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We present an investigation of rapidly rotating (small Rossby number Ro � 1)
stratified turbulence where the stratification strength is varied from weak (large
Froude number Fr � 1) to strong (Fr � 1). The investigation is set in the context
of a reduced model derived from the Boussinesq equations that retains anisotropic
inertia-gravity waves with order-one frequencies and highlights a regime of wave–eddy
interactions. Numerical simulations of the reduced model are performed where energy
is injected by a stochastic forcing of vertical velocity, which forces wave modes only.
The simulations reveal two regimes: characterized by the presence of well-formed,
persistent and thin turbulent layers of locally weakened stratification at small Froude
numbers, and by the absence of layers at large Froude numbers. Both regimes are
characterized by a large-scale barotropic dipole enclosed by small-scale turbulence.
When the Reynolds number is not too large, a direct cascade of barotropic kinetic
energy is observed, leading to total energy equilibration. We examine net energy
exchanges that occur through vortex stretching and vertical buoyancy flux and
diagnose the horizontal scales active in these exchanges. We find that the baroclinic
motions inject energy directly to the largest scales of the barotropic mode, implying
that the large-scale barotropic dipole is not the end result of an inverse cascade within
the barotropic mode.
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1. Introduction

The study of fluid turbulence connects bulk statistical properties such as energy
spectra, structure functions, and the energy dissipation rate to physical processes such
as vortex stretching and instabilities (Frisch 1995). In the context of geophysical
turbulence, the emphasis is on how rotation and density stratification affect the
statistical and dynamical properties of the turbulent flow. At small scales, rotation and
buoyancy are expected to become dynamically unimportant, with statistics resembling
those of non-rotating, constant-density flow. More specifically, rotation and buoyancy,
respectively, are expected to become unimportant for scales smaller than the Zeman
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scale LΩ =
√
ε/(2Ω)3 (Zeman 1994) and the Ozmidov scale LN =

√
ε/N3 (Ozmidov

1965), where ε is the mean rate of energy dissipation per unit mass, Ω is the rate
of rotation, and N = √−g∂zρ/ρ0 is the buoyancy frequency in a density-stratified
fluid under the Boussinesq approximation (g is the gravitational acceleration, ρ is
the density, and ρ0 is a constant reference density). Studies of geophysical turbulence
therefore include scales larger than either the Ozmidov or Zeman scales, or both.

The presence of system rotation and density stratification each induce restoring
forces that lead to wave dynamics. In the special case where the rotation vector is
parallel to gravity, the linear wave frequencies vary between the values N and 2Ω .
Effects of system rotation and density stratification are expected to have a qualitative
impact on turbulence when the period of wave dynamics is comparable to or less
than the time scale of nonlinear advection. More precisely, rotation and stratification,
respectively, are expected to strongly affect the dynamics when the Rossby number
Ro = U/(2ΩL) and Froude number Fr = U/(NL) are small, where U and L are
characteristic velocity and length scales of the turbulent flow. Geophysical turbulence
is characterized by small Rossby and/or Froude numbers.

The linear eigenfunctions of the Boussinesq system include two wave modes and a
zero-frequency ‘vortical’ mode (Bartello 1995). At low Rossby and Froude numbers,
there is a clear time scale separation between the slow, nonlinear evolution of the
vortical mode and the fast, weakly nonlinear evolution of the wave modes, which
can be exploited to derive asymptotically a reduced set of dynamics for the vortical
modes; this reduced system is the celebrated quasi-geostrophic equations (Charney
1948; Eady 1949; Pedlosky 1987; Vallis 2006). Bartello (1995) argued on the basis
of statistical mechanics and demonstrated, using numerical simulations, that in the
low-Rossby-number, low-Froude-number limit the vortical mode evolution is not
influenced by the wave modes and that the freely evolving dynamics will eventually
approach a state of quasi-geostrophic balance. Time scale separation was exploited
by Embid and Majda to rigorously prove the validity of the quasi-geostrophic system
even in the presence of wave modes with amplitudes comparable to the vortical
modes, in contrast to the asymptotic derivation which assumes that any waves have
low amplitude (Embid & Majda 1996, 1998; Majda & Embid 1998). Temam &
Wirosoetisno (2010, 2011) have also proved rigorously that, under mild assumptions,
the small-Rossby-number, small-Froude-number dynamics eventually approaches
a quasi-geostrophic balance irrespective of the amplitude of wave modes in the
initial condition (this result was obtained under the hydrostatic approximation). The
quasi-geostrophic system is thus a natural touchstone for geophysical turbulence,
and the qualitative properties of turbulence in the quasi-geostrophic system were
presciently forecast by Charney (1971) based on an analogy with previous studies of
two-dimensional turbulence.

The rigorous framework of Embid & Majda (1996) exploits an asymptotic time
scale separation between the fast wave dynamics and the slow ‘balanced’ dynamics.
Embid & Majda (1998) and Wingate et al. (2011) also used the framework to
rigorously derive equations governing the slow limiting dynamics in the limits of
low Froude and finite Rossby numbers, and low Rossby and finite Froude numbers,
respectively. Because of the a priori need for an asymptotic time scale separation,
the slow limiting dynamics include a single pair of wave modes at the slowest linear
frequency (2Ω for Embid & Majda (1998) and N for Wingate et al. (2011)), and
all other wave modes are assumed to be asymptotically fast by comparison, and
do not appear in the slow limiting dynamics. Results analogous to those of Temam
& Wirosoetisno (2010) for the quasi-geostrophic system are lacking for these two
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systems of slow limiting dynamics, and it is not yet clear whether these systems have
the same relevance for geophysical turbulence in their respective asymptotic regimes
as the quasi-geostrophic system has for the low-Froude-number, low-Rossby-number
regime.

If either the Rossby or Froude number is order-one, there is no clear time scale
separation between the linear wave dynamics and the nonlinear advective dynamics,
so a reduced system that eliminates nearly all the wave dynamics is arguably
inappropriate. Nevertheless, the smallness of one of the non-dimensional numbers
can still be exploited in both cases to reduce the complexity of the full Boussinesq
system. When the Froude number is small but the Rossby number is order-one, one
can make the hydrostatic approximation to arrive at the so-called primitive equations.
When the Rossby number is small but the Froude number is order-one, one can
make a geostrophic approximation and arrive at the non-hydrostatic quasi-geostrophic
equations (NHQGE; Julien, Knobloch & Werne 1998; Julien et al. 2006). Both of
these equation sets are significantly easier for numerical simulation than the unreduced
Boussinesq equations, and both sets of equations include linear wave dynamics with
frequencies between either 2Ω (primitive equations) or N (NHQGE) and infinity.
The quasi-geostrophic equations can be recovered from both sets of equations in the
limit where both the Rossby and Froude numbers are small. While it is difficult
to obtain rigorous mathematical results using the Boussinesq equations, Temam &
Wirosoetisno (2010) were able to obtain useful rigorous results starting from the
simpler hydrostatic equations. It may be the case that similar rigorous results may be
obtained for a different complementary parameter regime using the non-hydrostatic
quasi-geostrophic equations.

As the Froude number is typically smaller than the Rossby number in atmospheric
and oceanic turbulence, studies of rotating, stratified turbulence have primarily focused
on strongly stratified regimes where the Froude number is small. The regime of
geostrophic turbulence with low Rossby number and order-one Froude number
has seen comparatively little study, though this regime may be relevant to weakly
stratified abyssal ocean dynamics at high latitudes and in the western Mediterranean
(Emery, Lee & Magaard 1984; Timmermans, Garrett & Carmack 2003; van Haren &
Millot 2005; Timmermans, Melling & Rainville 2007). The regime is also relevant
to planetary and stellar interiors where the stratification transitions from unstable
(imaginary N) to stable (N > 0). Examples include the solar tachocline, believed to
be the origin of large-scale solar magnetism (Miesch 2005), and the Earth’s outer
liquid core, where the existence of stably stratified layers have been postulated (Pozzo
et al. 2012). The present investigation focuses on rotating, stratified turbulence at low
Rossby number, with Froude numbers varying from large to small.

The main points of comparison for the transitional regime of Froude numbers
between zero and infinite are the ‘quasi-geostrophic’ regime at small Froude numbers
and pure rotation at large Froude numbers. Quasi-geostrophic turbulence theory, by
analogy with the theory of two-dimensional turbulence, predicts a transfer of energy
from the forcing scale to larger scales through an inertial range where the energy
spectrum is proportional to k̃−5/3, where k̃2= k2

h+ (2Ω/N)2k2
z (Charney 1971; Boffetta

& Ecke 2012). At scales smaller than the energy forcing, quasi-geostrophic turbulence
theory predicts an energy spectrum proportional to k̃−3. The −5/3 (Smith & Waleffe
2002; Marino et al. 2013) and −3 (Waite & Bartello 2006) spectral slopes are evident
in simulations of triply periodic Boussinesq dynamics in the regime of low Rossby
and Froude numbers, and both Waite & Bartello (2006) and Whitehead & Wingate
(2014) observed energy accumulating in the vortical modes. These results underscore
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the importance of quasi-geostrophic dynamics, and demonstrate that the theorem of
Temam & Wirosoetisno (2010) applies qualitatively even in this stochastically forced
regime.

In simulations of constant-density (infinite Froude number), low-Rossby-number
turbulence, energy is transferred to scales larger than the forcing scale through an
inertial range with spectrum proportional to k−3; energy is also primarily transferred to
a depth-independent horizontal velocity, the ‘barotropic mode’ (Smith & Waleffe 1999;
Smith & Lee 2005). Marino et al. (2013) found transfer of energy into the barotropic
mode to be less rapid in the purely rotating regime than in the quasi-geostrophic
regime. Sen et al. (2012) observed a k−5/3 spectrum at large scales in a purely
rotating system when the stochastic forcing was independent of depth; this case is
somewhat degenerate and likely not indicative of universal behaviour.

The transitional regime between pure rotation and quasi-geostrophy has seen
comparatively few simulations. In the simulations of Sukhatme & Smith (2008), the
Froude and Rossby numbers are both comparatively small, though in some simulations
the Froude number was larger by up to a factor of five. In their simulations with
Froude number larger than Rossby number, the wave mode energy grows to dominate,
in contrast to the behaviour in both the quasi-geostrophic and purely rotating
limits, where energy accumulates primarily in the vortical and depth-independent
components; this may be related to the fact that forcing was applied near the scale
of the computational domain. They found that the vortical mode spectrum retained
its quasi-geostrophic k−3 behaviour at scales smaller than the forcing, though it
deviated towards a shallower slope at much smaller scales. In a single experiment
with low Rossby number and moderate Froude number, also forced near the scale
of the computational domain, Aluie & Kurien (2011) diagnosed a downscale transfer
of both energy and potential enstrophy; spectral slopes were not reported. Whitehead
& Wingate (2014) also forced near the scale of the computational box, and found
energy accumulating in the barotropic mode; spectral slopes were not reported. These
investigations leave open entirely the question of how the large-scale dynamics
transition between the quasi-geostrophic and purely rotating regimes as the Froude
number increases, which is the focus of the present investigation.

The paper is organized as follows: § 2 introduces preliminaries, including discussions
regarding Proudman–Taylor constraints and inertia-gravity waves; § 3 provides an
overview of the reduced equations used in our numerical simulations; § 4 summarizes
the numerical methods, including the forcing scheme employed for numerical
simulations; and § 5 gives the results of our numerical experiments.

2. Governing equations and preliminaries
We consider an incompressible fluid subject to an imposed constant vertical gravita-

tional field g=−gẑ and a system rotation with constant angular velocity Ω =Ω ẑ. The
fluid is stably stratified in the vertical with total density ρ∗= ρ̂∗(z∗)+ρ ′∗(x∗, t∗), where
ρ̂∗(z∗)= ρ∗0 + δρ̂∗(z∗) is an ambient density profile consisting of a constant reference
density ρ∗0 and a density variation δρ̂∗(z∗) (where asterisks denote dimensional
quantities). It follows that the total buoyancy of a fluid parcel, given by

b∗ =− g
ρ∗0
(δρ̂∗(z∗)+ ρ ′∗(x∗, t∗))=− g

ρ∗0
δρ̂∗(z∗)+ b∗′(x∗, t∗), (2.1)

is decomposed as the sum of the ambient buoyancy field and a fluctuating component
b∗′ associated with fluid motions. Pressure is decomposed in a fashion similar to
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buoyancy p∗ = p̂∗(z∗) + p′∗(x∗, t∗), with a pressure component in hydrostatic balance
with the ambient buoyancy

∂z∗δp̂∗(z∗)=−gρ̂∗(z∗). (2.2)

The governing equations in the Boussinesq approximation for a fluid with constant
kinematic viscosity ν and buoyancy diffusion κ are given by

D∗t u∗ + 2Ω ẑ× u∗ = −∇p∗′ + b∗′ẑ+ ν∇∗2u∗, (2.3a)
D∗t b∗′ +N2(z∗)w∗ = κ∇∗2b∗′, (2.3b)

∇
∗
· u∗ = 0, (2.3c)

where
D∗t (·)= [∂t∗ + u∗ · ∇∗](·). (2.4)

The ambient stratification is now characterized by the buoyancy (Brunt–Väisälä)
frequency N2(z∗)=−gρ∗−1

0 ∂z∗(δρ̂
∗(z∗)).

An external forcing is required to excite fluid motions, and in the present
investigation energy is generated by a stochastic vertical velocity forcing. Recent
studies in a similar parameter regime have used stochastic buoyancy forcing
(Whitehead & Wingate 2014) or simultaneous forcing of all components of velocity
(Marino et al. 2013). The present investigation includes regimes of weak stratification
(large Froude numbers) and the presence of inertia-gravity waves with external forcing
that is intended to represent a source of baroclinic motion in a fluid replete with
wave energy. Initial tests with buoyancy forcing in the weakly stratified regime led
to frequent large-scale overturning. Vertical velocity forcing avoids these spurious
dynamics in the weakly stratified regime while also avoiding direct forcing of the
slow quasi-geostrophic dynamics in the strongly stratified regime.

Characteristic scales determined from the energy injection rate ε∗f and forcing length
scale L∗f are the forcing velocity, time and buoyancy scales

U∗f = (ε∗f L∗f )
1/3, T∗f = (L∗2f ε

∗−1
f )1/3, B∗f = (ε∗2f L∗−1

f )1/3. (2.5a−c)

This gives rise to the following non-dimensional equations

Dtu+ 1
Rof

ẑ× u = −Euf∇p+ bẑ+ 1
Ref
∇2u, (2.6a)

Dtb+ 1
Fr2

f
S(z)w = 1

σRef
∇2b, (2.6b)

∇ · u = 0, (2.6c)

where
Dt(·)= [∂t + u · ∇](·) (2.7)

and S(z) is the non-dimensional stratification profile defined according to the relation
N2(z∗)=N2

0 S(z). We have defined N0≡|gρ∗−1
0 (∂z∗δρ̂

∗(z∗))max| as the maximal buoyancy
frequency and S≡−∂zδρ̂.

The non-dimensional parameters that appear in (2.6) are determined a priori based
on the energy injection rate ε∗f and forcing length scale L∗f . These parameters are the



Non-hydrostatic, stably stratified and rapidly rotating flows 435

Rossby number Rof , Froude number Frf , Euler number Euf , and Reynolds number
Ref , defined as

Rof =
U∗f

2ΩL∗f
, Frf =

U∗f
N0L∗f

, Euf = δp0

ρ0U∗2f
, Ref =

U∗f L∗f
ν
≡
(
ε∗f L∗4f

ν3

)1/3

. (2.8a−d)

The Rossby number is the ratio of rotation period, T∗Ω = 1/2Ω , to the forcing time,
T∗f = L∗f /U

∗
f , and measures the rotational constraint of the fluid at the forcing scale.

Hereafter, we focus solely on the rotationally constrained regime Rof � 1. The Froude
number is the ratio of the Brunt–Väisälä time, T∗N = 1/N0, to T∗f and measures the
ratio of the fastest linear wave period to the nonlinear advective time scale. The
Reynolds number provides a non-dimensional measure of the energy injection rate
into the system and therefore controls the degree of turbulence achieved at the
forcing scale L∗f . The Euler number measures the significance of the pressure gradient
force relative to inertial accelerations. The Prandtl number σ = ν/κ is the ratio of
dissipation parameters and quantifies the thermometric properties of the working fluid.

In addition to the non-dimensional forcing length scale Lf = 1, four internal length
scales are also present: the dissipation (Kolmogorov) scale LK , first Rossby radius of
deformation LD, the Zeman length scale LΩ , and the Ozimodov length scale LN . These
non-dimensional length scales are defined, respectively, as

LK ≡ Re−3/4
f , LD ≡

(
N0H∗

2ΩL∗f

)
= ARof

Frf
, (2.9a,b)

LΩ ≡
(
ε∗f L∗−2

f

(2Ω)3

)1/2

= Ro3/2
f � 1, LN ≡

(
ε∗f L∗−2

f

N3
0

)1/2

= Fr3/2
f . (2.10a,b)

The dissipation scale is the scale at which the nonlinear turnover time equals the
time scale of viscous dissipation. The first Rossby radius of deformation is the scale
where baroclinic instability converts potential to kinetic energy, and depends on H∗,
the depth of the domain. The ratio A = H∗/L∗f is the non-dimensional height of the
domain, and is set a priori when Rof � 1 (see § 2.1 below). In quasi-geostrophic
dynamics the conversion of baroclinic to barotropic energy (we adopt the convention
that the ‘barotropic’ component of the system includes only the depth-independent part
of the horizontal velocity; all other fields including vertical velocity and buoyancy are
‘baroclinic’) occurs mainly at scales larger than LD. Rotation influences the dynamics
at scales larger than the Zeman scale, and the Ozimodov scale is that above which
eddies are influenced by stratification.

In this paper, we consider only the case LΩ < LK such that all fluid scales are
influenced by rotation. This constraint places an upper bound for the Rossby number,
namely

Rof � Re−1/2
f . (2.11)

This relation can also be interpreted as placing an upper bound on the Reynolds
number; at sufficiently large Reynolds numbers the Zeman scale would be larger than
the Kolmogorov scale, indicating a transition from rotationally dominated to isotropic
turbulence at scales larger than the dissipation scale (e.g. Mininni, Rosenberg &
Pouquet 2012). Strongly stratified non-rotating turbulence displays marked qualitative
differences, depending on the relative size of the Ozmidov and Kolmogorov length
scales (Waite & Bartello 2004; Brethouwer et al. 2007); it remains to be seen whether
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FIGURE 1. Distinguished parameter regimes from strong stratification (Ia) to weak
stratification (IIIc). ∗ = boundary regimes. In all cases the Zeman scale is smaller than
the Kolmogorov scale; i.e. Ref � Ro−2

f .

the qualitative results we obtain under the assumption LΩ < LK change for rapidly
rotating flows with LΩ > LK . Given that the Rossby number is very small and the
Euler number passively scales pressure, it becomes clear that there exist two primary
control parameters, Ref and Frf . Varying these parameters causes the three dynamical
length scales, LD, LN and LK to vary through the seven distinct regimes shown in
figure 1.

2.1. Geostrophy and the Proudman–Taylor constraint
The Proudman–Taylor constraint on rapidly rotating fluids arises from the curl of the
non-dimensional momentum equations (2.6a)

Dtω=
(
ω+ 1

Rof
ẑ
)
· ∇u+∇× bẑ+ 1

Ref
∇2ω, (2.12)

where ω=∇× u (Proudman 1916; Taylor 1923; Greenspan 1968). The leading-order
balance at small Rossby numbers is simply ∂zu = 0. This leading-order balance can
be broken if any of the remaining terms in the vorticity equation rise to order Ro−1

f ;
for example, the Proudman–Taylor constraint can be broken in thin viscous boundary
layers. A more relevant example is the quasi-geostrophic regime, where the curl of the
buoyancy force is sufficiently large to result in the thermal-wind balance at leading
order

−∂zu=∇× bẑ. (2.13)

The leading-order asymptotic balance associated with the Proudman–Taylor
constraint can be more usefully written as

∂zu=O(Rof ), (2.14)
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which suggests that the Proudman–Taylor constraint can be broken by allowing
variation in the ẑ direction on vertical scales order Ro−1

f larger than the horizontal
scales of motion, i.e., by allowing A=H∗/L∗f =Ro−1

f (as is done in the present study).
In summary, for weak buoyancy, associated with weak stratification, one expects the
dynamics to be tall and thin, whereas for strong buoyancy and strong stratification
one expects the dynamics to display an order-one aspect ratio. The equations used in
our numerical experiments (described in § 3) are geostrophically balanced, yet break
the Proudman–Taylor constraint at small horizontal scales by allowing long vertical
variations. The equations also allow the Proudman–Taylor constraint to be broken on
unit-aspect-ratio scales in the presence of sufficiently strong buoyancy forcing.

2.2. Eddy–wave dispersion relation at Rof � 1
A linear analysis of the unforced and inviscid form of (2.6), for normal modes ∝
exp[i(ωt+ k⊥ · x⊥+ kzz)], provides the inertia-gravity dispersion relation for the wave
frequency of oscillation ω and the horizontal and vertical wavenumbers k⊥, kz:

ω2
wave =

1
Fr2

f
sin2 θ + 1

Ro2
f

cos2 θ, ω2
eddy = 0. (2.15a,b)

Here θ = tan−1(k⊥/kz) denotes the angle made with the positive z-axis. The dispersion
relation (2.15) implies the following bound on the wave frequencies

ωwave > min
(

1
Frf
,

1
Rof

)
. (2.16)

In the following we consider the wave dispersion relation (2.15) in the limit
Rof � 1 as a function of stratification which, as established in the previous section,
is tied to the spatial anisotropy of the flow. In addition to Rof � 1, if stratification is
strong (i.e., if Frf � 1), then the wave dispersion relation implies ωwave� 1 for all θ .
Hence wave and eddy-turnover time scales are asymptotically separated for all waves.
This is the classical quasi-geostrophic limit, where it is well established that fast
inertia-gravity waves may be filtered from the Boussinesq equations. This reduction
leads to the hydrostatic QG equations describing the evolution of eddies on a slow
manifold.

In the case of weakly stratified flows characterized by Frf = O(1) there are fast
waves and slow waves, depending on the anisotropy of the wave, i.e. θ . The dispersion
relation (2.15) clearly shows that waves with θ ∼ ±(π/2 − O(Rof )) retain order-one
frequencies in the limit Rof � 1. Waves with angle θ ∼ ±(π/2 − O(Rof )) have
k⊥/kz ∼ Ro−1

f , i.e. longer vertical than horizontal scales. It is now seen that these
anisotropic inertia-gravity waves are not fast compared to the nonlinear eddy
dynamics; since there is no gap between the time scale of waves and the time
scale of eddies, the idea of a slow manifold is no longer applicable.

An approximate dispersion relation for these slow waves is obtained by inserting
k⊥/kz ∼ Ro−1

f into the dispersion relation (2.15) and eliminating small terms; the
result is

ω2
wave ∼

1
Fr2

f
+
(

kz

k⊥Rof

)2

,
kz

k⊥
∼ Rof . (2.17a,b)
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The phase and group velocities vp and vg associated with these slow waves are given
by

vp ∼ ωwave

k2
⊥
(kx, ky, kz)=O(1, 1, Rof ), (2.18a)

vg ∼
(

kz

k⊥Rof

)2 1
k2
⊥ωwave

(
−kx,−ky,

k2
⊥

kz

)
=O(1, 1, Ro−1

f ), (2.18b)

with vp · vg = 0 and |vg| � |vp|. Hence, inertia-gravity waves have phase and
group velocities that are perpendicular: the slow waves propagate predominantly
in horizontal directions whilst wave energy propagated by the group velocity is
transmitted predominantly in the vertical direction (Greenspan 1968). We note that
velocity magnitudes are such that information is transmitted on the O(1) eddy-turnover
time in all directions; this follows from the fact that information in the horizontal
propagates over O(1) horizontal scales while information in the vertical propagates
over O(Ro−1

f ) vertical scales. The consequences of wave–eddy interactions without a
time scale separation are still not fully understood. In the following, we analyse and
simulate reduced equations that describe the nonlinear interactions of vortical modes
and slow inertia-gravity waves.

3. Reduced non-hydrostatic quasi-geostrophic equations
Detailed derivations of the NHQGE have been documented elsewhere (Julien et al.

2006; Sprague et al. 2006; Julien & Knobloch 2007). In the following, we present the
NHQGE, highlighting only the most salient points. Deduction of the NHQGE proceeds
by identifying the Rossby number ε≡Rof � 1 as the small parameter and introducing
the asymptotic series expansion

v = (u, p, b)T = ε−1v−1 + v0 + εv1 + ε2v3 +O(ε3) (3.1)

together with a multiple time scale expansion and a rescaled, anisotropic vertical
coordinate

∂z→ ε∂Z, ∂t→ ∂t + ε2∂T (3.2a,b)

into the Boussinesq equations. The large vertical scale is precisely the scale at which
deviations from the Proudman–Taylor constraint are allowed. The slow dimensional
time scale T∗ is the period over which the vertical buoyancy flux acts to modify the
mean buoyancy profile, and is such that the ratio of the order-one time scale T∗f to the
slow time scale T∗ is given by AT = T∗f /T

∗= ε2. This procedure results in an ordered
hierarchy of equation balances that must be solved in succession. The multiple-scales
approach requires the following decomposition of each fluid variable into mean and
fluctuating components, i.e.,

v(x, Z, t, T)= v(Z, T)+ ṽ(x, Z, t, T), (3.3)

where overbars denote small scale and fast time averages such that

v(Z, T)≡ 1
τV

∫
τ ,V

f (x, Z, t, T) dx dt, ṽ ≡ 0. (3.4a,b)

The non-dimensional parameters and their distinguished relations to ε are now
determined as (Julien et al. 2006)

Frf =O(1), Euf ∼ ε−1, Ref =O(1). (3.5a−c)
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The Reynolds number, in particular, has an upper bound value Ref �Ro−2
f (2.11) that

indicates fluid motions may be driven from laminar through to turbulent motions. It
remains to be seen whether the qualitative results obtained here change for rapidly
rotating dynamics with Ref > Ro−2

f . Importantly, Frf serves as a control parameter
that may be varied from the strong-stratification regime (Rof � Frf � 1, from
the requirement that LΩ < LN using (2.10)) through to the pure-rotation regime
(1� Frf � Ro−3/2

f , from the requirement that LΩ < LD using (2.9)).
An asymptotic perturbation analysis then reveals u−1 = ṽ−1 ≡ 0, together with a

leading-order mean hydrostatic balance, i.e.,

∂Zp−1 = b−1. (3.6)

The leading-order dynamics captured by the NHQGE are found to be in pointwise
geostrophic balance satisfying

ẑ× u0 +∇p̃0 = 0, (3.7a)
∇ · u0 = 0. (3.7b)

This yields, on defining ∇⊥ = (∂x, ∂y, 0), the diagnostic solution

ũ0 =−∇⊥ × ψ̃0ẑ+ w̃0ẑ, p̃0 = ψ̃0, u0 = 0. (3.8a−c)

The reduced NHQGE describing the flow evolution are deduced at the next order
by application of asymptotic solvability conditions and are given by (dropping tildes)

∂tζ0 + J[ψ0, ζ0] − ∂Zw0 = 1
Ref
∇2
⊥ζ0, (3.9a)

∂tw0 + J[ψ0,w0] + ∂Zψ0 = b0 + 1
Ref
∇2
⊥w0 + fw0, (3.9b)

∂tb0 + J[ψ0, b0] +w0

(
∂Zb−1 + 1

Fr2
f

S(Z)
)
= 1
σRef
∇2
⊥b0, (3.9c)

∂Tb−1 + ∂Z(w0b0)= 1
σRef

∂2
Zb−1, (3.9d)

defining the evolution of vertical vorticity ζ0 = ∇2
⊥ψ0, vertical velocity w0, and

buoyancy b−1 + Rof b0 decomposed into its mean and fluctuating components. The
Jacobian J is defined as J[ f , g] = ∂xf ∂yg− ∂yf ∂xg≡ u · ∇⊥.

The NHQGE bear the characteristic hallmark of QG theory, namely: p̃0 = ψ0
serves as the geostrophic stream function; planetary rotation is solely responsible
for axial vortex stretching in (3.9a); material advection occurs solely in the
horizontal direction with u0⊥ · ∇⊥ ≡ J[ψ0, ·] = ∂xψ0∂y − ∂yψ0∂x, vertical advection
is a subdominant phenomenon with w̃0∂Z ṽ0 = O(ε). However, in the presence of
weak stratification, vertical motions are now significant and result in the appearance
of inertial acceleration terms in the vertical momentum equation (3.9b). Notably,
linearization about a constant stratification profile S(Z) = 1 in the inviscid limit
Ref →∞ captures the dispersion relation for both slow inertial-gravity waves (2.17)
and eddies ωeddy = 0. The NHQGE thus reflect the fact that slow inertial-gravity
waves and eddies interact nonlinearly in the rapidly rotating, weakly stratified regime.
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3.1. Energetics and conserved quantities
Like the Boussinesq equations, the inviscid and unforced NHQGE conserve several
positive quadratic functionals. The time-rate-of-change of horizontal kinetic (HKE),
vertical kinetic energy (VKE) and potential energy (PE) (‘potential energy’ here is an
approximation to the available potential energy (Lorenz 1955), not an approximation
to the gravitational potential energy −g〈ρzA 〉, but the terminology is conventional) are
given, respectively, by

∂tHKE := ∂t

[
1
2(〈|∇⊥ψ0|2A 〉)

]
= 〈w0∂Zψ0

A 〉, (3.10a)

∂tVKE := ∂t

[
1
2 〈w2

0

A 〉
]
=−〈w0∂Zψ0

A 〉 + 〈w0b0
A 〉, (3.10b)

∂tPE := ∂t

[
1
2

〈
b2

0

A

(∂Zb−1(Z)+ Fr−2
f S(Z))

〉]
=−〈w0b0

A 〉, (3.10c)

where 〈·〉 and ·A denote vertical and horizontal averages, respectively, and the time
invariance of total energy E = KE+ PE= HKE+ VKE+ PE is clear. The equations
also conserve a total buoyancy variance

∂t〈b2
0 + (b−1 +Σ(Z))2

A 〉 = 0, S(Z) := ∂ZΣ(Z)=−Fr−2
f ∂Zδρ̂. (3.11a,b)

Finally, the NHQGE materially conserve a form of potential vorticity (PV)

∂tq+ J[ψ0, q] = 0, (3.12a)

q= ζ0 + (ω⊥ · ∇⊥ + ∂Z)

(
b0

(∂Zb−1 + Fr−2
f S(Z))

)
. (3.12b)

Notably, it can be seen the potential vorticity q can be partitioned into a linear and
nonlinear component dependent on vortical and vertical motions, respectively.

3.2. Barotropic, baroclinic decomposition
Rapid rotation often induces a transfer of energy to the depth-independent component
of horizontal velocity (Smith & Waleffe 1999). It is useful therefore to examine the
energetic interaction of the depth-independent horizontal velocity with the remainder
of the system. In quasi-geostrophic theory, the velocity is often expanded as a sum
over a basis of vertical modes, the first of which is independent of depth and is
conventionally called the ‘barotropic’ mode (Rocha, Young & Grooms 2016). More
generally, the definition of a barotropic fluid is a fluid for which density is a function
of pressure alone. A constant-density fluid is an example of a barotropic fluid, but
a constant-density fluid need not have a depth-independent velocity – an apparent
conflict with the conventional quasi-geostrophic usage of the term.

To fix a particular usage of the terms ‘baroclinic’ and ‘barotropic’ in the context of
a stratified Boussinesq fluid we take the following line of reasoning. In a Boussinesq
fluid the deviation from the constant reference density is −b∗ρ∗0/g, which is not
generally a function of pressure alone (i.e. barotropic) unless b∗ = 0. Because
vertical velocity in the presence of a background stratification induces buoyancy
perturbations (3.9c), w is intimately associated with baroclinicity and we choose to
consider it as part of the ‘baroclinic’ component of the dynamics. Equation (3.9b)
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then implies that the barotropic component, having both b0 = 0 and w0 = 0, must
also have no vertical pressure gradient ∂Zψ0 = 0. This line of reasoning leaves the
depth-independent part of the horizontal velocity as the only element of the barotropic
component, with the baroclinic component comprising w0, b0, and the depth-dependent
part of ψ0. Our use of the terms is distinguished from an alternate use where
‘barotropic’ simply indicates the depth-independent component, and includes both
〈w0〉 and 〈b0〉.

We thus arrive at the barotropic–baroclinic (bt–bc) decomposition

u0,bt =−∇⊥ × 〈ψ0〉ẑ, b0,bt = 0,
u0,bc =−∇⊥ ×ψ ′0ẑ+w0ẑ, b0,bc = b0,

}
(3.13)

where ψ0 = 〈ψ0〉 + ψ ′0. Partitioning the NHQGE thus reduces to decomposing the
vorticity equation (3.9a), into its barotropic and baroclinic components. Namely

∂t〈ζ0〉 + J[〈ψ0〉, 〈ζ0〉] =−〈J[ψ ′0, ζ ′0]〉 +
1

Ref
∇2
⊥〈ζ0〉, (3.14a)

∂tζ
′
0 + J[〈ψ0〉 +ψ ′0, ζ ′0] − 〈J[ψ ′0, ζ ′0]〉 + J[ψ ′0, 〈ζ0〉] − ∂Zw′0 =

1
Ref
∇2
⊥ζ
′
0. (3.14b)

Equation (3.14a) is the two-dimensional barotropic vorticity equation. Within the
barotropic subspace kinetic energy |∇⊥〈ψ0〉|2A

and enstrophy 〈ζ0〉2A
are conserved

quantities in the absence of dissipation and forcing. Forcing of barotropic vorticity
occurs through nonlinear interactions between purely baroclinic fields in the
form of advection of baroclinic vorticity by baroclinic horizontal velocities, i.e.,
〈J[ψ ′0, ζ ′0]〉 = 〈u′0⊥ · ∇ζ ′0〉. Therefore, this term acts as a source when u′0⊥ and ∇ζ ′0 are
barotropically collinear.

Some comments are appropriate on the distinguishing features of the NHQGE in
comparison with a recent and alternative formulation by Wingate et al. (2011). In
Wingate et al. (2011) the asymptotic development is based strictly on a multiple-scales
approach in time only, with an isotropic scaling of the spatial coordinates. The
resulting slow manifold is found to be one that strictly enforces the Proudman–Taylor
constraint of the velocity field, i.e., ∂Zu0 = 0. Consequently, the term coupling
baroclinic and barotropic dynamics 〈J[ψ ′0, ζ ′0]〉 is predicted to be asymptotically
small, therefore decoupling barotropic vorticity dynamics from the now Taylorized
depth-independent baroclinic dynamics of 〈w0〉 and 〈b0〉. Stochastically forcing
baroclinic dynamics therefore cannot influence barotropic motions (Whitehead &
Wingate 2014). We contend that the NHQGE demonstrate that slow inertial-gravity
waves and baroclinic eddies are a vital leading-order component of the dynamics at
low Rossby and moderate Froude numbers.

4. Numerical simulation for stably stratified NHQGE
Since the layer of stably stratified fluid is void of a natural instability capable

of inducing fluid motion, artificial forcing is required. Previous studies have
accomplished the task of forcing a stable layer through the controlled injection
of motion-inducing energy (Smith & Waleffe 2002; Lindborg 2006; Wingate et al.
2011). The present study induces fluid motions in a fashion similar to these past
investigations. In particular, we perform numerical simulations where motion is
induced by a controlled injection of vertical kinetic energy. In forcing the vertical
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momentum equation only, this study differs from those in which all three components
of momentum are forced (e.g. Sen et al. 2012; Marino et al. 2013); however, by
only forcing vertical velocity, the energy is injected only into wave modes. Therefore,
energy transfer to the vortical modes must occur through interactions among these
linear eigenmodes. Furthermore, the forcing is intended to represent a source of
baroclinic motion (modes with kz = 0 are not forced directly) at scales small enough
(relative to domain size) to allow for an inverse energy cascade in a fluid replete
with wave energy. For example, such wave motions at high-latitude abyssal oceans
may be important to understanding dynamics in the deep regions of Earth’s oceans.

The energy source occurs through the vertical momentum equation (3.9b), where
forcing takes the form of the spatially correlated, white-in-time stochastic forcing fw0 .
The stochastic forcing function fw0 has a spherically symmetric spectrum

Efw0
(k)=Cεf exp

(− 1
2(|k| − kf )

2
)
, (4.1)

where εf is the flux of vertical kinetic energy into the system at forcing wavenumber
kf . For this study we set kf = 2π (setting the non-dimensional horizontal length scale
to Lf = 1) and εf = 1, and we normalize the spectrum of the forcing function so that
volume-averaged energy flux becomes∫ 2π

0

∫ π

0

∫ ∞
0

E2
fw0
(k)k2 sin φ dk dφ dθ = 1. (4.2)

Numerical simulations of the NHQGE are performed in a periodic box and solutions
are expanded in Fourier series. The non-dimensional box size is 10 × 10 × 1. The
horizontal length scale is the forcing scale L∗f , and the vertical scale is H∗ = L∗f /Rof ,
so the numerical box has dimensional size 10L∗f × 10L∗f × L∗f /Rof .

The numerical time-stepping scheme used is an implicit/explicit formally second-
order Runge–Kutta scheme derived by Spalart, Moser & Rogers (1991) and
previously used by Sprague et al. (2006) for numerical simulation of the NHQGE
for the rapidly rotating Rayleigh–Bénard problem. The delta-correlated forcing is an
everywhere-discontinuous function of time (though at any given time it is spatially
smooth), so it cannot be treated with standard numerical methods for deterministic
differential equations that assume some level of temporal smoothness. The stochastic
dynamics are here treated with a simple splitting method where the deterministic
dynamics are treated independently of the stochastic forcing. To wit, after completing
a full time step of the deterministic dynamics, a random forcing increment

√
dtχ(x, t)

is added to the solution for w0 (or, in some initial tests, to b0), effectively using the
Euler–Maruyama method on the stochastic forcing term fw0(t) (Higham 2001). In
addition to respecting the stochastic nature of the dynamics, this approach has the
desirable property that the mean rate of energy injection is independent of the system
state, and can be controlled a priori.

Fourier expansions are dealiased using the standard 2/3 rule. To ensure sufficient
resolution we use the convention that 1x= 2LK , where LK = Re−3/4 is the dissipation
length scale for statistically steady flow. Use of this convention gives the number of
Fourier modes used in each Cartesian direction as Nx,y,z= LbRe3/4/2. Resolutions used
in our numerical simulations are given in table 1.

The simulation parameters (Ref ,Frf , σ ) are selected based on the regimes identified
in figure 1. For a given Ref we vary Frf so as to explore each of the seven regimes
identified in figure 1. This process of selecting Frf is outlined in table 1. All
simulations are computed with σ = 7.
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Regime Frf (Ref ) Frf (Ref = 50) Frf (Ref = 100) Frf (Ref = 300)

Ia 1
2 Re−1/2 0.0707 0.0500 0.0289

Ib* Re−1/2 0.1414 0.1000 0.0577
Ic 1

2 (1+ Re−1/2) 0.5707 0.5500 0.5289
II* 1 1 1 1
IIIa 1

2 (1+ Re3/4) 9.9015 16.311 36.542
IIIb* Re3/4 18.803 31.623 72.084
IIIc 2Re3/4 37.606 63.246 144.17

Grid resolution Nx ×Ny ×Nz 96× 96× 96 192× 192× 192 384× 384× 384

TABLE 1. Values of Frf as a function of Ref used in simulations of the NHQGE based
on the seven regimes identified in figure 1. Domain size for each simulation is 10Lf ×
10Lf × 1, where Lf = 1 is the imposed forcing length scale. To ensure sufficient resolution
we use the convention that 1x = 2LK , where LK = Re−3/4 is the dissipation length scale,
giving the number of Fourier modes used in each Cartesian direction as Nx,y,z= LbRe3/4/2.
The Prandtl number is fixed at σ = 7 for all simulations.

In addition to forcing vertical velocity we have also performed numerical
simulations with buoyancy forcing as in Whitehead & Wingate (2014); however,
since the momentum equations decouple from the buoyancy equations for large Frf ,
the injection of potential energy becomes unphysical. For this reason we only present
results associated with the injection of vertical kinetic energy via the vertical velocity
equation (3.9b).

5. Results
The non-dimensional parameters defined in § 2 are based on a priori characteristic

scales built from the energy injection rate εf and injection scale Lf . These scales are
not necessarily the same as the scales that truly characterize the flow; certainly it is
not the case that the large-scale flows observed here occur on the forcing scale Lf = 1.
For this reason we give a summary of a posteriori non-dimensional parameters that
define the flows simulated. To do this we compute the centroid of energy spectra
to get a characteristic wavenumber kc and associated length scale Lc; we compute a
characteristic velocity Uc from the volume-averaged horizontal kinetic energy (HKE),
that is,

kc =

∫
kE(k) dk∫
E(k) dk

, Uc = (2HKE)1/2, (5.1a,b)

where E(k), for example, are the curves in figure 9. These non-dimensional measured
values are then used to define a posteriori Reynolds and Froude numbers

Rec = U∗c L∗c
ν
= U∗f UcL∗f Lc

ν
= Ref UcLc, Frc = U∗c

N0L∗c
= U∗f Uc

N0L∗f Lc
= Frf

Uc

Lc
. (5.2a,b)

A posteriori Frc and Rec values are summarized in table 2. Generally, characteristic
horizontal scales are larger than Lf , and characteristic velocities are larger than Uf .
This results in Reynolds numbers that are larger than Ref . The larger measured
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FIGURE 2. (Colour online) A qualitative partitioning of (Ref , Frf )-space using volume
renders of vorticity. Values of (Ref ,Frf ) for which simulations were performed are denoted
by an × (see table 1). The flow is characterized by layering, barotropization and an inverse
cascade. For Frf < 1 the flow organizes into well-defined layers (except at low-Ref , e.g.
Ref = 50) and when Frf > 1 layering is absent. We emphasize the presence of a dominant
barotropic component of energy and a clear inverse cascade for all Frf simulated. Similar
flow characteristics are observed for buoyancy and vertical velocity (see figures 3 and 4).

Ref Rec Frf Frc Lc Uc

50 150 0.1414 0.0118 6.0 0.5
100 980 0.1000 0.0200 7.0 1.4
300 4290 0.0577 0.0195 6.5 2.2

50 604 18.80 4.50 7.1 1.7
100 2190 31.62 12.99 7.3 3.0
300 5742 72.08 31.67 6.6 2.9

TABLE 2. Characteristic scales Uc and Lc computed from centroids of energy spectra and
non-dimensional quantities Rec and Frc based on the measured values Lc and Uc.

horizontal scale Lc outweighs the increase in Uc, leading to Froude numbers that
are smaller, in some cases by an order of magnitude, than Frf ; however, what was
considered weakly stratified as measured by Frf remains so as measured by Frc.

In performing DNS of the NHQGE (with the non-dimensional parameters outlined
in table 1) two qualitatively identifiable regimes are observed. These regimes are
associated with strong and weak stratification: Frf < 1 and Frf > 1, respectively. The
regime diagram in figure 2 partitions (Ref , Frf )-space into these two regimes based
on volume renders of vertical vorticity. In both regimes, the flow organizes into a
large-scale, barotropic dipole with some additional small-scale turbulence. Figures 3
and 4 give renders for vertical vorticity, buoyancy and vertical velocity for strong
and weak stratifications when Ref = 300.
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(a) (b) (c)

(d) (e) ( f )

FIGURE 3. (Colour online) Volume renders of vertical vorticity ζ (a,d), buoyancy b (b,e),
and vertical velocity w (c, f ) for the case of strong stratification Ref = 300, Frf = Re−1/2

f .
Top view (a–c), side view (d–f ).

The strong-stratification regime (Frf < 1, figure 3) is distinguished by a tendency
of the flow to form well-defined and sustained layers where small-scale turbulence
is active and the local stratification is reduced. Layering is observed for Ref = 100
and Ref = 300, but not for Ref = 50. We conclude that the instability responsible
for layering is inhibited by viscous effects at lower Ref . We note that layering, as
observed in figure 3, is not observed for classical QG dynamics, where energy rapidly
transfers to large vertical scales (Smith & Vallis 2001, 2002). In the second regime
of weak stratification (Frf > 1, figure 4) the columnar structures are unobstructed by
layers, and evolve in a sea of small-scale turbulence.

In both regimes, the energy accumulates primarily in the barotropic mode and
at large horizontal scales, indicating a robust inverse cascade of energy. At lower
Reynolds numbers Ref 6 100 (Rec up to ≈2000), the total energy in the system
reaches a statistical equilibrium. In addition to the inverse energy transfer, we
diagnose a robust direct transfer of kinetic energy in the barotropic mode, which
allows the small amount of energy injected by the baroclinic motions to be balanced
by small-scale dissipation, leading to energy saturation. At higher Reynolds numbers,
Ref = 300 (Rec greater than ≈4000), the total energy shows no sign of saturation.
These results are presented in more detail in the following subsections.

We note that these results do not necessarily represent universal properties of
rotationally constrained stratified flow in every respect. Undoubtedly, the dynamic
behaviour depends significantly on the method by which external energy is injected
to excite motion. As mentioned above, the forcing method employed here excites
vertical motion; therefore, it excites only wave modes and does not directly force
the vortical mode. This approach to forcing aims to better understand the energetic
pathway from three-dimensional baroclinic motions to two-dimensional barotropic
motions.
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(a) (b) (c)

(d) (e) ( f )

FIGURE 4. (Colour online) Volume renders of vertical vorticity ζ (a,d), buoyancy b (b,e),
and vertical velocity w (c, f ) for the case of weak stratification Ref = 300,Frf =Re3/4

f . Top
view (a–c), side view (d–f ).

5.1. Layering
Layering is observed in all fields, though most distinct in the renders of vertical
vorticity shown in figure 3. To clarify terminology, we define layers to be the
localized planar regions home to small-scale turbulence and occurring for Frf < 1.
Figure 5 shows the effect of strong stratification on the time-averaged vertical gradient
of the total mean buoyancy profile and on the structure of ζ0,RMS for simulations with
Ref = 100 and Frf 6 1. Reduction of stratification within the layers is presumably
associated with local turbulent mixing within the layers.

Some basic characteristics of the location and height of layers are given by the
mean buoyancy gradient and vertical profiles of ζ0,RMS. The more informative of
the two is the set of RMS profiles of vertical vorticity. The centre locations for
layers coincide with the location of local minima within the peaks for ζ0,RMS, and are
obvious for Frf = 0.05 and Frf = 0.1. The neighbouring local maxima may be used
to give a reasonable metric for layer height, and indicate the presence of top and
bottom sublayers that make up an entire layer. As stratification strength is decreased,
layer height is observed to increase. This effect is illustrated in figure 5 as Frf

is increased from 0.05 to 0.55. When Frf = 0.55 there is only one large layer of
reduced stratification and increased turbulence, and one smaller less-turbulent region
of increased stratification that occupies approximately Z ∈ [0.2, 0.4].

Finally, we note that the instantaneous dissipation rate for energy is increased
within the layers. The instantaneous dissipation rate for horizontal kinetic energy is
Re−1

f ζ
2A

, and figure 5(c) clearly shows that this is increased within the layers. The
dissipation rates for vertical kinetic energy and buoyancy variance are also locally
increased within the layers (not shown). The dynamics leading to the formation of
the layers is as yet unknown.
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FIGURE 5. (Colour online) Time-averaged vertical profiles for Ref = 100. Profiles
of (a) total mean buoyancy, (b) vertical gradient of mean buoyancy and (c) RMS
vertical vorticity. Layering occurs in horizontal planes where mean stratification is locally
minimized. The effect on the stratification profile is due to the nature of vertical buoyancy
flux. Similarly, layered structuring seen for vertical vorticity is due to vortex stretching.
Layer locations coincide with locations of sharp local minima within the peaks of ζ0,RMS.
Layer height may be given by the distance between local maxima surrounding the singular
local minima and indicate the presence of sublayers (jets). The vertical extent of layers
and their sublayers is observed to increase with decreased stratification. Similar structuring
is observed for vertical velocity, buoyancy, and dissipation.

5.2. Time series, equilibration and average energy conversions
We find that total energy is largely dominated by horizontal kinetic energy and
this becomes increasingly true as stratification weakens and the system approaches
purely rotating dynamics. For this reason we focus primarily on the horizontal kinetic
energy, hereafter HKE. However, before proceeding to discuss HKE we note that for
all Frf and Ref simulated the vertical kinetic energy takes on values close to 1/2
(or w0,RMS= 1). This behaviour of vertical kinetic energy is possibly due to the nature
of our artificial forcing, where spatially correlated stochastic noise has unit amplitude
(as results from setting εf = 1). Additionally, the direct influence of this forcing
precludes an unbiased measure of the natural tendency of, for example, w0,RMS as a
function of Frf .

Figure 6 shows time series of volume-averaged HKE for strong stratification
(Frf = Re−1/2

f , panels a–c) and weak stratification (Frf = Re3/4
f , panels d–f ) at

Ref = 50, 100 and 300; the panels correspond to places where dashed lines in figure 2
intersect with a ×. Each plot shows the volume-averaged barotropic, baroclinic and
total horizontal kinetic energy, denoted as 〈HKE〉, HKE′ and HKE, respectively. In
every case, the total HKE is dominated by the barotropic part; the only exception in
our simulation suite being Ref = 50 and Frf = 0.0707, where the energy accumulates
in a large vertical scale, but not barotropic (not shown). At lower Reynolds numbers,
Ref 6 100, the HKE saturates, while the simulations at Ref = 300 show no indication
of saturation, and it is not clear whether it will eventually saturate.

Equation (3.10) shows that vortex stretching and vertical buoyancy flux govern the
conversion of VKE to HKE and PE to VKE, respectively. Furthermore, conversion
of kinetic energy from the baroclinic component HKE′ to the barotropic component
〈HKE〉 may be understood by multiplying inviscid equations (3.14a) and (3.14b) by
−〈ψ0〉 and −ψ ′0 to get

∂t〈HKE〉 := ∂t

[
1
2 |∇⊥〈ψ0〉|2A

]
= 〈ψ0〉〈J[ψ ′0, ζ ′0]〉A , (5.3a)

∂tHKE′ := ∂t

[
1
2 〈|∇⊥ψ ′0|2

A 〉
]
=−〈ψ0〉〈J[ψ ′0, ζ ′0]〉A + 〈w′0∂Zψ

′
0
A 〉. (5.3b)
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FIGURE 6. (Colour online) Time series of volume-averaged barotropic, baroclinic and total
horizontal kinetic energy at Frf = Re−1/2

f (a–c) and Frf = Re3/4
f (d–f ). These time series

correspond to points where an × sits on the dashed lines in figure 2. A notable feature is
the saturation of HKE at Ref = 50 and Ref = 100. Computationally expensive simulations
at Ref = 300 have not equilibrated. The barotropic component 〈HKE〉 contains nearly all
the horizontal kinetic energy after an initial spin-up time. (a,d) Ref = 50; (b,e) Ref = 100;
(c, f ) Ref = 300.

From the above equations it is clear that vortex stretching occurs only within the
baroclinic subspace from which the two-dimensional barotropic subspace derives
its energy. Moreover, flows for which a dynamic equilibrium is obtained have
volume-averaged conversion rates that balance dissipation rates. Specifically, by
including viscous terms in (3.10) and (5.3) and assuming steady states, the following
expressions for dissipation rates result

〈HKEdissip〉 := −〈ψ0〉〈J[ψ ′0, ζ ′0]〉A =−
1

Ref
〈ζ0〉2,A (5.4a)

HKE′dissip := 〈ψ0〉〈J[ψ ′0, ζ ′0]〉A − 〈w′0∂Zψ
′
0
A 〉 =− 1

Ref
〈ζ ′20

A 〉, (5.4b)

VKEdissip := 〈w0∂Zψ0
A 〉 − 〈w0b0

A 〉 − εf =− 1
Ref
〈|∇⊥w0|2A 〉, (5.4c)

PEdissip := 〈w0b0
A 〉 =− 1

Pef

〈
|∇⊥b0|2A

∂Zb−1 + Fr−2
f S(Z)

〉
. (5.4d)

Summing equations (5.4a) and (5.4b) gives the total dissipation rate of HKE, which
matches the total energy conversion by vortex stretching. Summing all dissipation
rates in (5.4) gives the total energy dissipation rate, which is precisely the rate
εf at which energy is injected. Figure 7 shows volume and time-averaged energy
conversion rates as functions of Frf . These conversions are those given by (3.10) and
(5.3). Additionally, for equilibrated flow, as is the case for simulations with Ref = 50
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FIGURE 7. (Colour online) Volume- and time-averaged energy fluxes and dissipation rates
for Re = 50, 100, 300 for strong (Frf < 1) and weak (Frf > 1) stratification. Conversion
of kinetic energy via (a) vortex stretching (appearing to be most efficient at Frf > 1),
(b) baroclinic forcing, and (c) vertical buoyancy flux (showing the decreased role of PE
as Frf increases above Frf = 1). Curves in (d) give the ratio of fluxes due to baroclinic
forcing to that due to vortex stretching. Dissipation of HKE′ and VKE are given in (e) and
( f ), respectively. For small values of Frf approximately 90 % of all energy disappation is
via VKE, while it accounts for approximately 75 % of energy dissipation at the weakest
stratifications. For all simulations εf = 1, and values here may be interpreted as the ratio
of energy flux due to conversion or dissipation to energy injection due to forcing.

and Ref = 100, energy conversion rates in figure 7 also provide the dissipation rates
given by (5.4). In the following we compare and contrast the ways in which energy
is converted from one type to another before being eventually dissipated in the
two regimes.
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Before describing energy conversion we make note of figure 7( f ), where it is clear
that in both regimes most of the energy input to VKE is dissipated as VKE. A greater
percentage of the total energy input is dissipated as VKE in the strong-stratification
regime (more than 80 %), but a significant amount is still dissipated as VKE in the
weak-stratification regime too (65 %–75 %). The vortical mode lacks vertical velocity,
and the fact that most of the energy injected to wave modes does not convert to
horizontal kinetic or potential energy is an indication of the weakness of the wave–
vortex interactions in the rapidly rotating regime.

Figure 7(a) shows the mean energy conversion rate from VKE to HKE by vortex
stretching. In the weakly stratified regime, the percentage of total energy injection that
is converted to HKE remains approximately 20 %, with a very weak sensitivity to the
Reynolds and Froude numbers. By contrast, as the stratification increases past Frf ≈ 1,
the rate of conversion to HKE drops rapidly, with less conversion for lower Reynolds
numbers. Indeed, of the total input, only approximately 3 %–4 % is converted to HKE
at the smallest Froude number at Ref = 100. This is consistent with known results for
the strongly stratified, rapidly rotating quasi-geostrophic regime, where wave modes
interact extremely weakly with vortical modes.

We next examine conversion of baroclinic to barotropic HKE. From (3.14) it is
clear that baroclinic motions are solely responsible for exciting barotropic motions.
In both regimes of weak and strong stratification, we find that the conversion of
baroclinic to barotropic energy (F = 〈ψ0〉〈J[ψ ′0, ζ ′0]〉A ) is roughly statistically steady
in time and positive. Time-averaged values for the conversion F are summarized in
figure 7(b). Like the rate of conversion from VKE to HKE, the rate of conversion
from baroclinic to barotropic HKE is insensitive to Ref and Frf in the weakly stratified
regime, and drops sharply with Frf in the strongly stratified regime. Not only does
the gross rate of energy injection to the barotropic mode decrease with Frf in the
strongly stratified regime, the percentage of conversion from VKE to HKE that further
converts to barotropic HKE decreases too, as shown by figure 7(d). For example, at
the smallest Froude number and at Ref = 100, less than 40 % of the conversion to
HKE further converts to barotropic HKE. As mentioned above, the simulation with
Ref = 50 at the strongest stratification does not exhibit barotropization, which may
be due to an insufficient O(10−3) energy flux into the barotropic mode compared to
viscous dissipation (see figure 7b and e).

This result, that the rate of energy injection to the barotropic mode decreases
with the Froude number, seems to contradict the results of Marino et al. (2013),
who found that the transfer of energy to the barotropic mode is more efficient at
small Froude numbers than at large Froude numbers. The difference is that we are
examining the rate of energy injection to the barotropic mode as compared to the
rate of total energy injection (figure 7b) and as compared to the rate of HKE forcing
(figure 7d), while they examined a time scale defined as an energy divided by the
rate of energy injection to the barotropic mode. Figure 6, especially panels (b,e),
shows that the net barotropic energy is larger at large Froude number than at small
Froude number for a given forcing and Reynolds number; together with the results
in figure 7, this suggests that it may be more accurate to say that energy transfer to
the barotropic mode is more efficient at large Froude numbers than at small ones.

Clearly, the saturation of the barotropic energy observed at moderate Reynolds
numbers is not the result of a shutdown of injection to the barotropic mode. The fact
that the barotropic energy saturates despite a net positive energy injection indicates
that there must be a net dissipation to balance the forcing. None of our simulations
use a large-scale dissipation, so the barotropic dissipation must be viscous. In § 5.3
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we diagnose a small yet robust direct cascade of barotropic kinetic energy that carries
enough energy to small-scale dissipation that the total barotropic energy is able to
equilibrate at Ref 6 100. Since the rate of injection matches the rate of dissipation
at equilibrium, the results in figure 7(b) are equivalent to the barotropic dissipation
rate (at least for Ref 6 100, where the energy saturates). We therefore infer that the
barotropic dissipation rate, which is equivalent to the strength of the forward cascade
in the barotropic mode, increases as the Reynolds number increases for Frf 6 1, and
remains approximately constant for Frf > 1.

Energy injected directly to VKE also converts to potential energy; the mean rate
of conversion from VKE to PE is shown in figure 7(c). This conversion out of VKE
displays somewhat opposite behaviour to the conversion from VKE to HKE: in the
strongly stratified regime the conversion remains flat, insensitive to both Reynolds and
Froude numbers, while in the weakly stratified regime the conversion decreases rapidly
as the stratification weakens, and with little dependence on Reynolds number. A priori,
one expects conversion from VKE to PE to diminish as Froude numbers increase,
since PE becomes negligible in the pure-rotation limit.

To summarize, in both regimes, energy injected to VKE is primarily dissipated as
VKE, and there is a net positive conversion to barotropic KE that is, for moderate
Reynolds numbers, balanced by dissipation leading to total energy equilibration. In
the strongly stratified regime the conversion to baroclinic HKE decreases with Frf ,
as does the rate of conversion to barotropic HKE, while the rate of conversion to
PE remains moderate and insensitive to Frf . In the weakly stratified regime the
conversion to baroclinic HKE remains moderate and insensitive to Frf , as does the
rate of conversion to barotropic HKE, while the rate of conversion to PE decreases
rapidly as Frf increases.

5.3. Cospectra and scales active in energy conversion
While illuminating, the discussion in § 5.2 is based on global scalars obtained
from volume and time averages, and is altogether lacking any spatial information.
To improve on this, vertically and time-averaged cospectra are computed. These
one-dimensional cospectra are calculated by decomposing horizontal means of
pointwise physical space products as the sum of Fourier space products, reordering
sums over circular rings, binning, and averaging in the ẑ direction, i.e.,

( f , g)(k̃⊥)=
〈 ∑

0<|̃k′⊥−k̃⊥|61

f̂ (k′⊥, Z)ĝ(k′⊥, Z)

〉
, k̃⊥ = k⊥

k0
= 1, 2, 3, . . . , (5.5a,b)

where k̃⊥ and k̃′⊥ are horizontal wavenumbers normalized by the box scale k0= 2π/10;
the bar here denotes complex conjugation, hats denote horizontal Fourier amplitudes,
and angle brackets denote a vertical average. Furthermore, the temporal mean
of cospectra are computed to provide the scales active in energy conversion on
average. This rescaling of the wavenumbers is convenient, since it leads to integer
wavenumbers; for example, the scaled forcing wavenumber is k̃⊥ = 10, while
the unscaled version is k⊥ = 2π. Figure 8 shows cospectra of vortex stretching,
barotropization of HKE, and vertical buoyancy flux for simulations with Ref =100 and
with Frf =Re−1/2

f , 1,Re3/4
f . Similar cospectra are observed for Ref = 50 and Ref = 300.

Although simulations with Ref = 300 have not reached a dynamic equilibrium, they
too convey the trends observed for Ref = 100 in figure 8.
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FIGURE 8. (Colour online) Vertically and time-averaged horizontal cospectra of energy
fluxes at Ref = 100 for times proceeding energy saturation. Cospectra in (a) give
conversions between HKE and VKE by vortex stretching. Cospectra in (b) give the
barotropization of HKE and indicate a flux of HKE′ into the gravest horizontal mode
at k̃⊥ = 1. Cospectra in (c) give conversions between VKE and PE by vertical buoyancy
flux and strongly indicate that these conversion become increasingly weak as Frf increases
beyond unity.

For the strongest stratification, figure 8(a) indicates that conversion to HKE′

by vortex stretching occurs at all available scales, with a preference for k̃⊥ ≈ 5
(or L ≈ 2Lf ), and may hint at a preferred scale for wave–vortex interactions. The
centroid (or the average wavenumber) active for this energy conversion by vortex
stretching is just less than k̃f = 10 (or L≈ Lf = 1); however, the efficiency of vortex
stretching is best at L = 2Lf . The barotropization of HKE in figure 8(b) shows that
horizontal baroclinic motions act to force barotropic motions at all scales; however,
with a strong preference for the largest available horizontal scale. That this baroclinic
forcing is, on average, positive definite is consistent with (5.4a) and implies that this
barotropized energy is trapped in the barotropic mode until it is viscously dissipated.
Figure 8(c) shows that the conversion between PE and VKE depends on scale: VKE
is converted to PE for k̃⊥< k̃f , and PE is converted back to VKE for k̃⊥& k̃f , with a
net conversion to PE and a peak efficiency at k̃⊥ = 3 (L≈ 3.3Lf ).

When stratification weakens and Frf = 1, there is still a net conversion from VKE
to HKE by vortex stretching. However, stretching now converts HKE back to VKE
at the two largest available scales (k̃⊥ = 1, 2). Vortex stretching continues to most
efficiently convert vertical to horizontal kinetic energy at k̃⊥ = 5 (L = 2Lf , the peak
in figure 8a), and is nearly four times the conversion seen at stronger stratification.
Baroclinic motions continue to drive barotropic motions in a fashion similar to that
at stronger stratification; however, this is done with slightly increased efficiency,
especially for 5 < k̃⊥ < 20 (figure 8b). Potential energy becomes weak to the point
were the feedback to vertical kinetic energy for k̃⊥> k̃f is substantially reduced and a
preference to convert vertical to potential energy at scales k̃⊥= 5 (L= 2Lf ) is smaller
than that at Frf = Re−1/2

f .
Finally, for the weakest stratification, where Frf = Re3/4, conversion from VKE to

HKE is very similar to Frf = 1, with the exception that conversion back to vertical
kinetic energy only occurs at k̃⊥= 2 rather than both k̃⊥= 1 and 2. At all other scales
vortex stretching acts to move energy from vertical motions to baroclinic horizontal
motions, and does so most efficiently near k̃⊥ = 5 (the peak in figure 8a). That the
largest scale now plays a role via vortex stretching in converting vertical to horizontal
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FIGURE 9. (Colour online) Vertically and temporally averaged horizontal energy spectra
for Ref =300 with (a) Frf =0.0577 and (b) Frf =72.084. Each figure shows the barotropic,
〈HKE〉= (−〈ψ0〉, 〈ζ0〉), and baroclinic, HKE′= (−ψ ′0, ζ ′0), components of horizontal kinetic
energy spectra, HKE = (−ψ0, ζ0). A k−3

⊥ energy spectra at small wavenumber is due to
energy-containing scales in the barotropic subspace for both strong and weak stratification.
For strong stratification and larger wavenumber, a steep k−20/3

⊥ scaling for barotropic energy
gives way to a k−3

⊥ scaling near the dissipation range. For weak stratification, the steep
scaling is short-lived.

energy (contrary to what occurs when Frf = 1) might be explained by an increased
pool of energy made available by the decreased role of buoyancy (see figure 7c).
Barotropization of horizontal kinetic energy, forced by baroclinic motions, is virtually
identical to Frf = 1, and figure 8(c) iterates the insignificance of buoyancy and an
approach to purely rotating dynamics.

Figure 8(b) indicates that energy input to the barotropic mode occurs primarily at
the largest scale at all Froude numbers. Similar behaviour was observed by Larichev
& Held (1995) in simulations of two-layer quasi-geostrophic turbulence.

5.4. Energy spectra
Vertically and time-averaged horizontal energy spectra for simulations with Ref = 300,
Frf = 0.0577 and Frf = 72.084 are computed using (5.5) and are given in figure 9.
Similar spectra are observed for remaining values of Frf and at lower Ref . Both plots
give barotropic, 〈HKE〉= (−〈ψ0〉, 〈ζ0〉), and baroclinic, HKE′= (−ψ ′0, ζ ′0), components
of the total horizontal kinetic energy spectrum, HKE= (−ψ0, ζ0).

For both strong and weak stratification, a k̃−3
⊥ energy spectrum for k̃⊥ ∈ [1, 3]

is dominated by barotropic energy. For strong stratification, the barotropic energy
drops off steeply as k̃−20/3

⊥ for k⊥ ∈ [3, 8], and gives way to a k̃−3
⊥ scaling below

the forcing scale. At weak stratification, the steep scaling is short-lived and the
barotropic spectrum quickly gives way to a k̃−3

⊥ scaling near the forcing scale. The
presence (absence) of the steep drop-off in energy for strong (weak) stratification
might be explained, to some extent, by the weaker (stronger) baroclinic forcing for
k̃⊥ ∈ [3, 8] (see figure 8b); indeed, the shape of the forcing cospectrum decreases
(sustains) in this range. In turn, the difference in behaviour of baroclinic forcing
might be explained by flow morphology. At strong stratification, horizontal layers
appear and are associated with increased viscous effects that may disrupt collinearity



454 D. Nieves, I. Grooms, K. Julien and J. B. Weiss

5

10

15

25

20

30

5 10 15 0

FIGURE 10. (Colour online) Energy transfer map showing how barotropic triad
interactions move energy within the barotropic subspace for equilibrated dynamics where
Ref = 100 and Frf = 0.1. The colourmap Tk̃⊥ p̃⊥ shows how energy at wavenumber k̃⊥ is
gained or lost due to interaction with wavenumber p̃⊥, where red (blue) denotes a gain
(loss) of energy. The vertical profile (on the right) is the result of summing the transfer
map Tk̃⊥ p̃⊥ over p̃⊥ to get Tk̃⊥ . Note the scale for Tk̃⊥ is O(10−5), an indication that energy
transfer via triad interaction is weak relative to baroclinic forcing. Similar results are seen
for weak stratification. Red (blue) shading indicates that energy is transferred into (out of)
wavenumber k̃⊥ through interactions with wavenumber p̃⊥.

of baroclinic advection of the baroclinic vorticity with the barotropic streamfunction
(figure 8b). When layers are absent at weaker stratification, so are associated regions
of increased viscous effects, and the result is an increased efficiency of baroclinic
forcing (figure 8b).

For strong stratification, as k̃⊥ increases and barotropic energy becomes subdominant,
the baroclinic energy spectra scales as k̃−5/3

⊥ for k̃⊥ ∈ [4,≈ 20]. When stratification is
weaker, this scaling range appears to narrow, which may be explained by increased
vortex stretching, which acts to force baroclinic energy most efficiently in the range
k̃⊥ ∈ [4, 5].

5.5. Barotropization and inverse cascade
It is interesting to consider the barotropic dynamics, since these motions are governed
by the two-dimensional vorticity equation (3.14a). If two-dimensional dissipative
flow is forced at scales well separated from frictional effects acting on energy and
enstrophy then an upscale energy range and a downscale enstrophy range form
where, in the limit of vanishing viscosity, the downscale transfer of energy through
the enstrophy range is expected to vanish. In our simulations, only a fraction of
the energy converted to baroclinic HKE by vortex stretching goes on to force the
barotropic vorticity equation (this fraction depends on Frf ; see figure 7d). Figure 8(b)
illustrates that baroclinic motions establish a natural injection of energy directly into
the gravest barotropic mode, so that the accumulation of energy at large scales in the
barotropic mode does not result primarily from a two-dimensional inverse-cascade
process. Dissipation in the barotropic subspace, therefore, occurs through a non-zero
forward energy cascade. Figure 10 gives a detailed map of the transfer of energy
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between barotropic Fourier modes performed by barotropic triad interactions for
equilibrated flow at Ref = 100 (for details see Rubio et al. (2014)). The colourmap
Tk̃⊥p̃⊥ shows how energy at wavenumber k̃⊥ is gained or lost due to interaction with
wavenumber p̃⊥, where red (blue) denotes a gain (loss) of energy. The near-diagonal
elements of this map at large wavenumber show a local forward transfer of energy
to small scales coexisting with a non-local inverse cascade at larger scales. The
accumulation of energy at large horizontal scales in the barotropic mode in these
rapidly rotating flows is primarily the result of three-dimensional baroclinic motions
interacting to directly induce large-scale and vertically invariant structures; it is not
primarily a result of baroclinic injection to an intermediate scale, followed by a
purely barotropic inverse cascade to larger scales.

6. Conclusions
We have presented an investigation into stably stratified and rapidly rotating

turbulence using the asymptotically reduced NHQGE set valid for Ro� 1 describing
geostrophically balanced flow. Such a regime may be relevant to abyssal oceans
(where observations indicate the presence of weak stratification), as well as planetary
and stellar interiors (in regions where stratification transitions from unstable to stable).
Within this parameter regime the Proudman–Taylor constraint is relaxed/broken by
allowing anisotropic dynamics with vertical scales O(Ro−1) larger than horizontal
scales. In this setting, slow inertia-gravity waves with order-one frequencies are
retained and not filtered; moreover, time scales for nonlinear eddy dynamics
and anisotropic inertia-gravity waves are not asymptotically separated (see § 2.1).
Numerical simulations with wave–eddy interactions are performed where motions are
induced by a stochastic injection of vertical kinetic energy; doing so only provides
wave energy, and any emergence of vortical mode energy must originate from
wave–eddy interactions (see § 4).

Our results reveal two regimes: corresponding to strong (Frf < 1) and weak
(Frf > 1) stratification. These regimes are primarily distinguished by the presence
at strong stratification of thin horizontal turbulent layers in which energy transfer and
dissipation are most active. As Frf increases up to unity, layer thickness also increases
until the layers occupy the entire vertical extent of the domain. We note such layer
formation, as defined in § 5.1, is not observed for classical QG dynamics, for which
inertia-gravity waves are entirely absent. Evidence of layering has been previously
observed in experiments of decaying purely stratified turbulence (Billant & Chomaz
2000) and numerical studies of decaying rotating-stratified turbulence (Cambon 2001),
but not in previous studies of rapidly rotating, strongly stratified, forced-dissipative
turbulence. Unlike the ‘pancake’ structures that form in stratified turbulence (Kimura
& Herring 2012), the layers here are localized and long-lived. Also, vertical shear
of the horizontal velocity ∂zu⊥ is absent from the reduced equations governing the
dynamics, so layer formation cannot be associated with shear instabilities such as
Kelvin–Helmholtz or symmetric instability. Unlike the ‘staircase’ layering in doubly
diffusive convection (Stellmach et al. 2011) and stratified turbulence, (Phillips 1972;
Balmforth, Smith & Young 1998) the layers consist of thin regions of reduced
stratification. Similarly, the potential-vorticity staircase structures associated with
large-scale zonal jets (Dritschel & McIntyre 2008) are associated with thin regions of
large potential-vorticity gradients, rather than thin regions with reduced gradients. We
conjecture that the existence of our layers is related to our use of vertical velocity
forcing, in the sense that other kinds of forcing may disrupt the dynamics leading to
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layer formation. Here, layer formation at Frf < 1 is associated with mixing by vertical
buoyancy flux and energy conversion by vortex stretching (evident in vertical profiles
in figure 5). Additionally, vertical profiles of stratification and RMS vertical vorticity
quantify layer location and thickness.

In addition to the presence or absence of layers, the regimes are distinguished by
energetics. In the strongly stratified regime only a small percentage of the energy
injection rate to vertical kinetic energy is converted to horizontal kinetic energy, and
a modest amount is converted to potential energy. In the weakly stratified regime only
a small percentage of the energy injection rate to vertical kinetic energy is converted
to potential energy, and a modest amount is converted to horizontal kinetic energy.

Both regimes are characterized by the emergence of a large-scale barotropic
dipole (see figure 2). When the Reynolds number is not too large (Ref 6 100, or
Rec 6 2000) the system energy reaches a statistically steady state, evidence that
geostrophically balanced flow is capable of establishing a direct route to dissipation.
The process leading to energy saturation is attributed to a downscale transfer of
kinetic energy within the barotropic mode, which balances the injection of barotropic
energy by baroclinic motions. Although the net energy can become quite large, in
all cases the reduced equations guarantee that the rotational constraint is not lost:
the forward cascade does not result from a loss of rotational constraint. Similarly, in
the small-Froude-number regime, the bulk a posteriori Froude numbers remain small
so that the dynamics remain strongly influenced by stratification. It may be the case
that the strong-stratification constraint is lost within the layers, but these are clearly
not barotropic and cannot directly explain the barotropic forward cascade. At the
largest Reynolds number considered here (Ref = 300, Rec > 4000), the energy did not
saturate, and it was not clear whether it would have saturated in a longer simulation.
In an oceanographic setting, viscous boundary layers can act to remove large-scale
barotropic energy, which could lead to energy saturation even in high-energy cases
where the forward cascade might not suffice.

Another distinct trait of the flows studied here is that three-dimensional baroclinic
motions interact in such a way as to inject energy into the largest barotropic scales;
therefore, the accumulation of energy at the largest scales in the barotropic mode is
not the result of an upscale transfer within the barotropic mode.
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