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Vortex Statistics from Eulerian and Lagrangian Time Series
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Coherent vortices are an important component of the dynamics of geophysical turbulence, but direct
estimates of the properties of the vortex population from measured data is usually difficult. Motivated
by this problem, we propose a new method for determining the statistical properties of coherent vortices
in two-dimensional turbulence based on a small number of Lagrangian and Eulerian time series. The
method provides reliable estimates of the mean vortex size and vortex number density.
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Introduction.—Turbulent geophysical flows are charac-
terized by the presence of long-lived coherent vortices
that significantly affect the dynamics [1-3]. Typically,
coherent vortices live for times that are hundreds or
thousands of times their rotation period.

Although these vortices usually occupy only a small
fraction of space, they concentrate a large portion of the
energy and vorticity of the flow and can significantly
affect tracer transport [4,5]. For this reason, the statistics
of the vortex population, such as the average vortex
number, size, and energy, are crucial ingredients in scal-
ing theories of structured turbulence [6,7] and in para-
metrizing the effects of mesoscale turbulence in ocean
circulation and climate models [8].

When full knowledge of the velocity field is available,
as in high-resolution numerical simulations, the statisti-
cal properties of the vortex population can be determined
by adopting specific vortex-census algorithms [9]. In
Nature, however, the determination of vortex statistics
can be difficult, due to the fact that only partial informa-
tion is available. Typically, data sets consist of La-
grangian velocity and position time series, furnished by
freely moving ocean floats or atmospheric balloons, and
Eulerian velocity time series, recorded by chains of
oceanic current meters or fixed-point measurements in
the atmosphere.

In this Letter, we address the problem of reconstructing
vortex statistics from single-point Eulerian or Lagrangian
times series. We describe a new method that success-
fully estimates vortex statistics in homogeneous two-
dimensional turbulence. Two-dimensional turbulence
approximately describes mesoscale geophysical turbu-
lence and has been widely studied in the past. In particu-
lar, two-dimensional turbulence is characterized by the
spontaneous emergence of long-lived coherent vortices
[1,2]. The field then becomes a two-phase system, com-
posed of high-energy coherent vortices, and a quasiran-
dom, low-energy, low-vorticity background turbulent
field [10].
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PACS numbers: 47.27.Eq, 47.32.Cc

Two-dimensional turbulence—Two-dimensional tur-
bulence is described by the equation %2 + [, w] = f +
d, where ¢ is the stream function, @ = V2 is vorticity,
[+, -] is the Jacobian operator, and f and d represent
forcing and dissipation, respectively. The fluid velocity
isu = (uy, uy) = (9,4, —d,4). Here, we numerically in-
tegrate this equation by a pseudospectral method in a
square domain with size L. Dissipation is parametrized
by a hyperviscous term acting on small scales, and by an
inverse Laplacian acting on the scales of the simulation
domain. We force by keeping the energy spectrum fixed at
a selected wave number, kr. Forcing and dissipation are
kept as low as possible in order to reach the highest
Reynolds number compatible with the numerical resolu-
tion. The flow evolves from random initial conditions to a
statistically stationary state, where the average number,
energy, and circulation of the vortices display small fluc-
tuations of less than 5% of their average value. Further
details on these simulations are given in [4,8].

In the following, we discuss the results obtained from
simulations forced at intermediate scales, kp = 40. After
an initial transient, the vorticity field becomes punctuated
with a large number of coherent vortices that self-
organize from the turbulent background. With this type
of forcing, the size of the vortices is usually smaller than
the forcing scale. Figure 1 shows a snapshot of the vor-
ticity field.

Even when the full vorticity field is available, the
identification of the vortices is a delicate issue: Several
criteria have been proposed in the literature, based on
topological characteristics [9,11-13] or on the local prop-
erties of the flow [14]. Here, we use the criterion based on
the Okubo-Weiss parameter [15,16] to extract the vortex
statistics from the full vorticity field. The Okubo-Weiss
parameter is defined as Q = S?> — w?, where S§? =
(0,u, — dyuy)* + (dyu, + d,u,)?. The vortex cores are
characterized by strongly negative values of Q. In the
following, we identify the vortex cores as those circular
regions with negative Okubo-Weiss parameter around a
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FIG. 1 (color online). A snapshot of the vorticity field.

peak of vorticity. This census indicates that 120 = 5
vortices are simultaneously present in the field, whose
mean size is (0.014 = 0.004)L. The characteristics of the
field inside and outside the vortices differ noticeably: The
mean enstrophy inside vortices, Z,, is about 1000 times
the mean enstrophy outside vortices. A measure of the
rotation period of the vortices is given by T,, = Z,, 2 In
the following, we use T, as our nondimensional time unit.

Eulerian and Lagrangian statistics.—The presence of
coherent vortices induces important differences in the
statistical properties of Eulerian and Lagrangian velocity
time series. One crucial fact is that Lagrangian tracers
rarely cross the edge of coherent structures. They usually
enter or leave a vortex only during vortex filamentation,
merging, or during the birth of a new vortex. As a con-
sequence, Lagrangian particles can be trapped in vortices
for long periods of time [4].

In our work, Eulerian data result from measurements at
fixed sites in the simulation domain, while Lagrangian
data result from passively advected tracers in the time-
evolving turbulent flow. The Lagrangian velocity of the
particles is given by the Eulerian velocity at the particle
location. The particle trajectories are numerically inte-
grated with a leapfrog scheme. A third-order cubic spline
interpolation of the Eulerian velocity field is used to
compute the velocity at the particle positions. The length
of the Eulerian and Lagrangian time series is 7 =
1700T,, and 4096 Eulerian measurement sites and
Lagrangian particles are used.

The velocity autocorrelation function is defined as

R(7) — lim - f fu@-u@t)

where o? is the velocity variance, and the overline in-
dicates average over the ensemble of the time series.
Depending on the type of data, we obtain either a
Lagrangian or a Eulerian autocorrelation function, de-
noted by R; (1) or Rg(7), respectively. The autocorrelation
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functions are displayed in Fig. 2(a). The Lagrangian
integral time, T; = limy_ [J R, (7)dT, is T, = 17.8T,,
while the analogous Eulerian integral time is T = 50T,,.
Note that, due to the finite length of the time series, these
integral times have been computed over the total length
of the simulation, 7. The Lagrangian autocorrelation
function decays faster than the Eulerian one, a fact that
we attribute to the fast rotation of particles close to, or
inside, vortices. A particle which moves in a circle has a
(vectorial) velocity that decorrelates on a time scale
related to the rotational velocity and therefore depends
directly on the vortex strength. As discussed in [8], the
Lagrangian autocorrelation function at short times is
dominated by the presence of the rapidly rotating coher-
ent structures. Once the vortex-induced component of
the Lagrangian velocity is decorrelated, only the
background-induced component is left, which leads to a
decay of R; with a time scale of roughly T,

At larger times, the Lagrangian autocorrelation R (7)
indicates almost complete decorrelation of the La-
grangian velocities, while Rz(7) displays noticeable os-
cillations. These oscillations are due to the vacillation
between high-energy vortices which intermittently pass
by the Eulerian measurement site and the low-energy
background turbulence. Since the kinetic energy of the
vortices is much larger than that of the background, the
vortex contribution dominates over that of the back-
ground, and induces long-term correlations and anticor-
relations associated with the passage of same-sign or
opposite-sign vortices. In contrast, Lagrangian particles
tend to stay either outside or inside vortices for long times.
The alternation between the two turbulent phases seen in
the Eulerian signals is then lost in the Lagrangian trajec-
tories. As a consequence, the average Lagrangian auto-
correlation does not display long-term oscillations. This
difference is reflected in the shape of the power spectra:
At low frequency, Eulerian data display larger variance
than Lagrangian data, while the opposite is true at high
frequency, where the contribution due to particle spinning
inside vortices becomes significant. This leads to steeper
slopes of Eulerian spectra compared to Lagrangian spec-
tra, as shown in Fig. 2(b).
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FIG. 2. (a) Velocity autocorrelation function. (b) Power spec-
trum. Dotted lines refer to Lagrangian data and solid lines to
Eulerian data.
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The impermeability of vortex cores to inward and
outward particle fluxes has important consequences for
the determination of the velocity distributions. When
sufficient data are available, Eulerian and Lagrangian
velocity distributions converge, and, in the case of 2D
turbulence at high Reynolds number, become non-
Gaussian [10]. In the case considered here, the kurtosis
of the velocity distribution is K = 4.5. However, the
convergence of the velocity distribution estimated from
an ensemble of finite measurements is different for
Eulerian and Lagrangian data. To investigate this, we
randomly selected m Eulerian or Lagrangian time series
out of the available set, and computed the variance and
the kurtosis of the velocity distribution obtained from the
m time series. In Fig. 3, we show the estimates of the
variance and kurtosis, as a function of m, obtained from
an ensemble of 100 different random choices of m time
series out of the entire set. The vertical bars include 95%
of the results obtained from each individual group of m
time series. The variability in the ensemble of realizations
is smaller for the Eulerian data, indicating that the one-
point velocity statistics are estimated more accurately by
fixed measurement sites than particle trajectories. For the
Eulerian data, the estimates are closer to the true values,
and even a small number of measurement sites provides
good estimates of the moments of the velocity distribu-
tion. By contrast, Lagrangian particles do not explore the
full turbulent field and more data is required to obtain
similar quality estimates of the velocity distribution.

Reconstructing vortex statistics.—We now use the in-
formation recorded in the velocity time series to recon-
struct the statistics of the vortex population. From the
Eulerian time series, we can compute the time that a
vortex takes to cross a Eulerian measurement site, 7,
and the time interval between vortex crossings, 7.
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FIG. 3. Velocity variance and kurtosis calculated from an
ensemble of 100 randomly extracted subsamples of m
Eulerian measurement sites (upper panels) and Lagrangian
trajectories (lower panels) from the entire data set. The vertical
bars include 95% of the members of each ensemble.
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Their average values, obtained from the full set of avail-
able time series, are 7, = (7.2 * 1.0)T,, and 7, =
(260 * 50)T,,. Figure 4 shows the estimates of 7, and
T, as a function of the number of vortex crossings n. The
vertical bars include 95% of the values obtained from the
analysis of the individual vortex transits. Note that with
just ten vortex crossings one obtains estimates of 7, and
T, that are correct up to a factor of 2 in more than 95% of
the cases.

The estimate of the crossing time and of the time
between vortex passages requires the identification of
vortex edges. To this end, we have used a threshold on
the value of the Okubo-Weiss parameter. Note, however,
that the estimate of the Okubo-Weiss parameter requires
knowledge of the velocity gradient. When this quantity is
not available, one can identify vortex passages using the
velocity only [17]: The edges of vortices are associated
with peaks in the kinetic energy, while the center is
characterized by small kinetic energy. However, in this
case the results will be less precise.

Given that 7, is much shorter than the Eulerian decor-
relation time 7', the motion of a vortex on a time scale 7,
can be considered ballistic. The size of a vortex is thus
given by R = u,1,, where u, is the advection speed of the
vortex. Since the average velocity of a vortex in a system
of many vortices is not significantly different from that of
a particle in the background [18], the advection speed u,
turns out to be statistically independent of vortex size.
This inference is confirmed by the fact that the correla-
tion coefficient between vortex radius and velocity, ob-
tained from 4000 independent couples of values, is 0.002.
The mean size is thus R = 7, /u; !. The value of u, ' can
be estimated from the speed of Lagrangian tracers outside
vortices, or, if the statistical sample is large enough, by
the velocity recorded at Eulerian measurement sites dur-
ing the intervals between vortex crossings. In the present
simulation, the two methods give u, ' = (570 = 5)T, /L.
This gives an estimate of the average vortex size, R =
(0.013 = 0.002)L, which is in excellent agreement with
the estimate provided by applying the vortex-census to
the entire vorticity field.
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FIG. 4. Average time that a vortex takes to cross a Eulerian
measurement site (left panel), and average time interval be-
tween vortex crossings (right panel), as a function of the
number of vortex crossings n included in the calculation. For
each value of n, an ensemble of 400 members is used. The
vertical bars include 95% of the members of each ensemble.
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One could use similar arguments to obtain equations
for higher moments of the vortex size distribution.
However, these moments depend on higher moments of
u, ', which depend sensitively on small u,, and cannot be
reliably estimated.

The number of coherent vortices can also be inferred
from an analysis of the velocity time series. The area
swept out by a vortex during a time interval At is a strip
of width R and length [5u,(t)dt. For time intervals
longer than the decorrelation time 7;, memory of the
initial velocity is lost, and the mean length of a path
becomes u,At. Since u, and R are independent, the
mean area covered by a vortex in the time interval At is
then Ru,At. In a time interval t* = L?/(Ru,), a vortex
covers, on average, an area equal to the entire simulation
domain. Thus, a Eulerian measurement point is visited by
a given vortex once every *. In the presence of N vortices,
the average time interval between the passage of two
vortices past a given measurement site is 7, + 7, =
*/N. Using the above estimate of R, it follows that the
number of vortices is given by

L%uy!

N=——"——.
(Tb + Tv)Tvua

The Eulerian data then gives N = 103 = 25, in good
agreement with the estimate of the average number of
vortices provided by the vortex census.

We have applied the same approach to another simula-
tion of two-dimensional turbulence, forced at a different
scale, and have similarly obtained good estimates of the
number and average size of the vortices.

Conclusions.—We have discussed the differences be-
tween Eulerian and Lagrangian measurements of two-
dimensional turbulence. We have proposed a new method
for determining the elementary statistics of vortex popu-
lations in geophysical turbulence and verified the method
in the case of two-dimensional turbulence. The method
requires a small number of Eulerian time series and
allows for reliably estimating the number density and
average size of the coherent vortices present in the field.
When available, velocity Lagrangian time series can be
used to get a good estimate of the advection speed of the
vortices. The method assumes the existence of coherent
vortices and uses knowledge of their general properties.
We suggest that this type of approach can be extended to
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estimate the statistical properties of the coherent vortex
populations in the ocean and the atmosphere. In realistic
geophysical flows, however, the existence of large-scale
inhomogeneities in the distribution of eddy kinetic energy
and the presence of dynamical structures such as jets and
planetary waves can greatly complicate the picture. This
method should thus be applied only to relatively homoge-
neous, vortex-dominated portions of the flow, and after
the removal of temporal trends. Future work may allow
extension of this method to more complex situations.
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