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Vortex cores, strain cells, and filaments in quasigeostrophic turbulence
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We present numerical simulations of decaying two-dimensional �2D� and three-dimensional
quasigeostrophic �3D QG� turbulence. The resulting vorticity fields are decomposed into three
components: the vortex cores, the strain cells, and the background. In 2D, the vortex cores induce
five times the energy as the background, while in 3D QG the background plays a more dominant
role and induces the same amount of energy as the vortex cores, quantifying previous observations
that 3D QG has a more active filamentary background. The probability density function of the total
velocity field is nearly Gaussian in 3D QG but significantly less so in 2D. In both 2D and 3D QG,
the velocities induced by the vortex cores and the strain cells are non-Gaussian. In both 2D and 3D
QG turbulence, the enstrophy spectrum of the background is close to k−1 predicted by inverse
cascade theories. © 2006 American Institute of Physics. �DOI: 10.1063/1.2166452�
I. INTRODUCTION

The large-scale fluid dynamics of Earth’s atmosphere
and oceans are strongly influenced by planetary rotation and
vertical density stratification. The two–dimensional �2D� vor-
ticity equation for barotropic turbulence and the 3D quasi-
geostrophic �3D QG� equation are standard models used to
study the effects of rotation and stratification on large-scale
turbulence. Because of its relative simplicity, 2D turbulence
has, in the past, been the focus of many investigations. The
question of how the behavior changes in three dimensions is
of obvious importance.

The dominant behavior of freely decaying 2D turbulence
is vortex formation and merger.1–3 Numerical experiments
show that an initial distribution of random vorticity coalesces
into a population of small vortices, which continue to merge
with like-signed partners until the field is dominated by a
few large vortices. Vortex merger is the mechanism for the
inverse cascade, where energy moves from smaller to larger
scales. This is in contrast to isotropic 3D turbulence, where
vortex stretching and tilting transfers energy from large to
small scales.

The geophysically relevant three-dimensional system
that is closest to 2D fluid dynamics is 3D QG. 3D QG be-
haves like stacked layers of 2D turbulence that communicate
through baroclinic interactions. Like the 2D vorticity equa-
tion, 3D QG lacks a stretching and tilting term, so energy
travels up-scale in an inverse cascade by means of vortex
merger. As time progresses, like-signed vortices in neighbor-
ing layers align to form vertical columns.4

Here we compare decaying 2D and 3D QG vortex-
dominated turbulence by decomposing the vorticity field into
three separate regions: vortex cores, strain cells, and the re-
maining background. Previous work on partitioning the flow
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in 3D QG focused on the vortex component only.5,6 Vortex-
dominated turbulence can be partitioned using a variety of
techniques, including the Okubo-Weiss parameter,7–10 sub-
jective census techniques,11 wavelet analyses,12–15 and time-
series based methods.16

Partitioning the potential vorticity field allows quantita-
tive comparison between the components of 2D and 3D QG
turbulence. Qualitative observations in 2D show low, uni-
formly distributed vorticity content between the vortices,17

while 3D QG is populated by a larger number of filaments
that carry considerably more vorticity.18,19 Vortex filaments
in 3D QG are longer-lived than their 2D counterparts, indi-
cating that filaments are transferred to the dissipation scale
more efficiently in 2D. This difference in behavior can be
qualitatively explained in terms of the Green function, which
in 2D is logarithmic, and in 3D QG decays more quickly as
1/r.19

Studying the statistical properties of velocity fields is an
important method for quantifying turbulent flows. These sta-
tistical characteristics can be studied using in situ measure-
ments, laboratory experiments, physically detailed numerical
models, and idealized turbulence models. In 2D turbulence,
non-Gaussian velocity probability density functions �pdfs�
are due to the vortex component of the flow.20,21 In the con-
text of ocean turbulence, Bracco et al.22 examined daily ve-
locity data from subsurface floats in the North Atlantic and
equatorial Atlantic, and found that distributions were Gauss-
ian for small velocities but approached exponential tails for
large velocities.22 A follow-up study of the North Atlantic
using high-resolution numerical simulations found non-
Gaussian velocity pdfs at the surface and at 1500 m with
similar kurtosis values to the in situ data.23

In this paper, we compare numerical simulations of 2D
and 3D QG turbulence using a pseudospectral model with
periodic boundary conditions. The paper is organized as fol-
lows: Section II details the equation set, numerical method,

initial conditions, and experimental parameters. The methods
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of analysis and separation of the full vorticity field into vor-
tex cores, strain cells, and the background are discussed in
Sec. III. The results in Sec. IV show spectra, pdfs, and sta-
tistics for these components as well as a point vortex model.
A derivation of the velocity pdf for a single 3D point vortex
is given in the Appendix.

II. THE QUASI-GEOSTROPHIC REGIME

The QG equation, first derived by Charney,24 is widely
used to model rotating, stratified, shallow fluids like Earth’s
oceans and atmosphere. It is the basis for analytic models of
Rossby waves, cyclogenesis, and ocean basin circulation, as
well as early numerical weather forecasting models and mod-
ern turbulence models like those presented here. Quasigeo-
strophy results from the incompressible Navier-Stokes equa-
tion in the asymptotic limit of rapid rotation and strong
stable stratification. Derivations of the QG equations can be
found in many standard textbooks such as Salmon.25

In the QG regime, the vertical velocity is asymptotically
small and the flow is horizontally nondivergent. Thus, as in
2D, 3D QG flow can be described by a streamfunction �. In
2D, the dynamics are governed by the relative vorticity �
=�xv−�yu=�2D

2 �, where �2D
2 is the 2D Laplacian operator.

In 3D QG, the appropriate vorticity is the potential vorticity
q. In order to elucidate the effects of three-dimensionality on
inverse-cascade turbulence, we focus on the simplest exten-
sion to 2D fluid dynamics. Thus, we work on the f plane,
where the Coriolis parameter f is constant, and restrict our-
selves to the case where the Brunt-Väisälä frequency N is
constant. It is then convenient to work in so-called stretched
coordinates, where vertical length scales are stretched to
make N / f =1. Under these conditions, the potential vorticity
becomes extremely simple,

q = � +
�2�

�z2 = �3D
2 � , �1�

where �3D
2 is the 3D Laplacian operator. It will be convenient

to denote the vorticity as �, and denote gradients and Lapla-
cians without a subscript, where it is understood that �=�
and �=�2D in 2D, and �=q and �=�3D in 3D QG.

The dynamical vorticity equation is then the same for
both 2D and 3D QG,

D�

Dt
�

��

�t
+ J��,�� = D� , �2�

where D /Dt is the horizontal material derivative for both 2D
and 3D QG and can be written in terms of the horizontal
Jacobian J�� ,��=�x��y�−�y��x�, and D is an appropriate
dissipation operator. Note that because there is no vertical
velocity in 3D QG, the advection operator is strictly horizon-
tal in both 2D and 3D QG. The system is closed by the
vorticity-streamfunction relation,

� = �2� , �3�

where �2 is the 2D or 3D Laplacian for 2D or 3D QG flow,
respectively. Written this way, the equations for 2D and 3D

QG look identical, but the 3D Laplacian in the 3D QG
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vorticity-streamfunction relation provides a coupling be-
tween horizontal levels that is absent in 2D.

The vorticity-streamfunction relation can be inverted in
terms of a Green function G�x�

��x� =� G�x − x����x��dx�, �4�

where G2D� log r and G3D�1/r. Using the Green function
formulation allows all quantities to be represented in terms
of the vorticity field. The velocity field, for example, can be
considered to be induced by the vorticity field through de-
rivatives of the Green function. Two inviscid invariants that
play an important role in the turbulence are the energy E and
the enstrophy Z. In terms of the vorticity field, the energy is

E =
1

2V � ����2dx = −
1

2V � ��x�G�x − x����x�dxdx�

�5�

and the enstrophy is

Z =
1

2V � �2�x�dx , �6�

where V is the volume of the fluid.

III. SEPARATION OF THE POTENTIAL VORTICITY
FIELD

In vortex-dominated turbulence such as decaying 2D and
3D QG turbulence, the structures that dominate the flow are
vorticity structures. It is thus appropriate to decompose the
flow based on a partition of the vorticity field,

��x� = 	
i

�i�x� , �7�

where the subscript represents the component of the parti-
tion. The simplest type of partition, which we use here, re-
sults from cutting physical space into nonoverlapping sets
with each point in space x having, at most, only one nonzero
component. Note, however, that some decomposition tech-
niques, such as wavelet-based techniques, naturally allow
each point in space to have multiple nonzero components.
One advantage of using a nonoverlapping or an orthogonal
partition is that the enstrophy decomposes simply into a sum
of enstrophy components, Z=	iZi, with

Zi =
1

2V � �i
2�x�dx . �8�

The energy decomposition is more complex. Each compo-
nent gives rise to a self-energy Ei,

Ei = −
1

2V � �i�x�G�x − x���i�x�dxdx�, �9�

and, in addition, there is an interaction energy Eij between

components i and j,
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Eij = −
1

V � �i�x�G�x − x��� j�x�dxdx�. �10�

The total energy is then the sum of all self-energies and
interaction energies.

In 2D turbulence, it is useful to partition the vorticity
field into vortex cores, strain cells, and the remaining back-
ground which contains the filaments.9,17,21 Qualitatively, vor-
tex cores have high vorticity magnitude and are roughly el-
liptical in shape. The flow induced by a vortex core is similar
to that of a point vortex, a delta function in vorticity. A strain
cell, also called a circulation cell, is an annular region with
high shear that surrounds each vortex core. The background
is what remains after removing the cores and the strain cells
and contains long, thin vortex filaments that are stretched
until they reach the dissipation scale and are dissipated.
Qualitative visualizations indicate that the same decomposi-
tion may be useful in 3D QG.

As discussed in the Introduction, there are many quanti-
tative methods to partition a complex vorticity field. Here we
choose a simple method based on thresholds in the Okubo-
Weiss parameter. This has the decided advantage of simplic-
ity and allows the same method to be used in both 2D and
3D QG. Another advantage of the Okubo-Weiss parameter is
that it is, apart from a factor of 4, identical to a parameter
often used to identify structures in isotropic 3D turbulence.

The quantity known as �2, the middle eigenvalue of a
tensor of velocity gradients, is often used to quantify and
visualize coherent structures in fully 3D turbulence.26 Iso-
surfaces of � identify vortex rings and jets in complex 3D
2

corresponding �2 field normalized by 
�, the standard devia-
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simulations. Here we show that in 2D and 3D QG, the
Okubo-Weiss parameter OW=4�2. Physically, these param-
eters measure the relative contribution of vorticity versus
strain. The Okubo-Weiss parameter, developed in the context
of ocean modeling and 2D hydrodynamics,7,8 is negative
where rotation dominates and positive where strain domi-
nates. The relationship between the Okubo-Weiss parameter
and �2 is discussed in Ref. 27 and is briefly reviewed here.

The Okubo-Weiss parameter is

OW = S2 − �2 �11�

=sn
2 + ss

2 − �2 �12�

=4
� �u

�x
�2

+
�u

�y

�v
�x
 , �13�

where � is the relative vorticity and S, the strain, is com-
posed of a normal component sn=�xu−�yv and a shear com-
ponent ss=�yu+�xv. The �2 parameter is the middle eigen-
value of the symmetric tensor S2+�2, where S and � are
the symmetric and antisymmetric parts of the velocity gradi-
ent tensor �u; i.e., Sij = 1 � 2 �ui,j +uj,i� and �ij = 1 � 2 �ui,j

−uj,i�, and the comma notation indicates partial derivatives.
For a 3D velocity field, S2+�2 is a 3�3 matrix at each grid
point, and the eigenvalues are ordered such that �1��2

��3.
In 3D QG, the fluid is incompressible and the vertical

velocity is asymptotically small. These assumptions simplify
S2+�2 considerably so that its leading-order eigenvalues are
� = �� �u

�x
�2

+
�u

�y

�v
�x

,
1

2

� �u

�x
�2

+
�u

�y

�v
�x
 ±

1

2
�
� �u

�x
�2

+
�u

�y

�v
�x
2

+ � �u

�x

�v
�z

−
�u

�z

�v
�x
�2

+ � �u

�y

�v
�z

−
�u

�z

�v
�y
�2� . �14�
Simple inequalities show that the middle eigenvalue is al-
ways

�2 = � �u

�x
�2

+
�u

�y

�v
�x

�15�

and that �1�3	0.
For the 2D vorticity equation, all terms with z deriva-

tives are zero, so �14� simplifies to

� = �0,� �u

�x
�2

+
�u

�y

�v
�x

,� �u

�x
�2

+
�u

�y

�v
�x
� . �16�

In this case, S2+�2 is really a 2�2 matrix with two equal
eigenvalues. The expressions for �2 in 2D and 3D QG are
identical, and are one-fourth the value of the Okubo-Weiss
measure traditionally used in 2D turbulence studies, i.e., �2

=1/4OW.
Figure 1 shows a closeup view of several vortices at time

15 in a 3D QG simulation �see Sec. IV for details�, with the
tion of the relative vorticity, equal to the square-root of twice
the relative enstrophy. The �2 value measures strain squared
minus vorticity squared. Vortex cores, where the vorticity
magnitude is large but the velocity is near zero, have large
negative �2. The strain cells are rings of high velocity in-
duced by the vortex cores where �2 is large and positive.
These regions have lower vorticity than the cores and high
shear strain due to the way velocity decreases with distance
from the core. Areas with small ��2 /
�� are neither vortex
cores nor strain cells, and include the low-vorticity filamen-
tous structures that fill the majority of the vorticity field.
Notice that for periodic boundary conditions �and for infinite
domains where boundary terms vanish�, �2 has the property
in both 2D and 3D QG that the integral over each horizontal
level of strain squared equals that of vorticity squared, and
thus the integral of �2 is zero. This fact motivates the use of

� to normalize �2.

The boundaries between vortex cores and circulation

cells may be defined by the sharp transition between large
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positive and large negative values of �2. Other methods of
defining the vortex edge include isolines of maximum kinetic
energy and maximum vorticity gradient. In atmospheric data,
isolines of maximum kinetic energy show a close correspon-
dence to �2=0, while isolines of maximum vorticity gradient
do not strictly coincide.28 We choose to partition the vorticity
field using �2 �Okubo-Weiss� because it provides a straight-
forward measure that has been widely used in the literature.
Our goal is to produce a simple, relatively robust decompo-
sition.

In order to partition the vorticity field, we need to choose
threshold values of �2 /
�. We wish to choose critical values
that give decompositions that are relatively insensitive to the
exact value of the threshold. To investigate the sensitivity, we
calculate the energy partition as a function of critical �2 /
�.
We first partition the vorticity field into two components:
�−= �� ��2 /
���2crit� and �+= �� ��2 /
���2crit�. Figure 2
shows the self-energy fraction of both components along
with interaction energy or cross-term. �The details of the
simulations are described in Sec. IV.� As �2crit increases from
negative infinity, �− increasingly captures more of the vortex
cores until, as �2crit approaches zero, �− starts to also capture
parts of filaments that we would like to include in the back-
ground. On the other hand, as �2crit decreases from positive

FIG. 1. A closeup view of a horizontal 3D QG plane �a� and the correspond-
ing �2 field �b�. Color bar values on �b� are �2 /
�, where 
� is the standard
deviation of the relative vorticity.
infinity, �+ increasingly captures more of the strain cells until
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it starts including parts of the field that we, again, would like
to include in the background. Thus �2crit defines precisely
where we draw the boundary between cores/strain cells and
background.

Figure 2 shows that, in both 2D and 3D QG, there is a
region of �2crit where the energy of the components varies
smoothly and relatively slowly, and then, as �2crit approaches
zero, the energies change more dramatically. We investigated
a range of �2crit and found that the broad features we describe
here are robust to modest changes in the threshold. Here we
present results for a threshold choice of �2crit= ±1.

IV. NUMERICAL SIMULATIONS

We numerically integrate Eqs. �2� and �3� using a pseu-
dospectral numerical model with Fourier basis functions in a
2D and 3D periodic box. The nonlinear advective terms are
computed in physical space and then transformed to spectral
space using a standard two-thirds rule to prevent aliasing.
The time-stepping scheme is a third-order Runge-Kutta with
implicit/explicit operator splitting29 that minimizes the stor-
age of large arrays. We use hyperviscous dissipation,
D=−�4, which preferentially dissipates higher wave-
number modes, and allows us to achieve more inviscid be-
havior at the larger scales of interest while retaining the dis-
sipation necessary for numerical stability at small scales.

The initial condition is obtained from the energy spec-

FIG. 2. Energy due to portion of the potential vorticity field where �2 /
�

� critical �2 �solid line� and where �2 /
�� critical �2 �dashed line� for
experiments 2D-3 �a� and 3D-2 �b� at time 15. The dotted line shows the
energy in the cross term.
trum
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E�k� =
E0k6

�1 +
k

60
�18 �17�

with random phases. This initial spectrum, which was used
in previous studies of 2D turbulence,21,11 is a narrowband
spectrum that peaks at k=30. The constant E0 is chosen such
that the initial total energy is 1, which sets the time scale of
the evolution.

The simulations were carried out at a resolution of 5122

grid in 2D and 5123 in 3D QG. Here we present simulations
with 2D=5�10−9 and 3D QG=2.5�10−9. Solutions with
other values of viscosity were also computed and confirm the
results reported here. The behavior in 2D as viscosity is var-
ied is discussed in Bracco et al.21 The viscosity choice for
3D QG is the highest possible without significant buildup of
energy at the highest wave numbers. The 2D case was re-
peated ten times to reduce the sampling variability relative to
the larger number of grid points in 3D. Each of the ten rep-
etitions used identical parameters and initial energy spectra,
but differed in their random initial phases.

The general evolution for these flows is well known.2,4

Around time five �based on unit initial energy�, coherent vor-
tices self-organize. As time progresses, the vortices interact,
and the vortex population evolves in a self-similar manner.

FIG. 3. Volume-rendered images of the vortex cores, strain cells, and backgr
zero, while opaque �dark� areas have larger potential vorticity magnitude. C
1283 grid point subvolume of a 5123 simulation.
In this work, we wish to investigate the components of the
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vorticity field in the self-similar evolution regime. Following
Bracco et al.,21 we choose time t=15 for our analyses.

The vorticity field � is decomposed into three compo-
nents: the vortex cores �c, the strain cells �s, and the back-
ground �b, where

�c�x� = ���x� , �2/
� 	 − �2crit

0, �2/
� � − �2crit
� ,

�b�x� = ���x� , − �2crit � �2/
� � �2crit

0, otherwise
� ,

�s�x� = �0, �2/
� � �2crit

��x� , �2/
� � �2crit
� . �18�

The decomposition is shown in Fig. 3, which contains
volume-rendered images of the potential vorticity compo-
nents in 3D QG. The vortex cores, where the vorticity is
stronger than the shear, tend to align in columns, as
expected.4 A strain cell forms a ring around each core, but is
not as tall as the core itself. The background, which contains
85% of the grid points, has filamentary structures that spiral
out from the strain cells and are large in horizontal extent.

The pdfs of �, shown in Fig. 4, provide insight into the
decomposition. The picture that emerges is similar for 2D

in 3D QG at time 15. Transparent �light� areas have potential vorticity near
are scaled to the maximum magnitude in each field. The block shown is a
ound
olors
and 3D QG. The large-vorticity tails are due to the vortex
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cores, and the region near zero vorticity is due to the back-
ground. The strain cells do not appear as strikingly different
from the background in either 2D or 3D QG except for their
small contribution very near zero. This is not surprising, as
strain cells are regions of high velocity around the vortices,
where the vorticity level is similar to the background. These
results are consistent with previous interpretations of highly
non-Gaussian vorticity pdfs; the vorticity accessible to turbu-
lent interactions in the background decays quickly, while the
vorticity protected within isolated vortices persists.2 The 3D
vorticity pdfs are smoother because there are more sample
points �5123� than in the 2D case �10�5122�.

The compensated enstrophy spectra, Fig. 5, show signifi-
cant differences among the components. The classical enstro-
phy spectrum slope for 2D and 3D QG turbulence is k−1 in
the inertial range.30–32 Compensating the spectra by multiply-
ing by k renders curves following the classical slope horizon-
tal, which is easier for the human eye to discern. The full
fields in both 2D and 3D QG have steeper spectra than the
classical prediction. A previous wavelet-based decomposi-
tion in 2D found that the steeper spectrum was due to the
vortices, with the background and strain cells, grouped to-
gether in that decomposition, following the classical
scaling.13 Here, we see that in 2D both the background and
strain cells are approximately k−1 with the cores giving a
steeper slope. In 3D QG, the background and strain cells are
closer to k−1 than the cores, but not as close as in 2D. Note
that the shape of the spectra of the cores is very similar in 2D
and 3D QG.

FIG. 4. Pdfs of vorticity of the full field �solid line�, the vortex cores
�dashed line�, the strain cells �dotted line�, and the background �dash-dot� at
time 15 for 2D �a� and 3D QG �b�. All pdfs are normalized by the standard
deviation of the full field. A Gaussian distribution �thin line� with the same
standard deviation is superimposed.
The time evolution of the fraction of the enstrophy in the
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components is seen in Fig. 6. In both 2D and 3D QG, the
fraction of enstrophy in the cores grows until it carries the
majority of the enstrophy, and the strain cells carry relatively
little enstrophy. However, there is a major difference in that

FIG. 5. Compensated enstrophy spectrum of the full field �solid line�, the
vortex cores �dashed line�, the strain cells �dotted line�, and the background
�dash-dot� at time 15 for 2D �a� and 3D QG �b�. Inverse cascade theories
predict slopes of k−1, which is horizontal on these plots.

FIG. 6. Enstrophy of the vortex cores �dashed line�, the strain cells �dotted
line�, and the background �dash-dot� as a function of time for 2D �a� and 3D

QG �b�.
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the background in 3D QG carries significantly more of the
enstrophy than in 2D. Indeed, at time t=15, the fraction of
enstrophy in the background in 3D QG is 4.3 times more
than in 2D, while the cores in 3D QG carry 67% of the
fractional enstrophy of the cores in 2D. This quantifies the
previous observation that the filaments in the background are
more active in 3D QG than in 2D.19

Because we use a partition that is local in vorticity, the
decomposition in terms of vorticity and enstrophy is rela-
tively simple. In contrast, the velocity and energy induced by
a component are global due to the integrative effect of the
Green function. As a result, the velocity at each point in
space has a contribution from each of the components and
the energy is the sum of self-energies �Eq. �9�� and interac-
tion energies �Eq. �10��. Here we group all the interaction
energies together and decompose the total energy into

E = Ec + Eb + Es + Ei, �19�

where subscripts c, b, and s denote the self-energy of the
cores, background, and strain cells, respectively, and sub-
script i denotes the sum of the interaction energies.

The time evolution of the energy decomposition is seen
in Fig. 7. In both 2D and 3D QG, the self-energy of the
background decays with time, and the self-energy of the
strain cells is relatively small. However, there are several
significant differences. In 2D the core self-energy is the larg-
est component after vortex formation, and by time 15 the
background self-energy is less than 10% of the total. In 3D
QG, the core self-energy is always smaller than the back-
ground self-energy, although they are nearly equal by time
15, when the background self-energy still contributes over
25% of the total. Further, while the total interaction energy is
large in 2D, it is always less than the core self-energy. In
contrast, the total interaction energy is the largest component
of 3D QG, contributing nearly half the total energy by time
15.

The pdf of velocity is a quantity that is often used to
characterize turbulence. Non-Gaussian velocity pdfs have
been found in collections of 2D point vortices,20 2D
turbulence,21 high-resolution ocean models,23 and ocean
data.22 Here we investigate the velocity pdf in 3D QG and
look at how the different components contribute.

The velocity pdfs at time 15 are seen in Fig. 8, where
each pdf is scaled to have unit variance. In both 2D and 3D
QG, the velocities induced by the cores and strain cells are
similarly non-Gaussian, while the velocity induced by the
background and the full field are very similar and more
Gaussian. In 2D the background-induced and total velocities
are non-Gaussian, while in 3D QG they are very close to
Gaussian. Interpreting this decomposition is not straightfor-
ward. The total velocity at each point in space is the sum of
the velocities induced by each component. Further, while
scaling the variance to unity makes slopes easy to compare,
it exaggerates the effect of the components with small ve-
locities.

The kurtosis of a pdf, the ratio of the fourth moment to
the square of the second moment, gives a quantitative indi-
cation of the degree of Gaussianity; a Gaussian pdf has a

kurtosis of 3. The time evolution of the kurtosis is seen in

Downloaded 07 Feb 2006 to 128.138.145.71. Redistribution subject to
Fig. 9. In 2D, the kurtosis of the strain cells grows quickly
and remains relatively constant after vortex formation. The
kurtoses of the cores, background, and full field grow more
smoothly, and by t=15 all are greater than 3, in agreement
with the pdfs in Fig. 8. The kurtosis curves in 3D QG are
very different, with the kurtoses of the background and full
field remaining very close to 3, the kurtosis of cores growing
smoothly to a value larger than in 2D, and the kurtosis of the
strain cells dropping rapidly from large values. Thus, we
again see that in 3D QG the background-induced and total
velocities are more Gaussian than 2D. Further, it appears that
the total velocity in 3D QG is strongly influenced by the
Gaussian background-induced velocity. In 2D, on the other
hand, the kurtosis indicates that the total velocity field is less
Gaussian than the background, indicating that other compo-
nents significantly affect the total. This is consistent with the
previous observation that the background contains much
more energy in 3D QG than in 2D, and thus has a stronger
influence on the full behavior.

In 2D, at lower Reynolds numbers the velocity pdf is
Gaussian, and transitions to a non-Gaussian pdf at higher
Reynolds numbers.21 We performed an additional simulation
of 3D QG at 3D QG=5�10−10, or five times higher Rey-
nolds number than discussed above. This simulation still
shows Gaussian velocity pdfs but is clearly under-resolved
and thus will not be discussed further. It is possible that at
even higher Reynolds numbers, velocity pdfs in 3D QG be-
come non-Gaussian; here we can only conclude that at simi-
lar resolutions the velocity in 3D QG is more Gaussian than
in 2D.

FIG. 7. Self-energies induced by the vortex cores �dashed line�, the strain
cells �dotted line�, the background �dash-dot�, and the sum of the interaction
energies �solid line�, as a function of time, for 2D �a� and 3D QG �b�.
In both 2D and 3D QG, the velocity imposed by the
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vortex cores is non-Gaussian. Vortex cores are compact re-
gions of strong vorticity which induce velocity fields over
large distances. The idealization where the size of the core
goes to zero while keeping the circulation constant is the
well-known point vortex approximation. It is thus natural to
attempt to understand the non-Gaussian nature of the core-
induced velocity by investigating a point vortex model.

A point vortex, also known as a singular vortex or dis-
crete vortex element, is a delta function in the vorticity field
whose Green function is the streamfunction �because q
=�2��. In 2D, a single point vortex has a velocity field
whose pdf decays as 1/ �u�3, and hence has a variance that
diverges logarithmically. The velocity induced by a random
collection of N such point vortices slowly converges to a
Gaussian as N goes to infinity, and remains significantly non-
Gaussian for N comparable to that seen in the kind of turbu-
lent flows studied here.33,20 In 3D QG, a point vortex with
circulation � induces a horizontal velocity field

u = �u,v� =
��y,− x�
4��x�3

. �20�

This is identical to the Bio-Savart rule used in electromag-
netics for the magnetic field produced by an electric current
in a vertically oriented wire. The pdf of the horizontal veloc-
ity induced by a single randomly placed 3D QG point vortex
p1 scales as p1��u�−2.5, as shown in the Appendix.

We are interested in the velocity induced by a collection
of such point vortices. If the pdf for a single variable, p1,

−�

FIG. 8. Pdfs of velocity induced by the full field �solid line�, the vortex
cores �dashed line�, the strain cells �dotted line�, and the background �dash-
dot� at time 15 for 2D �a� and 3D QG �b�. Each pdf has a standard deviation
of 1. A Gaussian distribution �thin line� with a standard deviation of 1 is
superimposed.
scales as p1��u� , then the pdf for a sum of such variables
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p falls into one of three classes depending on �. If ��3,
then p1 has finite variance, and by the central limit theorem p
converges quickly to a Gaussian. If �=3, as in the 2D case,
the variance of p1 diverges logarithmically and p converges
slowly to a Gaussian. If 1	�	3, which is the case for
isotropic 3D33 and 3D QG, the variance of p1 diverges and p
converges to a Lévy law. Analytic formulas are only known
in the case where �=2 and �=3 �see Ref. 34, p. 83�. In
general, Lévy laws have power-law tails that contain a much
larger proportion of high velocity events than Gaussian dis-
tributions. Thus, the non-Gaussian core-induced velocity is
consistent with the velocity induced by 3D QG point vorti-
ces.

V. CONCLUSIONS

We have decomposed the vorticity field in numerical
simulations of decaying 2D and 3D QG turbulence into vor-
tex cores, strain cells, and the remaining background using a
simple threshold in the Okubo-Weiss parameter. We have
shown that the Okubo-Weiss parameter, commonly used to
identify structures in 2D, is, in 2D and 3D QG, equivalent
�apart from a constant� to the middle eigenvalue used to
identify structures in isotropic 3D turbulence.

In both 2D and 3D QG, the enstrophy spectra for the
background and strain cells are close to the k−1 slope pre-
dicted by traditional inverse cascade theories. The spectra for
the cores and the full field are significantly steeper, indicat-
ing that the cores slow down the inverse cascade.

The most striking difference between 3D QG and 2D is

FIG. 9. Kurtosis of velocity fields induced by the full field �solid line�, the
vortex cores �dashed line�, the strain cells �dotted line�, and the background
�dash-dot� as a function of time for 2D �a� and 3D QG �b�. A Gaussian
distribution has a kurtosis of 3 �thin line�.
the strength of the background in 3D QG, which takes the
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form of active filaments. The fractional enstrophy contained
in the background at t=15 is 4.3 times larger in 3D QG than
in 2D, and corresponding ratio of fractional self-energies is
3.5. Indeed, in 2D the background enstrophy and self-energy
are nearly negligible, which has led many researchers to
model 2D turbulence as a single component fluid composed
of a collection of vortices. The high activity of the filamen-
tary background in 3D QG indicates that this approach may
not be as successful as in 2D, and such models may require
the inclusion of an active population of filaments. While
models of vortices in the form of point vortices are well
known and have been extensively studied, models of fila-
ments such as vortex sheets of finite extent are much less
well explored.

The different components induce velocity fields with dif-
fering properties. The vortex cores induce velocity fields
with non-Gaussian pdfs, indicating the enhanced likelihood
of finding large velocities, in agreement with the velocity pdf
induced by 2D and 3D QG point vortex models. The back-
ground induces a velocity field that is closer to Gaussian,
with a more Gaussian pdf in 3D QG than in 2D. The stronger
background in 3D QG results in its Gaussian nature domi-
nating the total velocity field, producing a Gaussian total
velocity pdf.

The study of velocity pdfs in turbulent flow is relevant to
parametrizations of particle dispersion in ocean modeling.
Many parametrizations by linear stochastic process or eddy-
diffusivity assume Gaussian velocity distributions, so that the
variance of velocity data can be used to estimate turbulent
diffusivity.35,36 Several recent studies have incorporated non-
Gaussian effects into particle dispersion models.37,38 Pas-
quero et al.39 introduced a two-process stochastic model that
accounts for the presence of non-Gaussian velocity distribu-
tions by coherent vortices.

Physical data from ocean floats22 and numerical models
of the North Atlantic23 both indicate that large-scale ocean
circulation has non-Gaussian velocity pdfs with kurtosis val-
ues that are often greater than 5. In our numerical simula-
tions, kurtosis values in this range were found only in field-
induced vortex cores or strain cells. The velocity kurtosis of
the total field was less than 4 for 2D turbulence and close to
3 for 3D QG turbulence. The high kurtosis values for veloc-
ity pdfs of ocean measurements indicates that these regions
of the ocean may have a more dominant vortex population
than the decaying 3D QG simulations presented here. In ad-
dition, the flows may be more barotropic, and hence closer to
the 2D simulations than the 3D QG simulations.

Here we have focused on the Eulerian behavior of the
turbulence. In recent work, Bracco et al.19 found that the
Lagrangian dynamics of passively advected tracers in 3D QG
is very similar to that of 2D. Their Lagrangian measure-
ments, including absolute dispersion, relative dispersion, and
finite-time Lyopunov exponent, were nearly identical for 2D
and 3D QG simulations, indicating that the three-
dimensionality of the QG vortices, and the enhanced activity
of the filaments, do not play a large role in Lagrangian dis-
persion. In light of the findings presented here, this may
indicate that Lagrangian dispersion and mixing properties are

mainly controlled by the vortex cores. If Lagrangian disper-
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sion and mixing were strongly affected by the filaments,
there should be significant differences in the dispersion and
mixing statistics between 3D QG and 2D simulations, but
this was not observed.

There are numerous idealizations in the turbulence
model used here, including lack of boundary effects and ther-
modynamics. The experiments conducted in this study were
all freely decaying, and lacked the injection of energy that
the real ocean receives through boundary forcing and solar-
driven advection. The strongly non-Gaussian velocity fields
found in in situ measurements and physically based ocean
models may indicate that forced turbulence produces stron-
ger vortices and weaker filaments than those that we have
observed in freely decaying turbulence models.

ACKNOWLEDGMENTS

M.R.P. has been supported by NSF Vigre Grant No.
DMS-9810751, awarded to the Applied Mathematics Depart-
ment at the University of Colorado at Boulder, and Grant No.
OCE-0137347. K.J. has been supported by NSF Grant No.
OCE-0137347 as well as the University of Colorado Faculty
Fellowship. J.B.W. has been supported by NSF Grant No.
ATM-0327929. Numerical computations were carried out in
part on Itanium II machines contributed by Hewlett-Packard.

APPENDIX: POINT VORTEX VELOCITY
DISTRIBUTION IN 3D QG

The velocity induced by a single 3D QG point vortex
located at the origin is

�u,v� = −
�

4�

�− y,x�
�x2 + y2 + z2�3/2 �A1�

which has magnitude

�u� =
�

4�

�x2 + y2

�x2 + y2 + z2�3/2 . �A2�

Introducing spherical coordinates �r ,� ,�� where x
=r sin � cos �, y=r sin � sin �, and z=r cos �, the velocity
magnitude is

�u� =
�

4�

sin �

r2 �A3�

so that lines of constant speed �u� are parametrized by �
� �0,��, �� �0,2�� and are given by

r =� �

4�

sin �

�u�
. �A4�

The surfaces of constant speed are like toruses without an
open center.

In order to compute the probability density function of
�u�, we introduce an intermediate variable l, where

�u� =
1

l2 , l = r� 4�

� sin �
. �A5�

The variable l is used to avoid the coordinate transformation

from two independent variables to one, i.e., �r ,��→ �u�. The
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pdf of �u� can now be found using a change of variables from
�u� to l �see Ref. 34, p. 7�,

p1��u��d�u� = P�l��u���� dl

d�u�
�d�u� . �A6�

The particular form of l was chosen because of its geometric
interpretation, which allows for the calculation of P�l�. Con-
sider the volume bounded between two surfaces l= l1 and l
= l2,

1

V
�

l1

l2

A�l�dl , �A7�

where A�l� is the surface area of the torus. This volume gives
the probability that a random point chosen from a sample
volume in R3 will be between the surfaces of constant l1 and
constant l2.

In order to calculate A�l�, we must find the arc length of
a constant l surface in the x-z plane, as shown in Fig. 10. The
length of a differential element is �r2d�2+dr2. The surface
area of this strip, when rotated about the z axis, is

2�r cos ��r2d�2 + dr2, �A8�

where 2�r cos � is the circumference of the circle around
the z axis. Using the definition of a differential,

dr =
dr

d�
d� =

l cos �

2�4� sin �
d� . �A9�

To find the total surface area for a fixed l, integrate strips of
area around the torus in �:

A�l� = �
0

�

2�r cos ��r2 + � dr

d�
�2

d� �A10�

=�
0

�

2�l�sin �

4�
cos �� l2 sin �

4�
+

l2 cos2 �

16� sin �
d�

�A11�

=
1

2
l2��

cos ��sin2 � +
1

4
cos2 �d� �A12�

FIG. 10. Calculation of length of a differential element in r−� space.
0
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=c1l2, �A13�

where c1 is a constant. So the probability density function for
a randomly chosen point in R3 in terms of l is P�l�=c1l2dl.
Recalling that l= �u�−1/2, the probability density function of
velocity magnitude is

p1��u��d�u� = P„l��u��…� dl

d�u�
�d�u� =

c1

�u�
1

2�u�1.5d�u�

=
c2

�u�2.5d�u� . �A14�

The fact that the velocity pdf induced by a single point vor-
tex is p1��u���1/ �u�2.5 indicates that a velocity field with
numerous point vortices in 3D QG is a Lévy law, as dis-
cussed in the text.

1B. Fornberg, “A numerical study of 2-D turbulence,” J. Comput. Phys. 25,
1 �1977�.

2J. C. McWilliams, “The emergence of isolated and coherent vortices in
turbulent flow,” J. Fluid Mech. 146, 21 �1984�.

3G. F. Carnevale, J. C. McWilliams, Y. Pomeau, J. B. Weiss, and W. R.
Young, “Evolution of vortex statistics in two-dimensional turbulence,”
Phys. Rev. Lett. 66, 2735 �1991�.

4J. C. McWilliams, J. B. Weiss, and I. Yavneh, “Anisotropy and coherent
vortex structures in planetary turbulence,” Science 264, 410 �1994�.

5J. C. McWilliams, “The vortices of geostrophic turbulence,” J. Fluid
Mech. 219, 387 �1990�.

6J. C. McWilliams, J. B. Weiss, and I. Yavneh, “The vortices of homoge-
neous geostropic turbulence,” J. Fluid Mech. 401, 1 �1999�.

7A. Okubo, “Horizontal dispersion of floatable particles in the vicinity of
velocity singularities such as convergences,” Deep-Sea Res. 17, 445
�1970�.

8J. Weiss, “The dynamics of enstrophy transfer in two-dimensional hydro-
dynamics,” Physica D 48, 273 �1991�.

9D. Elhmaïdi, A. Provenzale, and A. Babiano, “Elementary topology of
two-dimensional turbulence from a Lagrangian viewpoint and single-
particle dispersion,” J. Fluid Mech. 257, 533 �1993�.

10M. Farge, N. Kevlahan, V. Perrier, and E. Goirand, “Wavelets and turbu-
lence,” Proc. IEEE 84, 639 �1996�.

11J. C. McWilliams, “The vortices of two-dimensional turbulence,” J. Fluid
Mech. 219, 361 �1990�.

12M. Farge and T. Philipovitch, “Coherent structure analysis and extraction
using wavelets,” in Progress in Wavelet Analysis and Applications, edited
by Y. Meyer and S. Roques �Editions Frontieres, Gif-sur-Yvette, 1993�, p.
477.

13A. Siegel and J. B. Weiss, “A wavelet-packet census algorithm for calcu-
lating vortex statistics,” Phys. Fluids 9, 1988 �1997�.

14M. Farge, K. Schneider, and N. Kevlahan, “Non-Gaussianity and coherent
vortex simulation for two-dimensional turbulence using an adaptive or-
thogonal wavelet basis,” Phys. Fluids 11, 2187 �1999�.

15J. E. Ruppert-Felsot, O. Praud, E. Sharon, and H. L. Swinney, “Extraction
of coherent structures in a rotating turbulent flow experiment,” Phys. Rev.
E 72, 016311 �2005�.

16C. Pasquero, A. Provenazale, and J. B. Weiss, “Vortex statistics from
eulerian and Lagrangian time series,” Phys. Rev. Lett. 89, 284501 �2002�.

17A. Provenzale, “Transport by coherent barotropic vortices,” Annu. Rev.
Fluid Mech. 31, 55 �1999�.

18J. C. McWilliams and J. B. Weiss, “Anisotropic geophysical vortices,”
Chaos 4, 305 �1994�.

19A. Bracco, J. von Hardenberg, A. Provenzale, J. B. Weiss, and J. C.
McWilliams, “Dispersion and mixing in quasigeostrophic turbulence,”
Phys. Rev. Lett. 92, 084501 �2004�.

20J. B. Weiss, A. Provenzalea, and J. C. McWilliams, “Lagrangian dynamics
in high-dimensional point-vortex systems,” Phys. Fluids 10, 1929 �1998�.

21A. Bracco, J. LaCasce, C. Pasquero, and A. Provenzale, “The velocity
distribution of barotropic turbulence,” Phys. Fluids 12, 2478 �2000�.

22A. Bracco, J. H. LaCasce, and A. Provenzale, “Velocity probability den-
sity functions for oceanic floats,” J. Phys. Oceanogr. 30, 461 �2000�.

23
A. Bracco, E. P. Chassignet, Z. D. Garraffo, and A. Provenzale, “Lagrang-

 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



026601-11 Vortex cores, strain cells, and filaments Phys. Fluids 18, 026601 �2006�
ian velocity distributions in a high-resolution numerical simulation of the
North Atlantic,” J. Atmos. Ocean. Technol. 20, 1212 �2003�.

24J. G. Charney, On the Scale of Atmospheric Motions �Geofysiske Pub-
likasjoner, 1948�, Vol. 17, pp. 1–17. Republished in The Atmosphere, a
Challenge: The Science of J. Gregory Charney, edited by R. S. Lindzen,
E. N. Lorenz, and G. W. Platzman �AMS, Boston, MA, 1990�.

25R. Salmon, Geophysical Fluid Dynamics �Oxford University Press, New
York, 1998�.

26J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid Mech.
285, 69 �1995�.

27Y. Dubief and F. Delcayre, “On coherent vortex identification in turbu-
lence,” J. Turbul. 1, 111 �2000�.

28F. Paparella, A. Babiano, C. Basdevant, A. Provenzale, and P. Tanga, “A
Lagrangian study of the Antarctic polar vortex,” J. Geophys. Res. 102,
6765 �1997�.

29P. R. Spalart, R. D. Moser, and M. M. Rogers, “Spectral methods for the
Navier-Stokes equations with one inifinite and two periodic directions,” J.
Comput. Phys. 96, 297 �1991�.

30A. N. Kolmogorov, “A refinement of previous hypotheses concerning the
local structure of turbulence in a viscous incompressible fluid at high
Reynolds number,” J. Fluid Mech. 13, 82 �1962�.

31R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence,” Phys.
Downloaded 07 Feb 2006 to 128.138.145.71. Redistribution subject to
Fluids 10, 1417 �1967�.
32J. G. Charney, “Geostrophic turbulence,” J. Atmos. Sci. 28, 1087 �1971�.
33I. Min, I. Mezić, and A. Leonard, “Lèvy stable distributions for velocity

and velocity difference in systems of vortex elements,” Phys. Fluids 8,
1169 �1996�.

34D. Sornette, Critical Phenomena in Natural Sciences, 2nd ed. �Springer,
New York, 2004�.

35A. Griffa, K. Owens, L. Piterbarg, and B. Rozovskii, “Estimates of turbu-
lence parameters from Lagrangian data using a stochastic particle model,”
N.Z.J. Mar. Freshwater Res. 53, 371 �1995�.

36P. Falco, A. Griffa, P. Poulain, and E. Zambianchi, “Transport properties in
the Adriatic Sea as deduced from drifter data,” J. Phys. Oceanogr. 30,
2055 �2000�.

37M. Veneziani, A. Griffa, A. M. Reynolds, and A. J. Mariano, “Oceanic
turbulence and stochastic models from subsurface Lagrangian data for the
northwest Atlantic Ocean,” J. Phys. Oceanogr. 34, 1884 �2004�.

38A. Griffa, L. I. Piterbarg, and T. Ozgokmen, “Predictability of Lagrangian
particles trajectories: Effects of smoothing of the underlying Eulerian
flow,” N.Z.J. Mar. Freshwater Res. 62, 1 �2004�.

39C. Pasquero, A. Provenzale, and A. Babiano, “Parameterization of disper-
sion in two-dimensional turbulence,” J. Fluid Mech. 439, 279 �2001�.
 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


