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We investigate the interaction of two ellipsoidal vortices in the three-dimensional quasigeostrophic
fluid equations by first studying a reduced model of vortex interaction, the ellipsoidal moment
model, and second by comparing the results to corresponding numerical simulations. The ellipsoidal
moment model approximates the interaction of two ellipsoidal lumps of potential vorticity by a
finite-degree-of-freedom Hamiltonian system. This approximation is derived explicitly in the natural
moment coordinate system to first order in the ratio of the size of the vortices to their separation.
Using this Hamiltonian system for the case of initially spheroidal identical vortices, the linear
stability of vertically aligned vortices is analyzed. A new dynamical criterion for vortex merger and
alignment is proposed and shown to give a clear and reasonable boundary for vortex merger. A
similar boundary is shown to exist in the size of the largest Lyapunov exponent, although not in the
chaotic region as measured by the 0-1 test of Gottwald and Melbourne [Proc. R. Soc. London, Ser.
A 460, 603 (2004)]. There is no such sharp boundary for vortex alignment in this reduced model.
A series of numerical experiments confirms the accuracy of the merger criterion used in the
ellipsoidal moment model. The numerical simulations also suggest a mechanism for understanding
the process of vortex alignment in terms of vortex Rossby waves. © 2006 American Institute of

Physics. [DOI: 10.1063/1.2191887]

I. INTRODUCTION

The quasigeostrophic (QG) equations approximately de-
scribe large-scale motions of the atmosphere and ocean. It is
now well known that QG turbulence is dominated by the
motion of coherent regions of large potential vorticity (vor-
tices) in both two'™ and three” dimensions. The dominance
of such relatively simple coherent structures suggests that
these systems may be well described by much simpler mod-
els. In two dimensions, the dynamics of coherent vortices
have inspired many low-degree-of-freedom models. Kida'’
first studied the motion of a single ellipse in a prescribed
shear flow, showing that an initially elliptical vortex re-
mained elliptical for all time. Melander et al."" then modeled
the interaction of two ellipses using this model, under the
assumption that the vortices were well separated. Using that
elliptical moment model to define a critical distance for vor-
tex merger, Weiss and McWilliams'? gave a simple model of
two-dimensional turbulence that agreed well with
simulations.

Following a similar course in three-dimensional (3D)
QG fluids, moment models were used to study single ellip-
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soidal vortices in shear flows.'>'* Miyazaki et al. 15 extended

these methods to study the interaction of two ellipsoidal vor-
tices. They focused on tall vortices, while QG simulations
indicate that most vortices have an aspect ratio (in scaled
coordinates) slightly less than 1.571% Further, their criteria
for merger gave the surprising result that vortices with small
vertical separation had radically different critical merger dis-
tances than did vortices with no vertical separation. In this
paper we will present an alternative way of analyzing merger
in the ellipsoidal moment model that is free of this shortcom-
ing. In addition to previous work on moment models in three
dimensions, some work has been done on the merger of three
dimensional vortices'’ " using quasigeostrophic simulations
although none of them address the question of vortex align-
ment. The simulations presented here explore the parameter
regime where alignment is likely.

Dritschel, Reinaud, and McKiver®® propose a different
ellipsoidal vortex model that is not based on moments. That
model has been used to analyze the critical distance for
merger of two vortices®' of various shapes. The technique
used there to diagnose vortex merger is one of linear insta-
bility of the vortex to ellipsoidal perturbations. They con-
sider the marginal stability curve to be an accurate predictor
of the presence of a vortex merger. While that approach is
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similar to the one presented here, the two ellipsoidal vortex
models are quite distinct and there is no obvious connection
between the linear stability criteria and the dynamic criterion
described in Sec. III B.

Simulations show that, in addition to merging, three-
dimensional QG vortices align vertically, eventually forming
tall columns.”** The geometric criteria used by Miyazaki et
al. cannot address the process of vortex alignment since it
considers two vortices with initially small horizontal separa-
tion to already be aligned. The dynamic criterion proposed
here applies to the evolution of vortices that are initially
close to alignment. Using this criterion for vortices that are
initially close to alignment shows that, in contrast to vortex
merger, there is not a sharp boundary between initial condi-
tions that align and those that do not align.

We also consider quantitatively the chaotic behavior of
interacting vortices. While chaos has been observed in the
dynamics of three-dimensional QG vortices,'*!” to our
knowledge, this work is the first systematic study of the con-
ditions for chaotic trajectories in the ellipsoidal moment
model. We also show here that chaotic trajectories with large
positive Lyapunov exponents only occur where a vortex
merger is predicted to occur. For this reason we suggest that
large Lyapunov exponents in this moment model can be used
to identify a vortex merger for three-dimensional vortices.

Finally, in a series of numerical simulations, we confirm
the accuracy of the dynamic merger criterion in the ellipsoi-
dal moment model by analyzing merger and alignment in the
full 3D QG equations. New quantitative measures of vortex
merger and alignment are proposed and used to show that the
predictions of the ellipsoidal moment model for the presence
of an inviscid vortex merger are accurate. In addition, these
simulations suggest that vortex Rossby waves? % may pro-
vide a mechanism for the process of vortex alignment.

In Sec. I we will introduce the ellipsoidal moment
model, which results from applying the general process of
Hamiltonian moment reduction'* to the three-dimensional
QG equations. In Sec. III we will motivate and describe a
particular set of simulations carried out using that model.
Finally in Sec. IV we will present the results of a correspond-
ing set of numerical simulations of the three-dimensional QG
equations.

Il. THE ELLIPSOIDAL MOMENT MODEL
The QG equations
Dg=dq+[4.q]=D, (1a)

q==V=~ (G + 5+ D), (1b)

where [f,g]=d,fd,g—d,fd.g is the horizontal Jacobian and D
represents any dissipation or forcing, are the equations of
motion for a uniformly stratified rotating fluid with unit
stratification (for a derivation, see books by Pedlosky25 and
Salmon®®). The quantity ¢ is called the potential vorticity and
¢ is a streamfunction for the flow. The fluid velocity u
=(dyf,~3d,4,0) is purely horizontal, so that the fluid moves
in layers with vertical coupling coming only from the three-
dimensional Laplacian in Eq. (Ib). With D=0, these equa-
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tions are an infinite-dimensional Hamiltonian system26 with
the energy

1
H=-~ dx
2L3q¢

as the Hamiltonian.

The process of Hamiltonian moment reduction'* is a
general process for constructing finite-dimensional Hamil-
tonian systems from infinite-dimensional ones under certain
conditions. The importance of this process is that it allows
the development of simple models in a systematic way that
preserves important physical and mathematical structure (in
this case the conservation of energy and circulation). In ad-
dition, the process of moment reduction is relatively system-
atic compared to the first reduced models of vortex interac-
tion that were complicated to derive and were not explicitly
conservative.” We apply this process here to the QG equa-
tions. The resulting Hamiltonian is, apart from changes in
notation, exactly the Hamiltonian of Miyazaki and
collaborators.'>?” We present the reduction in some detail in
the Appendix because previous work neither shows the deri-
vation explicitly, nor provides the order of the
approximation.

For N disjoint regions of nonzero potential vorticity, the
resulting dynamical system is

db; ~_ -~
— =JV,H, 2
m b (2)
N N
H=H=2 HY®})+ X H”(b,b) 3)
i=1 i,j=1
i<j

with H® and H”) given by Eqs. (A5) and (A7), respectively.
The coordinates for each region are b;=(a’,x;,c*) where a’
is the total vorticity in the region, x; is the centroid of the
region, and c#* are the second-order central moments of the
region.

This is the Hamiltonian of Miyazaki and
collaborators.”>?’ In the work of Kida,10 Meacham?® and
Meacham ef al."* on the behavior of single vortices in linear
shear flows, the approximation made here in terms of vortex
separation is exact. (One can imagine a linear shear being
induced by a vortex at an infinite distance.) Here, for inter-
acting vortices, the error in our approximation is determined
by the degree to which the flow induced by an ellipsoid at a
finite distance differs from a linear shear.

In two dimensions, this first-order approximation in vor-
tex separation produces a model that is highly predictive of
the behavior of vortices in the full fluid equations, even in
situations where the vortex separation is comparable to the
vortex radius.'” We proceed with the analogous approxima-
tion in three dimensions in the hope that similar accuracy
will result. The accuracy of this approximation in predicting
the behavior of vortices that are close together can only be
verified by comparing the results of the moment model with
results from the full QG equations.

We will not use the Casimir invariants for this Poisson
bracket nor the conserved quantities resulting from symme-
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FIG. 1. Schematic diagram of the initial positions of the two vortices and
the coordinate system used.

tries of the Hamiltonian to explicitly reduce the dimension-
ality of our system or work in different coordinates. The
physical interpretations of the circulation, the centers of vor-
ticity, and the second-order moments are simple enough and
our analysis will not depend on a canonical Hamiltonian
structure. These symmetries do determine the dimension of
the phase space in which motion occurs. For N vortices,
there are 10N moments up to second order (see the Appen-
dix). For each vortex, there are four Casimir invariants, al-
lowing a reduction to 6N dimensions. The rotational and
translational symmetries of the Hamiltonian yield three ad-
ditional Noether invariants, only two of which are indepen-
dent, allowing a reduction by four dimensions. Taking into
account the conserved energy, motion takes place on a (6N
—5)-dimensional constant energy surface embedded in a
(6N—4)-dimensional phase space. Note that for N=2, this is
an eight-dimensional phase space. We will also use symme-
tries of the equations of motion to limit the range of initial
conditions that we need to investigate. Without loss of gen-
erality, we will constrain vortex 1 to be in the first quadrant
of the xz plane with volume 47/3 and circulation a?: 1, and
further constrain the center of vorticity of the two vortices to
be at the origin.
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lll. MOMENT MODEL SIMULATIONS AND RESULTS

In the interest of simplicity, we will only consider here
the case of symmetric vortex interaction. In two dimensions,
the essence of vortex merger is captured by studying sym-
metric vortex interactions,” although nonsymmetric merger
does have many interesting details.*® For the initial vortex
shape, we choose a spheroid whose vertical size is 80% of its
horizontal size (in scaled coordinates). This aspect ratio of
0.8 is seen to be the mean vertical aspect ratio of coherent
vortices in recent QG turbulence simulations.”'® Subject to
our constraint that the volume of vortex 1 be 47/3, which
implies that a;8;7y;=1, the initial semi-axes of our vortices
are a1=,81=%5m and y,=8«;/10. Fixing y,(0)=0, the re-
maining initial conditions to be specified are the position of
the center of the first vortex: (x;(0),z,(0)) € [0, ) X[0, )
(see Fig. 1).

Note that it is possible to specify initial positions for the
vortex moment coordinates that represent two overlapping
vortices in the QG equations. These initial conditions are
unphysical and violate our assumption of distinct well-
separated vortices, but they are valid initial conditions for the
ellipsoidal moment model. Because we are interested partly
in studying that model itself, we will not exclude these initial
conditions a priori.

Trajectories were computed using an adaptive eighth-
order Runge-Kutta method from the RKSUITE package.31 An
elliptic integral must be computed to calculate the phase-
space gradient of the self-energy HES). This is done using an

adaptive subroutine of QUADPACK.32 While we do not use an
integrator that enforces symmetry or conservation quantities,
these conditions are all maintained with a maximum error of
107!2. Some examples of the paths taken by one of the two
vortices are shown in Fig. 2 for two different initial posi-
tions. In addition to computing single trajectories, we also
computed the largest positive Lyapunov exponent for each
trajectory using a rescaling method.****

(b)

0.6F

0.4

0.2r

FIG. 2. Trajectories projected into the xy plane for vortices with initial positions (a) x,(0)=1.275, z,(0)=0.175 and (b) x,(0)=0.5, z,(0)=1.0 as shown

schematically in the insets.
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FIG. 3. The imaginary parts of the nonzero eigenvalues for the vertically
aligned fixed points vs z;(0). The different line styles represent distinct
eigenvalue pairs.

As a further measure of chaos, we used a new 0-1 test
for chaos developed by Gottwald and Melbourne.* The ad-
vantages of this method are that it has many less free param-
eters, it is computationally cheaper because there is no need
to compute both a reference and a perturbed trajectory and it
gives an unambiguous result for the existence of chaos. The
latter is also a weakness of the method, as it cannot distin-
guish between various “strengths” or time scales of chaos. In
a system such as the ellipsoidal moment model with many
degrees of freedom, chaotic motion may occur in different
ways on different time scales. These different sorts of chaos
cannot be distinguished by such a binary test.

A. Linear stability of fixed points

For symmetric vortices with a circular cross section such
as we study here, there is a family of fixed points for x,(0)
=0 when the two vortices are initially vertically aligned. By
numerically computing the stability of these fixed points, we
see that they are all elliptic fixed points. The 20-dimensional
Jacobian matrix has 10 zero eigenvalues corresponding to
eight conserved Casimir invariants and two independent
symmetry invariants. The remaining ten eigenvalues have
zero real part and occur in five conjugate pairs. Two of these
pairs are themselves equal due to the interchangeability of
the two vortices.

Of the four distinct eigenvalue pairs, one is distinctive in
the following manner. For very large z,(0), the vortices are
essentially decoupled and each vortex independently has two
vanishing eigenvalues that are due to the two independent
symmetry invariants of the single-vortex Hamiltonian H'.
For finite values of z,(0), there are only two independent
symmetries of the full Hamiltonian rather than two for each
vortex. Thus, there are two eigenvalues that diverge from
zero at finite separation, which correspond to the broken
symmetry of the interacting vortex system [see Fig. 3 for the
imaginary parts of the eigenvalues for different values of
z1(0)].

This family of elliptic fixed points (and their analog for
more than two vortices) controls the behavior of columns of
many, nearly aligned vortices. For stacks of as many as 100
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vortices, with separations as large as four units and as small
as one unit, all of the fixed points of the ellipsoidal moment
model are elliptic. The spiral and rotating waves of vortex
columns seen in simulations™ might be explained by the
oscillatory linear response of nearly aligned vortices as de-
scribed here. Another conclusion based on these linear re-
sults is that tall stacks of ellipsoidal vortices are not unstable
to small perturbations of the vortices. This is in direct con-
trast to the stability of tall vortex columns.*

B. Merger/alignment diagnostics

An important physical question that can be addressed
using the ellipsoidal moment model is when two QG vortices
merge. Such investigations have been carried out in two
dimensions®” and compare favorably with numerical
simulations’® and experiments.38 In two dimensions, there is
little ambiguity in determining when two vortices in the mo-
ment model merge: the Hamiltonian becomes singular when
their centers of vorticity coincide. In three dimensions, since
the centers of vorticity move on horizontal planes, the cen-
ters of two vortices will never coincide unless they initially
lie on the same horizontal plane. This necessitates the devel-
opment of diagnostics for merger and alignment that can be
applied to moment model trajectories. Miyazaki et al.”® use
the criteria that two vortices in the moment model are con-
sidered to have merged or aligned when they overlap verti-
cally and their centers are separated by a distance of less than
(a1 8171) "2+ (ayB,7,) '3, which is the sum of the geometric
mean of the semi-axes of the two vortices. While geometri-
cally and intuitively compelling, these criteria for alignment
give the surprising result that vortices with small vertical
separation have smaller critical horizontal separations for
merger than those with larger vertical separations. While a
similar trend is seen by Reinaud and Dritschel'® in an analy-
sis of merger using contour dynamics simulations, it is not
nearly as extreme as that predicted by Miyazaki et al. In
addition, these criteria do not allow for the study of further
alignment of vortices that initially satisfy this criteria nor
does it allow for the alignment of vortices that do not overlap
vertically, which is commonly seen in simulations.®**

As opposed to the physical criterion of overlapping vor-
tices, we propose a dynamic geometric criterion based on the
behavior of trajectories of the ellipsoidal moment model.
Consider the horizontal separation r,(f)=2+/x,(£)*>+y,(t)? be-
tween the centers of vorticity of the two vortices. Intuitively,
in the full QG equations, this quantity goes to zero for vor-
tices that merge or align fully. Due to dissipation in the full
system, merger and alignment appear to be irreversible pro-
cesses. On the other hand, in the conservative moment
model, vortices may approach very close to one another and
then move apart [see Fig. 2(b)]. To account for the possibly
large variation in r;,, we examine the minimum value that it
attains over the length of the simulation. We plot R
=min, r,(#)/r,(0) for a range of initial positions in Fig. 4.

The transition between merger and nonmerger is clear
along the x; axis. The sharp transition persists for increasing
vertical separations up to approximately z;=0.95. For larger
vertical separations, there is no longer such a sharp transition
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FIG. 4. Contours of R=min,r,(r)/r,(0) for varying initial positions
[x,(0),z,(0)]. The solid line is the curve of initial positions that result in two
vortices that are initially touching.

between merging and nonmerging initial conditions. In par-
ticular, near the z; axis, we see a smooth transition with
decreasing z; from values of R near 1 to small values of R.
This is the region where we would expect to see evidence of
vortex alignment in this model. From these data we conclude
that vortex merger and alignment are two distinct processes,
with a sharp transition between merger and nonmerger, but a
smooth transition between alignment and nonalignment. Fi-
nally, although there is structure in the nonphysical region
where the vortices initially overlap, this cannot be inferred to
have any implications for the behavior of overlapping quasi-
geostrophic vortices.

C. Lyapunov exponents

In addition to this analysis of individual trajectories, we
seek to understand the dynamical structure of the system
using local measures of chaos. One such measure is the larg-
est positive Lyapunov exponent for a given trajectory (la-
beled by its initial condition), shown in Fig. 5. Chaos with a
large Lyapunov exponent occurs inside the region where
merger was determined to occur in Sec. III B. In other re-
gions where the largest Lyapunov exponent is small, we can-
not conclude that chaos does not exist (see Sec. Il D), only
that it does not exist on a comparable time scale to that of the
chaotic merger region.

15 x 10
4
1 3
=
N~ 2
0.5
1
0 0
0

FIG. 5. Largest positive Lyapunov exponent as a function of [x;(0),z,(0)].
The solid line is the boundary between large and small values of R, as seen
in Fig. 4.
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FIG. 6. The Gottwald-Melbourne statistic vs initial position. Values close to
1 indicate the presence of chaos. The heavy contour is at a threshold of 0.5.

A similar correlation between the boundary between
chaotic and nonchaotic behavior and the boundary between
merger and nonmerger is seen in two dimensions, ' although
the singularity of merging vortices in two dimensions pre-
vents accurate computations of the Lyapunov exponents in-
side the merger boundary. Another similar correlation be-
tween vortex merger and chaotic motion is seen in
investigating the merger of point-vortex clouds.” The com-
putation of Lyapunov exponents further supports the conclu-
sion of the previous section that vortex merger and vortex
alignment are distinct processes, given the lack of large posi-
tive Lyapunov exponents for initial conditions near the z;
axis.

D. 0-1 test for chaos

Another local measure of chaos is the 0-1 test of Got-
twald and Melbourne.™ Using some function of the trajec-
tory as forcing for an auxiliary dynamical system, the motion
of the auxiliary system may be examined to determine the
presence of chaos in the initial trajectory. In the theoretical
case of infinite integration, the method yields 0O if the initial
trajectory is not chaotic or 1 if it is. In practice, for finite
integration times, intermediate values of the statistic are ob-
tained, but a clear distinction between chaos and nonchaos is
still possible as the results for these simulations are quite
close to either O or 1. In addition, the results are not sensitive
to the integration time used as long as it is sufficiently large.
The distinct disadvantage of such a binary test for chaos is
that it cannot distinguish between chaos on different time
scales, as is possible with Lyapunov exponents. In a system
such as the ellipsoidal moment model with many degrees of
freedom there are many possible sources of chaos with dif-
fering characteristic time scales. Contrasting the Lyapunov
exponent results of Fig. 5 with the results of the Gottwald-
Melbourne statistic in Fig. 6, it is apparent that for some
initial conditions with small Lyapunov exponents, there is
still chaotic motion present. In fact, the only initial condi-
tions that exhibit regular behavior according to this statistic
are those close to the elliptic fixed points of Sec. III A. Near
those fixed points, the linear behavior discussed in Sec. III A
predicts that contours of R should be horizontal. Inspecting
the contours in Fig. 4, the distance from the z(0) axis at
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which they deviate from the horizontal due to the influence
of nonlinearity corresponds well to the distance at which the
trajectories become chaotic in Fig. 6.

IV. 3D QG SIMULATIONS AND RESULTS
A. The numerical model

The numerical code used to integrate the three-
dimensional QG equations (1) is a fully pseudospectral
model***" with de-aliasing. For the timestepping, we choose
a mixed implicit/explicit third-order Runge-Kutta method
that treats the linear dissipation terms in (la) implicitly, and
requires only one additional level of storage.42 In order for
the numerical solutions to remain well behaved, we must
choose D to be nonzero. The traditional choice is some form
of diffusion with D:Dp=(—1)P+1vpV2Pq for p=1,2,.... Us-
ing this choice with p=1 gives ordinary Newtonian viscous
dissipation, while higher values of p (referred to as hypervis-
cosity) are often used in turbulence simulations to give lower
energy dissipation while still maintaining smoothness at the
grid scale. One drawback of using hyperviscosity in simula-
tions focused on individual vortices is that it can radically
change the vorticity profile within a vortex. To avoid this we
use ordinary viscosity D=D; in our simulations with ;=1
X 107*. Making this choice does introduce significant dissi-
pation in our numerical simulations with the energy dropping
to 60% of its initial value over the length of the simulations.
As a result of this significant dissipation, attention must be
paid to differentiating the effects of dissipation from the ef-
fects of the inviscid evolution with D=0.

Our problem domain will be a triply periodic box
[-L/2,L/2)* with n=128 grid points in each direction. The
side length L=10 is chosen to be large compared to both the
size and separation of the original vortices, so that the vorti-
ces are always far away from the edges of the box. This is
necessary to minimize the effects of approximating an infi-
nite domain with a periodic box. Tests with a box of twice
the size (and twice the resolution) show no qualitative differ-
ence. In addition, we do not impose the condition that the net
circulation integrated over the domain be zero, which is or-
dinarily enforced in triply periodic simulations, instead using
zero far-field potential vorticity, as in the preceding sections.

We choose initial vorticity distributions that closely
match those used in the derivation of the ellipsoidal moment
model (Sec. IT). Our initial condition consists of two separate
regions of nonzero potential vorticity. For simplicity and
comparability with the previous moment model calculations,
we restrict our attention here to identical vortices. Since the
numerical simulations require smooth initial data, it is not
possible to replicate exactly the moment model’s assumption
that each vortex has uniform vorticity in its interior. Instead,
the vortices used here will have a smooth potential vorticity
profile given by

q
g =" {(1 +tanh[10(1 = )]} = gof (), )
where r2=(x—xo)zlcf+(y—y0)2/C§+(Z—ZQ)2/c§. The factor

10 is chosen large enough to give each vortex a sharp edge,
but not so large as to produce Gibbs phenomena. The peak
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potential vorticity value g is chosen so that each vortex has
unit circulation g [3f(r) dV=1 (for comparison with the el-
lipsoidal moment model results), where f(r) is the radial pro-
file specified in Eq. (4).

Fixing the above potential vorticity distribution for each
vortex, we are left to choose the initial position of each vor-
tex and the shape of the two vortices as determined by
CysCy,C,. We choose the vortices to be initially spheroidal
with ¢,=c,. The vertical aspect ratio c,/c, is chosen to be
0.8, as in Sec. III. Finally, to fix the size of the vortex, we
choose c¢,cyc.=1. In keeping with our previous orientation,
we choose the vortices to be centered around the origin with
vo=0. Our family of simulations then consist of varying x
and z, over portions of the first quadrant [see Fig. 7(a) for an

example].

B. Quantitative measures of alignment

Quantitative measures of vortex behavior are crucial for
analysis of these three dimensional fluid simulations. Visual
analysis is a powerful tool for recognizing the results of vor-
tex interactions, but it has limited applicability to collections
of many simulations such as those described here. Vortex
alignment presents a particularly difficult diagnostic chal-
lenge since its effects are not as dramatic as those of vortex
merger.

The total circulation

Q=] qdx (5)
RS
and total angular momentum

L=] (P+y)"7qdx (6)
R3

are globally conserved quantities of the inviscid QG equa-
tions. As such, the progression of time can only result in a
rearrangement of the integrands of these two integrals: the
potential vorticity and the angular momentum. Motivated by
this view of the evolution as one of rearrangement, we pro-
pose two measures dealing with the location in the problem
domain of a certain fraction of these conserved quantities.
Consider

o(r) = f qgdv
Cr
and
L(r)=J (?+yH)"qav,
Cl‘

where C, is the vertical cylinder of radius r centered on the
origin. These are, respectively, the circulation and angular
momentum contained in C,. From these radial distributions,
we can construct median radii ry(7) and r;(¢) such that
Q(rg)/ Q=L(r;)/ L=1/2 at every time .

The intuition behind these measures is that after merger
when the potential vorticity is concentrated in one vortex, ry
will have decreased because more of the vorticity will be
closer to the centerline of the domain, requiring a cylinder
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FIG. 7. Snapshots of the evolution with x,=1.35 and z,=0.3 at (a) =0, (b) r=50, (c) t=200, and (d) +=500. The isosurfaces are at 90%, 50%, and 10% of
the maximum potential vorticity at that time. The view is looking down the y axis onto the xz plane.

with smaller radius to capture half of the total circulation.
Similarly, when the potential vorticity is concentrated near
centerline of the domain, r; must be larger in order to cap-
ture half of the angular momentum, since potential vorticity
located near the centerline has less angular momentum. Note
that alignment is treated on an equal footing with merger in
these measures and that they can also be applied to the re-
sults of moment model calculations (by constructing a
matching discretized potential vorticity field based on the
given moments).

A different set of diagnostics exists for comparison with
the ellipsoidal moment model; namely, the moments them-
selves. In order to compute the 20 moments up to second
order [cf. Eq. (A3)] it is necessary to identify the regions D,
and D, over which the integrals are defined. In general, for a
continuous three-dimensional distribution of potential vortic-
ity, this is a difficult problem of segmenting the field into

disjoint regions according to some criteria that matches the
intuitive division into coherent structures. A simple approach
of dividing the problem domain in half with a plane through
the origin (to preserve symmetry) provides good segmenta-
tions when the vortices are nearly circular but not when the
vortices are greatly deformed. While segmentation followed
by computation of moments can provide information about
the quantitative relationship between the moment model and
3D QG simulations, it is of limited utility for the study of
vortex merger and alignment because of the large distortions
in vortex shape that occur during these processes.

C. 3D QG vortex merger results

Vortex merger results from initial vortex positions with
small vertical separation between the two vortices and hori-
zontal separation less than some critical value (which in turn
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FIG. 8. As in Fig. 7, but with a view down the z axis.

depends on the initial vertical separation). The ellipsoidal
moment model provides a prediction of the range of initial
vortex positions where merger will occur (cf. Fig. 4). These
three-dimensional simulations confirm the predictions of that
model. Figures 7 and 8 show snapshots of the evolution of a
representative vortex merger with a small vertical offset. As
seen there, each vortex develops a fast-moving “handle” that
moves in towards the other vortex. The remaining bulk of the
vortex develops filamentary structures [see especially Figs.
8(c) and 8(d)]. These filaments are rapidly dissipated leaving
only one vortex by #=500. Total dissipation in this simula-
tion is not too severe, with the maximum value of the poten-
tial vorticity falling to 93% of its initial value by =500. The
merger does produce a significant re-arrangement of vortic-
ity, with the final vortex being substantially more diffuse
than either of the two original vortices. The process seen
here is similar to that described by17 for vortices with ini-

tially smoother profiles. With the lower dissipation used in
those experiments, the filaments are longer lived than those
seen here.

Merger boundary

To illustrate the utility of the merger statistics that we
developed in Sec. IVB we see in Fig. 9(a) that ry(z) de-
creases to approximately 70% of its initial value during the
merger process for the simulation shown above. This vali-
dates our intuition that ry should decrease as the vortices
merge and the bulk of the potential vorticity moves closer to
the z axis. The increase of ry after =450 is attributed to
diffusion acting on the resulting merged vortex. Similarly, as
expected [Fig. 9(b)], r; increases when the vortices are merg-
ing, as the angular momentum contained in a cylinder of
fixed radius decreases due to the inward movement of poten-
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FIG. 9. Time series of (a) r, and (b) r;, for the simulation shown in Figs. 7
and 8. The discreteness apparent in (a) is due to the resolution of the grid.

tial vorticity. Thus, to contain half of the total angular mo-
mentum requires an increase in ;. The maximum increase of
rp is 54% over the course of the merger.

Having established that r, and r;, provide clear evidence
of vortex merger, we can use those diagnostics on a range of
simulations to distinguish the region where vortex merger
occurs. Figure 10 shows the minimum of ry(1)/r(0) over
the length of the simulations (1000 time units). Merger
clearly is occurring in a region similar to that predicted by
the ellipsoidal moment model (compare especially Fig. 5),
although relatively small minimum values of r, are observed
for initial conditions with horizontal separations as large as
xo=1.8, the largest value simulated. In contrast to the mo-
ment model, in these simulations we must contend with the
effects of dissipation. The dissipation operator D causes in-
dividual vortices to spread out and become wider. Since the
critical merger distance is in terms of the ratio of separation
to size, spreading brings vortices “closer” in this sense. Thus
it is possible for vortices that do not begin merging at the
initial time to diffuse and then merge at a later time. Looking
at the evolution of r, over time for such an example (Fig.

FIG. 10. Contour plot of min, r,(1)/ry(0) vs (xy.z)-
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FIG. 11. Time series of (a) ry(7) and (b) r; (1) for xy=1.8 and z,=0.

11), we see that the decrease in ro to its minimum value does
not begin until relatively late in the simulation, especially
compared to the simulation shown in Fig. 9, which has es-
sentially completed the merger process by r=500.

We wish to somehow discriminate between those initial
conditions in which the vortices eventually merge as a result
of diffusive spreading and those where the vortices merge
immediately because the initial condition is inside the merger
region. To so discriminate, we contour in Fig. 12 the time at
which the minimum value of r, occurs (f,;,) such that
7o(tmin) =min, ro(t). Heuristically, we can say that minima
that occur at early times are due to the immediate merging of
vortices while those that occur later are due to the diffusive
spreading of vortices leading to eventual merger. Quantita-
tively, define a threshold value of 7.;, where we say that
minima that occur at times later than the threshold were not
due to initial conditions in the merger region, but were in-
stead products of the spreading of the two vortices under the
action of diffusion. Arbitrarily choosing a threshold time of
=500 and a threshold of 80% for the decrease in r,(7) gives
us the merger boundary shown by the solid line in Fig. 13.
Similarly, we can use r; and the time at which it attains its

FIG. 12. Time at which the minimum of ry(r)/ry(0) occurred vs (xy,z).
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FIG. 13. Merger boundary computed using r, (solid) and r; (dashed) with
threshold times of #=500. The dotted line is the merger boundary predicted
by the ellipsoidal moment model (cf. Fig. 4).

maximum value to also identify initial conditions that lie
within the merger region. The boundary determined using the
same threshold time and requiring that r; increase by 40%
gives the dashed line in Fig. 13. This choice of the threshold
time over which to consider the action of diffusion as irrel-
evant is reasonable in that a clear merger event shown in
Figs. 7 and 8 is complete within 500 time units. Additionally,
the threshold time is close to the diffusion time scale set by
the size of the vortices ry=L>/v,=(2/10)2/(1X107%)
=400 over which we would expect the effects of diffusive
transport to be important. To reinforce our choice of thresh-
old values, computing r, and r;, for the moment model cal-
culations produces a merger boundary at the 80% threshold
that is indistinguishable from that shown by the dotted line in
Fig. 4.

D. 3D QG vortex alignment

Simulations of two vortices initially in the alignment re-
gion confirm the predictions of the ellipsoidal moment model
as to the distinction between the alignment and merger re-
gions. Measurements of the median radii for circulation and
angular momentum do not show the dramatic variations seen
in merger simulations, nor is there a clear change in qualita-
tive behavior that would identify an alignment region. Look-
ing at Fig. 10, we can see that r, does not change by more
than 5% for many of the initial conditions in the alignment
region (white regions) compared to a 35% change for initial
conditions in the heart of the merger region (gray regions).
Using data segmentation to compute moments confirms the
absence of any dramatic effects of decreasing initial separa-
tion on the evolution of two vortices with large vertical sepa-
ration. In fact, significant alignment of two vortices similar
to these is not observed in our simulations. In an inviscid
model such as the moment model, vortices do not align (or
merge) permanently but instead have highly recurrent dy-
namics (see Fig. 2). Thus, the absence of alignment in our

Phys. Fluids 18, 057101 (2006)

simulations is not in conflict with the results of Sec. III B,
which show only a moderate variation in horizontal separa-
tion r, for vortices in the alignment region. Rather, the dis-
tinctions between the two models suggest that alignment is
neither an inviscid process nor due solely to the addition of
viscosity. The observed phenomenon of alignment in turbu-
lence simulations'’ might be due to the much longer time
scales there, whereby some process of gradual equilibration
in the presence of a fluctuating background could result in
alignment.

To learn more about the inviscid behavior of vortices in
the alignment region, we need to investigate the three-
dimensional structure of the vortices as they align. Figure 14
shows the evolution of two vortices with (x,,z9)=(0.6,0.9)
at various times in a high-resolution simulation with n
=256 spectral modes in each direction (and v,=1.25X 1075).
There appears to be a traveling wave-like structure that
moves up and possibly back down the vortex before its mo-
tion is damped out. The wave motion also appears in the
evolution of the separation of the two vortices’ centers.
These waves appear to be part of an adjustment in vortex
shape that leads to a relative equilibrium configuration which
persists for the remainder of the simulation. These vortex
waves are seen in most of the simulations in the alignment
regime, although not necessarily as dramatically as illus-
trated here. Note that these waves are unconnected to the
rotational oscillations predicted by the ellipsoidal moment
model and that they are not caused by diffusion.

The traveling waves seen here appear similar to those
found by Schechter, Reasor, and Montgomery43 to be respon-
sible for the alignment of a QG vortex column. Their ap-
proach is to consider a background state consisting of a ver-
tically aligned vortex column with a smooth radial potential
vorticity profile. Superimposed on this background state they
consider a perturbation which results in a tilted vortex. This
perturbation is then decomposed into a superposition of
waves supported by the background state, called vortex
Rossby waves.”* These waves damp by resonant interactions
with the background state, resulting in an aligned vortex. It is
possible that a similar process is occurring in the two vortex
situation presented here. The two-vortex configuration could
be decomposed into a suitable background state (possibly a
steadily rotating V-state'’) and a perturbation. If the back-
ground state supports waves and these waves are damped by
resonant interaction with the background, then this might
provide an explanation for the adjustment process seen in
Fig. 14. This connection with vortex Rossby waves is still
quite preliminary and appears difficult to proceed further
with; first a suitable background state must be identified,
then its linear eigenfunctions must be analyzed and finally
the resonant damping of those waves must be examined. All
of these steps are complicated by the fully three-dimensional
background state and might be resolvable only numerically
(and possibly not even then).

Based on these results we propose the following mecha-
nism for vortex alignment in QG turbulence. A pair of vor-
tices which is, for some reason, brought into a marginally
aligned state is subject to nearly random perturbations from
the other, distant vortices. These perturbations excite vortex
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X X

FIG. 14. Evolution of the ¢=0.2 isosurface for two vortices with (xg,z)
=(0.6,0.9). The shading is proportional to the local curvature of the surface
in order to highlight the structure of the surface. Time advances to the right
and downwards; =150 in the first frame and successive frames advance by
25 time units.

Rossby waves which damp resonantly, amplifying the back-
ground state. The emission of Rossby waves serves as an
adjustment process, in that resonant damping of emitted
waves preferentially drives the vortices to a more aligned
state. The strong alignment seen in QG turbulence arises
after many such perturbation and wave-emission events. We
note that this proposed mechanism is, at present, merely a
conjecture, and much work remains to demonstrate whether
it is, in fact, the reason for vortex alignment in QG
turbulence.
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V. CONCLUSION

In this work, we have investigated the merger and align-
ment of interacting quasigeostrophic vortices using the ellip-
soidal moment model and confirmed the results with corre-
sponding numerical simulations. After explicitly deriving a
finite-dimensional Hamiltonian system in a natural coordi-
nate system as an approximation to first order in the separa-
tion of the vortices, we have studied the presence of chaos in
this system. The only regular regions in the symmetric vortex
case are near the family of stable fixed points that are present
for vertically aligned circular vortices. Away from these fixed
points, a 0-1 test for chaos shows that all trajectories are
chaotic. Lyapunov exponent analysis shows that large posi-
tive exponents only exist in regions where we can expect the
two vortices to merge. The initial conditions where we might
expect vortex alignment to occur do not have large positive
Lyapunov exponents. Thus it is proposed that the presence of
a large positive Lyapunov exponent for a trajectory of the
ellipsoidal moment model can be used as a simple test for the
merger of two vortices in the full QG equations.

A family of three-dimensional simulations of the QG
equations are performed to verify the conclusions of the el-
lipsoidal moment model with respect to vortex alignment
and merger. New quantitative measures of vortex behavior
are proposed and used to determine a boundary for inviscid
vortex merger. The boundary as determined is very close to
that found using the ellipsoidal moment model. These simu-
lations should be considered as validating the results of Sec.
II for vortex merger. In addition, the results presented here
validate the conjecture of Reinaud and Dritschel'® that the
critical merger distance for vortices of this aspect ratio
should be monotonic in the vertical separation. For unit-
aspect-ratio vortices, Reinaud and Dritschel' have computed
a boundary for merger exactly as shown in Fig. 13 and the
qualitative agreement with the boundary computed here is
quite good. In a subsequent investigation of the critical dis-
tance for merger using stability techniques,21 those authors
compute a boundary for merger with respect to many more
parameters than we do here. While this makes it difficult to
compare the results directly, their critical merger distance for
nearly horizontally aligned vortices is 2.7 compared with our
result of 2.8.

The ellipsoidal moment model is not asymptotically
valid in the region where vortex merger is predicted to occur,
but it still has significant predictive value, especially in the
case of vortex merger as shown here. Dissipation plays a role
in initiating merger events in these simulations as it spreads
individual vortices and thus brings them relatively closer to-
gether. The effects of dissipation can be separated from the
inviscid dynamics based mainly on the time scale over which
they occur. Such separation requires setting time thresholds
that can give quantitatively different results, but the qualita-
tive features of the region where vortex merger occurs are
insensitive to the particular threshold times chosen. Vortex
alignment is seen to be a much more ephemeral phenomenon
than vortex merger. In particular, for initial conditions that
are already substantially aligned, there is little change in the
median radii for circulation or angular momentum. This also
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confirms the predictions of the ellipsoidal moment model,
which clearly shows a distinction between alignment and
merger. A more detailed look at the three-dimensional struc-
ture of vortices in the alignment region shows wave-like os-
cillations of the vortex surface that are not accounted for by
the ellipsoidal moment model. This leads us to suggest vor-
tex Rossby waves as a possible explanation for this
evolution.

The ellipsoidal moment model provides an example of a
high-dimensional Hamiltonian system with clear physical in-
terest and sophisticated dynamics. We suggest that this sys-
tem of equations is worthy of further study in the context of
dynamical systems. In the field of geophysical fluid dynam-
ics the interaction of coherent vortices is of significant inter-
est, but further testing of the ellipsoidal moment model is
required before the connection to interacting three dimen-
sional vortices can be conclusively made. In order to further
understand the process by which two vortices merge, it
should be possible to create a Lagrangian explanation for
three-dimensional vortex merger by looking at hyperbolic
fixed points of the co-rotating flow induced by the vortices in
the ellipsoidal moment model, as in two dimensions. This
explanation could also be explored in the context of the nu-
merically computed quasigeostrophic flows. Finally, higher-
resolution simulations are of course desirable for further un-
derstanding, especially of the role of diffusive spreading in
initiating vortex merger events.
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APPENDIX: MOMENT MODEL DERIVATION

For an index u, consider the following functionals of
q(x,y,z) called moments:

at = f gm* dx,
R3

where m* is some function. Considering a vector of mo-
ments a=(a*), where p ranges over some set of indices, the
noncanonical Poisson bracket for functionals that only de-
pend on those moments f=f(a),g=g(a) is

—s

Py (A1)

{f.g1= a_"
where summation over repeated indices is implied. J#” is the
cosymplectic form

JHY = f glm*,m"] dx = of,"a®? (A2)

]R3
and 04”)“' are called the coupling coefficients for the given set
of moments. The closure of the second-order moments under

the action of the Jacobian [m*,m"]= oh”m? is crucial for our
reduction. With this representation of the Poisson bracket, if
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we can find a functional ﬁ(a)zH, we can then construct a
finite-dimensional Hamiltonian system

dat (ot = g JH
- = a b = b
at da”

which approximates the infinite-dimensional system.

Using the above representation of the Poisson bracket, it
can be seen that any quantity C=C(a), where V,C is a null
vector of J#”, is a conserved quantity, because

dC <9C oH

These quantities (C) are the Casimir invariants for the Pois-
son bracket. The Casimirs do not depend on the specific
Hamiltonian used since {C,f}=0 for any functional f.

1. Ellipsoidal vortices

For N disjoint regions D;,i=1,...,N of nonzero poten-
tial vorticity, consider the 10N moments up to quadratic
order

a;-“:J gm*dx, i=1,...,N, (A3)

D

i

ENC=0, E+n+l=<2, (A4)

where p=(&,7,¢) is a multi-index. We will also use the
multi-index as an exponent for position vectors, defining
xM=x%y"z¢. This gives a compact representation of the mo-
ments a*=[ D, gx* dx. Since the regions D; and D; are dis-
joint for i # j, the cosymplectic form (A2) splits 1nt0 blocks
J=(JY = of’al. In addition, we can write the
Hamiltonian as the sum of the self-energy of each region and
the energy of the pairwise interactions of different regions:

mM = xfy ﬂzf’

N N
H=2 HYa)+ 2 H"(a,a).

i=1 ij=1

i<j

In the case of an ellipsoidal region D; of constant potential
vorticity g;, the self-energy is given by an elliptic integral

3 o0
HYa) = —— “f Ki(s) ds,
(a;) 4Ow(a,) . i(s) ds

(A5)
Kis)? =5+ pi's” + p{Vs + pl”

=(s+a))(s+B)s+ 7)),

where pgz)’ pfl), pl(.o) are known functions of the six moments
of second order, and ¢;, 3;, and ; are the semi-axes of the ith

ellipsoid.m’44 The pairwise interaction Hamiltonian

1
H(I’)(ai,aj) = Hg)) - E(J q;; dx + J q;¥; dx),
D; Dj

where ¢; is the potential vorticity field in region D; and ; is
the induced velocity field, must be approximated to be rep-
resented in terms of the second moments.
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2. The pairwise interaction Hamiltonian

Our approximation of Hg’ ) in terms of the moments up to
second order is an asymptotic expansion in the ratio of the
vortex size and the vortex separation. We assume that this
parameter is small and keep terms that are order 1. Instead of
using the 10N moments specified before, more natural coor-
dinates are the circulation a?, the centroids of the vortices
x;=(a}*0,a%"0 %) /a? and the scaled and shifted second

moments

a1
Ci :_O_xi =7 q(x—x,-)"dx, a+B+7:2'
a; a; Jp,

We will use bi=(a?,x,-,cf‘) as the ten coordinates of each
vortex. The only necessary change in the equations of motion
is to replace J*” by

Y K
TRy _ % pK%‘ (A6)
" 9a? " da)

l

Define x;;=x,~x;, R;;=|x;| and cf;=cf*+c/". Then, to first or-
der in the (assumed) small parameter e=c/*/R;<1, the in-
teraction Hamiltonian is

00
~ ~ a.a; 1
(p) — () _ Y L 200, 020, 002
HY =H (bib)) = : 1_2R2(Cij +eim + e )
ij ij
3
2200, .2 020, 2 002
+ 4[xijcij +yicii T+ 2
2R;;
11,0 1,0,1
+2xl~jyl~jci- +2x,ij,~jCij
01,1
+ 2yijzi_/'cij s (A7)

HP =H? +0(e).
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