One conceptual question is how and
why do coherent vortices form. The consideration of the cascades can help
address this problem, but much more needs to be done.

Another active topic of research, which has not been discussed here, is
the interplay of coherent vortices and the marine ecosystem (see the contri-
bution of Marina Levy in this volume, or Pasquero et al. [60, 61] to discover
the view of some of the authors of the present chapter). Mesoscale vortices
affect the population dynamics of phyto- and zooplankton, and are associated
with secondary currents responsible for localized vertical fluxes of nutrients
[62, 63, 64, 65, 66, 67, 68, 69, 70]. The fact that the nutrient fluxes have a fine
spatial and temporal detail, generated by the eddy field, has important con-
sequences on primary productivity [60, 65, 71]. Furthermore, vortices can act
as shelters for temporarily less-favored planktonic species owing to their trap-
ping properties [72] and can disguise the possible presence of self-sustained
oscillations in the plankton system [73]. The horizontal velocity field induced
by vortices also plays an important role in determining plankton patchiness
[74, 75, 76]. The parameterization of transport in mesoscale turbulence and
of its ecological effects [77], needed for properly representing biogeochemical
cycles in coarse-resolution climate models, is a key open problem.
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Rozovskii, R. B. (eds.), Birkhäuser, Boston pp. 114–140 (1996)

47. D. Brickman and P. C. Smith: Lagrangian stochastic modeling in coastal
oceanography. J. Atmos. Ocean. Tech. 19, 83–99 (2002)

48. P. S. Berloff, and J. C. McWilliams: Material transport in oceanic gyres. Part
II: Hierarchy of stochastic models. J. Phys. Oceanogr. 32, 797–830 (2002)

49. A. M. Reynolds: On Lagrangian stochastic modelling of material transport in
oceanic gyres. Physica D 172, 124–138 (2002)

50. B. L. Sawford: Rotation of trajectories in lagrangian stochatsic models of trubu-
lent dispersion. Bound.-Lay. Meteorol. 93, 411–424 (1999)

51. M. Veneziani, A. Griffa, A. M. Reynolds and A. J. Mariano: Oceanic turbu-
lence and stochastic models from subsurface Lagrangian data for the northwest
Atlantic Ocean. J. Phys. Ocean. 34, 1884–1906 (2004)

52. C. R. Mockett: Dispersion and Reconstruction. In Astrophysical and Geophys-
ical Flows as Dynamical System, WHOI Tech. Rep. WHOI-98-00 (1998)

53. D. J. Thomson: Criteria for the selection of stochastic models of particle trajec-
tories in turbulent flows. J. Fluid Mech. 180, 529–556 (1987)

54. G. K. Batchelor: Small-scale variation of convected quantity like temperature
in turbulent field. J. Fluid Mech. 5, 113–133 (1959)

55. G. K. Batchelor: Computation of the energy spectrum in homogeneous two-
dimensional turbulence. Phys. Fluids Suppl. 12, II 233 (1969)

56. R. H. Kraichnan: Inertial ranges in two-dimensional turbulence. Phys. Fluids
10, 1417–1423 (1967)

57. A. Babiano and A. Provenzale: Coherent vortices and tracer cascades in two-
dimensional turbulence. J. Fluid Mech. 574, 429–448 (2007)

58. A. Okubo: Horizontal dispersion of floatable particles in the vicinity of velocity
singularities such as convergences. Deep-sea Res. 17, 445–454 (1970)

59. J. Weiss: The dynamics of enstrophy transfer in two-dimensional hydrodynam-
ics. Physica D 48, 273–294 (1991)

60. C. Pasquero, A. Bracco and A. Provenzale: Coherent vortices, Lagrangian parti-
cles and the marine ecosystem. In: Jirka G. H. and Uijttewaal W. S. J., Shallow
Flows, Balkema Publishers, Leiden, NL, 399–412 (2004)

61. C. Pasquero, A. Bracco, A. Provenzale and J. B. Weiss: Particle motion in
a sea of eddies. In: Griffa A. et al. (eds.) Lagrangian Analysis and Predic-
tion of Coastal and Ocean Dynamics. Cambridge University Press, Cambridge
(2007)

62. P. G. Falkowski, D. Ziemann, Z. Kolber and P. K. Bienfang: Role of eddy pump-
ing in enhancing primary production in the Ocean. Nature 352, 55–58 (1991)
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