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Observations, and laboratory and numerical studies, of fluid flows with strong rotation and thermal

forcing often show long-lived convective Taylor columns (CTCs) which carry a large portion of the

vertical heat and mass fluxes. However, owing to experimental and numerical challenges, these structures

remain poorly understood. Here we present a nonlinear, analytical multiscale model of CTCs in the

context of rotating Rayleigh-Bénard convection that successfully matches numerical simulations and

provides a new multiscale interpretation of the Taylor-Proudman constraint.
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Many geophysical and astrophysical phenomena involve
fluids under the combined influence of rotation and thermal
forcing. Examples include the Sun and stars [1], giant
planets [2], and Earth’s oceans [3]. As is common in
rotating fluids, these phenomena display self-organization
into coherent features which dominate the flow. Simple
models of coherent features in other complex fluids have
led to major advances in understanding and modeling [4–
6]. In this Letter, we present a new, analytical, multiscale
model of coherent convective columns which successfully
describes the structures seen in laboratory experiments [7–
9] and quantified in numerical simulations [10–12].
Furthermore, the multiscale nature of the approach pro-
vides new insight into the role of the Taylor-Proudman
(TP) constraint, improving on previous single-scale
interpretations.

The essence of rotating, thermally forced flow is cap-
tured by rotating Rayleigh-Bénard convection, i.e., con-
vection in a layer of Boussinesq fluid confined between
flat, horizontal, rigidly rotating upper and lower boundaries
held at fixed temperatures, with the temperature of the
lower boundary higher than that of the upper boundary
by an amount �T > 0. In this framework, the controlling
nondimensional parameters are the (convective) Rossby
number (Ro), which measures the strength of rotation
relative to thermal forcing, and the Rayleigh number Ra /
�T, which measures the strength of the thermal forcing.

Rotating Rayleigh-Bénard convection has been exten-
sively studied using linear [13], weakly nonlinear [14], and
fully nonlinear approaches [15], in addition to numerical
[10,11,16] and laboratory [7–9] experiments. These studies
attest to the simple fact that the flow tends to self-organize
into regions of upwelling hot and downwelling cold fluid,
whether the flow is turbulent, as in the case of highly
supercritical plume-dominated convection [17], or laminar,
as in the case of planform convection [13,18]. In each case,
the flow must somehow accommodate the TP constraint.
This constraint, formulated theoretically by Taylor [19]
following earlier experiments by Proudman [20], explains

why rapid rotation tends to inhibit flow variation along the
axis of rotation. For high enough Rayleigh numbers the TP
effect is overwhelmed by thermal forcing, while for strong
enough rotation the constraint completely inhibits vertical
variation of the flow. Between these extremes the compet-
ing influences of thermal forcing and rotational (Ekman)
friction have a profound effect on the morphology of the
flow structures, and for certain parameter regimes long-
lived columnar convective structures are observed to form
[7–9]. In a recent paper, Portegies et al. [21] presented a
linear model of these structures. In this Letter we construct
a self-consistent nonlinear model that agrees well with
recent numerical simulations [11,12]. Hereafter we call
these structures ‘‘convective Taylor columns’’ (CTCs).
The TP constraint requires that, away from the confining

boundaries, the CTCs are nearly uniform vertically. The
columns must, however, overcome the TP constraint near
the boundaries where the vertically moving fluid slows
down, resulting in a strong vertical variation in velocity.
It is commonly believed that the required deceleration at
the boundaries is accomplished by Ekman boundary layers,
i.e., viscous boundary layers influenced by rotation (e.g.,
[22]). While it is certainly true that Ekman layers can in
theory cause strong vertical variations, recent simulations
[12] support a different explanation.
The essential morphology of CTCs is that they are tall

and thin. This suggests an approach with horizontal scales
that are much smaller than the dominant vertical scale.
Recent work [23] shows that this scale separation arises
naturally in the low Rossby number (rapid rotation) re-
gime. In this regime the Ekman layers are passive [18], but
the flow nonetheless organizes into CTCs. Recent simula-
tions [12,21] show that the CTCs in this regime are
shielded by a sheath of opposite vorticity and hence inter-
act only weakly. The presence of this shield appears to be a
characteristic property of the CTCs in the rapid rotation
limit; Fig. 1 shows that this shield is visible in the tem-
perature field as well. Owing to the multiscale nature of the
flow, the TP constraint requires vertical variations to be
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small only on a vertical scale equal to the small horizontal
scale of the column width. As a result, on the vertical scale
of the entire column, vertical variations can be quite sig-
nificant, as observed in [12,16], with no need for boundary
layers to provide the necessary deceleration.

Our analytical model begins with the balanced equations
derived in [23], which incorporate the scale anisotropy
described above:

@t!þ J½c ; !� � @zr2
?� ¼ r2

?!; (1)

@tr2
?�þ J½c ;r2

?�� þ @zc ¼ ��1
fRa�þr4

?�; (2)

@t�þ J½c ; �� þ r2
?�@z �T ¼ ��1r2

?�; (3)

@� �T þ @zð�r2
?�Þ ¼ ��1@zz �T: (4)

These dimensionless equations are written in terms of the
horizontal average of the temperature �T and three ‘‘fluctu-
ating’’ quantities with zero horizontal mean: pressure c ,
vertical velocity w written in terms of the poloidal velocity
potential � as w ¼ r2

?�, and temperature perturbation �.
The vertical component of vorticity is ! ¼ r2

?c , and the

Jacobian J½c ; f� � @xc @yf� @yc @xf ¼ u? � rf repre-

sents advection by the horizontal component of velocity
indicated by the subscript?. The ratio of the horizontal to
vertical scales is equal to Ro, and the ratio of the slow time
� to the fast time t is Ro2; the overbar denotes an average
over the fast time and horizontal variables (x; y). The

Rayleigh number has been scaled so that Ra ¼ Ro�4
fRa,

with fRa of order one; � is the Prandtl number. The equa-
tions are obtained via an asymptotic expansion in the
Rossby number Ro � 1, as appropriate for rapid rotation
[12,23]; as a result, Ro no longer appears.

Like the more familiar quasigeostrophic equations, these
equations are geostrophically balanced and the leading
order horizontal velocity is incompressible. However, un-
like the quasigeostrophic equations, these equations incor-
porate order one vertical motions; this is a consequence of
the assumed small horizontal scale of the convective col-
umns. This flow is accompanied by ageostrophic motions
which render the flow fully incompressible and by Ekman
layers which accommodate no-slip boundaries; both con-
tributions can in principle be calculated a posteriori from
the solutions of the balanced equations [18,23], but their
existence is not felt by and does not change these solutions.
Sprague et al. [12] conducted an investigation of the

balanced equations using direct numerical simulation
(DNS). The authors found that for a wide range of
Rayleigh and Prandtl numbers the flow organized into
CTCs. These columns are approximately axisymmetric,
weakly interacting, and nearly steady. The authors showed
that the steady-state mean temperature profile in the fully
nonlinear regime is accurately predicted by the equations
for planform convection. However, the planform approach
cannot describe the individual CTCs seen in the simulation
(Fig. 1). We present here a nonlinear, analytical model of
an individual CTC which can be used as the basis of an
atomistic description of the balanced equations composed
of an ensemble of weakly interacting columns.
We use a search algorithm on the data set provided in

[12] for fRa ¼ 40, � ¼ 7 to identify well-formed and well-
separated CTCs. These are azimuthally averaged to obtain
axisymmetric profiles of the fields as a function of the
radial distance r from the core and the height z within
the CTC. The resulting profiles cluster around a well-
defined mean; we use this mean as a fiducial CTC whose
properties we model below. The details of the search
algorithm and averaging protocol will be reported
elsewhere.
For the model we assume that nonlinear horizontal

interactions between columns are weak, in the sense that
such interactions do not substantially affect their structure,
while allowing passive advection of one column by an-
other, i.e., we assume that the column structure is time-
independent, axisymmetric, and identical to the fiducial
CTC constructed from the data set. For such a CTC the
nonlinear horizontal self-interaction vanishes identically.
The net heat flux through the layer is described by the term

w� ¼ �r2
?� in Eq. (4). This includes contributions from

CTCs as well as extra-columnar turbulence: w� ¼
ðw�ÞCTC þ ðw�Þt where the latter term is the turbulent
heat flux. Although not the main focus of this research, a
simple model of the turbulent heat flux which allows one to
gauge its impact on the columns and on the net heat flux is

ðw�Þt ¼ ���1ftðzÞ@z �T where ft is a shape parameter. We
model the contribution from the columns as cfhw�i, where
h�i now denotes the horizontal integral over a single col-
umn, and the heat flux carried by a single column is multi-
plied by the number of columns per unit area cf. Taken

FIG. 1 (color online). A snapshot of the temperature fluctua-
tion � in the low Rossby number regime. Hot and cold con-
vective Taylor columns span the entire depth of the layer but are
shielded by a sheath in which � takes the opposite sign. Although
not visible in the figure, this shield extends throughout the depth.

From Ref. [12] with parameters fRa ¼ 40, � ¼ 7, visualized as
in Ref. [27].
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collectively, these assumptions imply that a single column
satisfies

� @z� ¼ !; (5)

@zc ¼ ��1
fRa�þr4

r�; (6)

�@z �T ¼ ��1�; (7)

@zðcfh�r2
r�i � ��1ft@z �TÞ ¼ ��1@zz �T: (8)

Equation (8) may be integrated exactly in z, and its depen-
dence on � may be removed by the use of Eq. (7).
Furthermore, integration by parts in the flux term
h�r2

r�i and the introduction of the Nusselt number
(Nu), a nondimensional measure of the efficiency of heat
transport defined by Nu ¼ �@z �Tj0, allows additional sim-
plification of Eq. (8). With Eqs. (5)–(7) condensed down to
a single equation for �, the single column equations are

@2z�þr2
rðfRa@z �T þr4

rÞ� ¼ 0; (9)

@z �T ¼ � Nu

1þ ft þ cf�
2hð@r�Þ2i : (10)

These equations, subject to impenetrable boundary condi-
tions � ¼ 0, �T ¼ 1 at z ¼ 0 and � ¼ �T ¼ 0 at z ¼ 1
constitute our CTC model.

The simplest solution of the CTC model is separable and
has a radial structure given by a Bessel function of the first

kind: �ðz; rÞ ¼ �̂ðzÞJ0ðkrÞ. Since this solution has infinite
heat flux and circulation, the solution is meaningful only in
the presence of a finite cutoff r0. Choosing r0 to satisfy
J0ðkr0Þ ¼ 0 and defining c0 ¼ cfhJ0ðkrÞ2ir0 , the column

equations become

½@2z � k2ðfRa@z �T þ k4Þ��̂ ¼ 0; (11)

@z �T ¼ � Nu

1þ ft þ c0�
2k2�̂2

: (12)

Given fRa and k this is an eigenvalue problem for Nu. This
type of problem arises in single-mode planform convection
[15,24,25], and we do not reproduce its properties here. For
the purposes of comparison of the predictions of Eqs. (11)
and (12) with the simulations and the model proposed
below, we use the critical value of k at the onset of linear
instability as the scaled Rayleigh number increases,

namely, kc ¼ �1=32�1=6 � 1:3048 [dimensionally, k�c ¼
kcðhRoÞ�1, where h is the layer depth], and use c0 (equiv-
alently r0) as a fitting parameter. When ft ¼ 0 the best fit
to wðr; z ¼ 1=2Þ for the fiducial CTC is obtained for c0 ¼
0:05; since cf ¼ 0:003 [12] this value corresponds to r0 ¼
11:44. This distance is less than half the typical intercol-
umn separation.
The resulting J0 Bessel columns show reasonable accu-

racy in predicting the mean temperature (Fig. 2) and the
vertical structure of the velocity, vorticity, and temperature
perturbations (Fig. 3, insets), but fail to match the radial
profile of CTCs seen in the simulations (Fig. 3). Moreover,
the radial profiles of all the dependent variables are iden-
tical and depth independent, also in conflict with the simu-
lations. Finally, the associated azimuthal velocity around a

Bessel column decreases only as r�1=2, and this slow decay
results in strong interactions between columns which are
inconsistent with visualization [12] of the numerical
solutions.
We improve upon the J0 Bessel solution by considering

more general solutions of the column equations (9) and
(10). We suppose that the radial structure is described by
Hankel functions of the first kind, H0ðkrÞ � J0ðkrÞ þ
iY0ðkrÞ, where Y0 is a Bessel function of the second kind

and k � jkj expfi�g is complex, and write �ðz; rÞ ¼
ð�=8�2cfÞ1=2H0ðkrÞ ~�ðzÞ þ c:c:, where ~� � ~�r þ i ~�i.

Since

hH0ðkrÞ2i ¼ 4

�k2
; hjH0ðkrÞj2i ¼ 4ð�� 2�Þ

�jkj2 sinð2�Þ ; (13)

~� now solves the complex eigenvalue problem

½@2z � k2ðfRa@z �T þ k4Þ� ~� ¼ 0; (14)

@z �T¼� Nu

1þftþð��2�Þcotð2�Þj ~�j2þ ~�2
r� ~�2

i

; (15)

subject to the boundary conditions ~� ¼ 0, �T ¼ 1 at z ¼ 0,

and ~� ¼ �T ¼ 0 at z ¼ 1. This problem has two eigenval-

ues, and we solve it for the eigenvalues Nu and jkj for fRa ¼
40 and different values of �. The latter are restricted to lie
in the interval 0<�<�=12 by the requirement that the
solution decays away from the center and that no solution

exists at fRa ¼ 0.
The eigenvalue problem (14) and (15) is solved using a

shooting method and the results confirmed using the
Newton-Raphson-Kantorovich algorithm. The eigenvalues
jkj and Nu are relatively insensitive to the choice of �, and
we select � to fit wðr; z ¼ 1=2Þ for the fiducial CTC

FIG. 2 (color online). Vertical profiles of the mean temperature
�T in the upper half of the layer from the DNS [12] (solid line),
Hankel with ft ¼ 0 (dashed line), Hankel with ftðzÞ ¼
Csin2ð�zÞ and C ¼ 115 chosen such that Nu ¼ 15:53 (dash-
dotted line), and Bessel with ft ¼ 0 (dotted line) solutions at
fRa ¼ 40. The mean temperature is symmetric about z ¼ �T ¼
1=2. The Hankel solutions use k ¼ 1:34 expf0:153ig when ft ¼
0 and k ¼ 1:38 expf0:153ig when ft � 0.
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constructed from the data set. Figure 3 shows that the
resulting Hankel fit matches simultaneously both the ver-
tical and radial profiles of the fiducial CTC, apart from an
integrable logarithmic singularity at the center of the col-
umn. The quality of the fit is robust: for the range of
acceptable � the value of jkj varies by less than 5%, and
the radial structure of the solution varies relatively little.

In contrast to the Bessel solution the Hankel solution
reproduces the z dependence of the radial profiles,
although it overpredicts the heat flux through the layer.

In particular, Nu ¼ 21:26 at fRa ¼ 40 instead of the DNS
result Nu ¼ 15:53. This discrepancy is the result of a
nonlinear competition between the columns and extra-
columnar turbulence, and can be eliminated by the inclu-
sion of ft (Fig. 2, dash-dotted line). For comparison the
Bessel fit with k ¼ kc, r0 ¼ 11:44, and ft ¼ 0 yieldsNu ¼
19:18. However, the heat flux parametrization does not
account for enhanced lateral mixing by vortex interactions
among columns and turbulent plumes [10,12], and duly
overpredicts the degree of isothermality of the interior
relative to the DNS result (Fig. 2).

The Hankel solutions of the column equations are cur-
rently the best model of CTCs, displaying a significant
improvement over linear [21] and nonlinear CTC models
based on Bessel functions. Consequently, the single col-
umn Hankel solutions provide the best possibility for
understanding CTC interactions (pairwise and ensemble)
as well as showing potential for parametrizing convective
mixing within large scale ocean circulation models. These

solutions, moreover, constitute a significant improvement
over other models of coherent structures in geophysical
flows, such as hetons [26], which are a hydrostatic, two-
layer model of an essentially nonhydrostatic, continuously
stratified process.
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FIG. 3 (color online). Radial and vertical (inset) profiles of w,
!, and � for the fiducial CTC from DNS [12] (solid line), and for
the Hankel (dashed line) and Bessel (dotted line) columns with
ft ¼ 0, showing wðz ¼ 1=2; rÞ, !ðz ¼ 1=96; rÞ, �ðz ¼ 1=96; rÞ;
these values were chosen to be near local maxima of the vertical
profiles. The Hankel column fit uses k ¼ 1:34 expf0:153ig. The
vertical profiles are shown at r ¼ 0 except for the Hankel
solution for which we show j�̂ðzÞj since the amplitude at r ¼
0 is unbounded; the logarithmic singularity is present, but nearly
invisible.
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