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The effect of vortex stirring on reaction rate enhancement is investigated for two reactive scalars
initially separated by a third nonreactive scalar. The presence of the intervening scalar precludes
reactions at early times. Vortex stirring accelerates the coalescence of the reactive scalars relative to
pure diffusion and enhances the resulting reaction rates. Analytical and numerical results for reactive
stirring by a single point vortex are shown for a range of Péclet �Pe� and Damköhler �Da� numbers.
At low Da and high Pe, nondimensional reaction rates grow as Pe1/3, and peak reaction times
decrease as Pe−2/3. Reaction rates scale linearly with Da for slow reactions, but this scaling breaks
down for fast reactions due to reactant depletion. The stirring-induced reaction rate enhancement is
shown to be relatively insensitive to initial placement of scalars within the point vortex. The study
provides mechanistic insights into more general mixing and reaction problems involving initially
isolated scalars. © 2008 American Institute of Physics. �DOI: 10.1063/1.2963139�

I. INTRODUCTION

An understanding of the mechanisms by which vortices
stir and mix scalars is fundamental to the prediction of reac-
tion rates in reactive fluid flows. From simple laminar flows
to chaotic or turbulent processes, vortices are associated with
rapid mixing. Vortical structures enhance scalar dissipation
and mixedness through a coupling between kinematic strain-
ing and molecular diffusion. When reactive scalars are
present within the structures, local reaction rates are also
enhanced.

It is common to investigate the mechanistic features of
complex vortex-driven mixing processes with simple planar
models involving an isolated vortex or several interacting
vortices.1–9 While scaling relationships from these simple
models often do not extrapolate well to three-dimensional,
chaotic, or turbulent flows, the simple models elucidate in-
stantaneous processes seen locally in more complex flows.
Frequently, simple models exhibit complex behaviors that
are interesting in their own right.

Reactive mixing problems can be classified based on the
initial topology of their scalar fields. One class, which en-
compasses most studies in the current literature,10–21 involves
two reactive scalars that together fill the entire domain and
are initially in contact with one another along a material
interface �see examples in Fig. 1�. The scalars react immedi-
ately due to molecular diffusion at the shared interface. In
the presence of vortex stirring, interfacial stretching in-
creases scalar mixedness,1,2,8 accelerates scalar dissipation,4

and enhances reaction rates.9 It is useful to note that in non-
reactive mixing scenarios, problems in this first topological
class are indistinguishable from single-scalar mixing prob-
lems. Nondimensionalizing the two scalar concentrations CA

and CB as mass fractions gives CA+CB=1 everywhere. Writ-
ing C=CA with 1−C=CB permits the problem to be formu-
lated in terms of a single species equation.1

A second class of reactive mixing problems, which has
received scant attention in literature, involves two reactive
scalars that do not initially share a material interface due to
the intervening presence of a third nonreactive fluid �see ex-
amples in Fig. 2�. Reaction rates in this case are initially
zero, but are nonzero at intermediate time scales in the pres-
ence of molecular diffusion. The effect of stirring on reac-
tions rates for this class of problems is less clear. In fact, it is
possible to envision stirring scenarios that reduce reaction
rates �again, relative to the purely diffusive case�. The effect
of vortex stirring on reaction rates for this second class of
problems is the central question for the present paper. In
particular, we are interested in predicting reaction rates in-
clusive of instantaneous structured stirring relative to rates
predicted using an effective eddy diffusivity as a surrogate
for the stirring field. Following the lead of previous mixing
studies, we limit our investigation to the simplest possible
case of stirring by a single two-dimensional vortex. The goal
is to establish a foundation for understanding this second
class of problems by elucidating the mechanistic mixing and
reaction processes at the scale of the vortex.

Straining mechanisms associated with the momentum
field are clearly independent of the topological class of the
initial scalar field. Kinematic straining determines the growth
rate of material lines, which, in turn, governs the rate at
which scalar fluctuations are dissipated. For a two-
dimensional incompressible flow such as a point vortex, ma-
terial lines grow linearly as �t, where � is the local strain
rate. A scalar patch �as in Fig. 1�b� or 2�b�� near an isolated
point vortex forms a spiral scalar structure that dissipates
with a mixing time that scales as �−1 Pe1/3, where Pe is a
vortex Péclet number.4,5,7,22 The present study demonstrates
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that this Pe1/3 dissipation scaling extends to the scaling of
reaction rates even for problems in the second topological
class.

We were initially motivated to study reactions in the
second topological class by an interesting biological process.
Many marine invertebrates �e.g., corals, urchins, and ane-
nomes� reproduce sexually via a process called broadcast
spawning.23 Males and females synchronously release sperm
and egg, respectively, from separate locations on the sea bed.
The process subsequently relies on structured stirring from
turbulence and vortex-dominated bedform wakes to bring ga-
metes into close proximity such that fertilization might oc-
cur. Topologically, the sperm and egg are the two reactive
scalars, initially separated by inert gamete-free water. Mod-
els of this process based on effective eddy diffusivities vastly
underpredict observed fertilization rates.24 We hypothesized
that details of the instantaneous scalar fields �absent in the
eddy diffusion models� were critical to the prediction of fer-
tilization rates.25 In an earlier study,26 we calculated reaction
rates in the low-Damköhler limit for two initially distinct
scalars in a point vortex flow. Peak reaction rates for this
problem in the second topological class scaled as Pe1/3, with
the peak reaction time scaling as Pe−2/3. In the present paper,
we expand that study to include the effect of reaction kinetics
at finite Damköhler numbers.

II. PROBLEM DESCRIPTION

Geometric details of the problem are shown in Fig. 3. A
single two-dimensional vortex u��r� stirs two reactive point-
source scalars A and B placed within an inert background
fluid. The scalars are initially located at radii RA and RB from
the vortex center, separated by angle � and distance L. Both
scalars have molecular diffusivity D and initial mass M. De-
viations from axial symmetry are described by two nondi-
mensional eccentricities. The angular eccentricity is simply

�, where 0����, with �=� corresponding to the sym-
metric case with scalars in diametric opposition. The radial
eccentricity is defined as

E =
�RA − RB�
RA + RB

, �1�

where 0�E�1, E=0 is the symmetric case RA=RB, and E
=1 corresponds to the limit where either RA /RB or RB /RA

→0. Pictorial interpretations of intermediate and limiting E
values are shown in Fig. 4.

Analytical and numerical techniques are used to calcu-
late the reaction rate between scalars A and B for a range of
eccentricities, Péclet, and Damköhler numbers. Except where
noted, the flowfield is a point vortex with circulation �,

u��r� =
�

2�r
. �2�

A synthesis reaction A+B→AB is used with second-order
reaction rate kinetics.

III. GOVERNING EQUATIONS

Each of the two scalars A and B is governed by a dimen-
sional reactive advection-diffusion equation of the form

�C̃

� t̃
= − ũ · �C̃ + D�2C̃ − �̃ , �3�

where the three terms on the right-hand side express Eulerian
concentration changes due to advection, molecular diffusion,
and reaction. The two scalar concentrations are coupled by a
second-order dimensional reaction term

(a) (b)

A B BA

FIG. 1. Examples of initial scalar topologies in a square domain correspond-
ing to the first class of problems discussed in the text. Two scalars denoted
A and B fill the entire domain and share a material interface.

(a) (b)

A B BA

C

C

FIG. 2. Examples of initial scalar topologies corresponding to the second
class of problems. Two reactive scalars A and B are initially separated by a
nonreactive fluid, denoted as C.
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R
Bφ

uφ (r)

FIG. 3. Geometric definitions for the initial scalar condition. Point masses
of reactive scalars A and B �shown here for clarity as finite-size blobs� are
placed within an inert background fluid and stirred by a vortex centered on
the + symbol.

A B
(a) E = 0.0

BA
(c) E = 1.0

A B
(b) E = 0.5

FIG. 4. Interpretation of the radial scalar eccentricity E for RA�RB and �
=�, showing �a� the limiting symmetric case E=0, �b� an intermediate case
E=0.5, and �c� the limiting asymmetric case E=1.
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�̃ = kC̃AC̃B, �4�

where k is a reaction constant. Concentrations are then non-
dimensionalized by M /L2, lengths by L, and velocities by
U=u��R�, where R= �RA+RB� /2. Time is nondimensional-
ized as

t =
t̃

td
, �5�

where td=L2 /8D is a diffusive time scale that corresponds to
the peak reaction time for the purely diffusive case �Pe=0� in
the slow reaction limit �Da�1�. Finally, advective and reac-
tive time scales are defined as ta=R /U and tr=L2 /kM. The
governing equations for the coupled scalar dynamics can
then be expressed nondimensionally as

�CA

�t
= −

	

2
Pe u · �CA +

1

8
�2CA − � ,

�6�
�CB

�t
= −

	

2
Pe u · �CB +

1

8
�2CB − � ,

where � is the nondimensional reaction rate;

� = Da CACB, �7�

the Damköhler number is

Da =
td

tr
=

kM

8D
, �8�

and the Péclet number is

Pe =
td

ta
=

L2U

8DR
. �9�

For a point vortex, Eqs. �2�, �10�, and �9� combine to give
Pe=� / �4�	2D�. The geometric parameter 	 in Eq. �6� is
simply

	 = 2R/L . �10�

Note that 	 is of the order of unity except when �→0.
The total dimensional reaction rate integrated over the

entire domain Ã is


̃ =� � �̃dÃ , �11�

which, for convenience, is nondimensionalized as


 = �e� � �dA =
�e

8

L2

MD

̃ . �12�

Analytical and numerical solutions for the nondimensional
integrated reaction rate 
 are given in Secs. IV and V,
respectively.

IV. ANALYTICAL SOLUTIONS FOR SLOW REACTION
LIMIT „Da™1…

Analytical expressions for 
 are given for the limiting
cases Pe=0 and Pe�1, both in the case of the slow reaction
limit �Da�1�. The slow reaction limit simplifies analytical
solutions by decoupling the system of scalar equations in Eq.
�6�. The analytical solutions provide insights into relevant
scaling relationships and serve to validate numerical simula-
tions in Sec. V.

A. Purely diffusive „Pe=0…

For the case of a purely diffusive system �Pe=0� in the
slow reaction limit �Da�1�, Eq. �6� reduces to a pair of
uncoupled diffusion equations with simple analytical solu-
tions. This permits an analytical solution to the nondimen-
sional integrated reaction rate �Eq. �12��, given by


�t� = Da
e

t
exp�−

1

t
� . �13�

The solution has a maximum 
peak=Da occurring at t=1, as
shown in Fig. 6�a�. This diffusive reaction rate solution
serves as a baseline for the effect of vortex stirring in subse-
quent solutions and simulations.

B. Strongly advective „Peš1…

For the limiting case of a strongly advective system
�Pe�1�, again in the slow reaction limit, an analytical solu-
tion for 
 can be determined by posing the problem in terms
of stochastic differential equations. For simplicity, only the
symmetric initial condition �E=0, �=�� is considered.
Working in local Cartesian coordinates x= �x1 ,x2�= �r� ,r
−R�, u= �u1 ,0�, the concentration of a collection of scalar
particles initially lumped at x= �0,0� is a bivariate Gaussian
distribution written as27

C�x,t� =
M

2�
	det A exp�−

1

2
x · A · x� , �14�

where A is a tensor whose inverse is the covariance tensor of
the scalar particle distributions X,

Aij
−1 = 
�Xi − 
Xi���Xj − 
Xj��� . �15�

The high-Pe limit restricts diffusive scalar excursions in x2 to
be small over advective time scales, allowing the shearing
velocity profile to be linearized about x2=0 to u1=U+2�x2,
with constant shear �=� /�R2=8 Pe D /L2. The 2 in front of
the shear is a geometrical factor resulting from the transfor-
mation from polar to local Cartesian coordinates. Particle
velocities can thus be written as

Ẋ1 = U − 2�X2�t� + 1�t� ,

�16�
Ẋ2 = 2�t� ,

where diffusion is modeled via a random Gaussian process
�= �1 ,2� with ensemble mean 
i�t��=0 and variance

i�t� j�t��=2D�ij��t�. The velocity equations can be inte-
grated to give the moments of the particle locations, yielding
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A−1 = 2Dt�
1

3
�2t2 −

�

2
t

−
�

2
t 1  . �17�

The A11
−1 term displays the well-known t3 shear dispersion;

this term also has a linear diffusion term that is negligible at
high Pe for the times of interest and is dropped.

The transformation to Cartesian space requires the use of
periodic image sources in the x1 direction. Thus, the two
scalar sources at �r ,��= �R ,0� and �R ,�� are represented in
Cartesian space by sources at x= �n2�R ,0� and ��R
+n2�R ,0�, where n=0, �1, �2, . . .. For any pair of scalar
sources separated by a distance l1 in the x1 direction, the
dimensional reaction rate integral �Eq. �11�� yields


̃ =
	3k

8��Dt2exp�−
3l1

2

8�2Dt3� . �18�

Summing over all periodic images yields an expression in
terms of the Jacobi elliptic theta function, �2�0,q�.28 The
resulting nondimensional reaction rate integral �Eq. �12��
becomes


�t� = Da
	3e

Pe

�2�0,q�
t2 , �19�

where q=exp�−3�2 Pe−2 t−3�. Defining self-similar variables


s = 
 Da−1 Pe−1/3 and ts = t Pe2/3 �20�

permits Eq. �19� to be written as


s�ts� =
	3e

ts
2 �2�0,exp�− 3�2ts

−3�� , �21�

showing that for large Pe and small Da, the reaction rate
collapses to a self-similar form. A plot of this solution for
Pe=10 000 is shown in Fig. 6�b�.

V. NUMERICAL SIMULATIONS

A. Methodology

The reaction problem described in Secs. II and III, and
solved analytically for special cases in Sec. IV, is now mod-
eled numerically for general cases using a Lagrangian par-
ticle tracking method.29 Each of the two scalars is repre-
sented by a collection of Np particles that advect passively
with the local velocity and diffuse via a random walk. Par-
ticle positions xi at time step ti are calculated as

xi = xi−1 + u�xi−1��t + Z	2D�ti, �22�

where xi−1 and ui−1 are the particle positions and local ve-
locities at the previous time step, �ti= ti− ti−1, and Z is a
two-dimensional Gaussian process with zero mean and unity
variance.

Particle locations are used to compute concentration
fields for each scalar through spatial binning of particles at
each time step. Individual particles are tagged with initial
scalar mass M /Np, and bin concentrations are calculated as
total scalar mass in the bin divided by bin area. Although the
particle domain is infinite, concentration binning is restricted
to a finite region that is large enough such that it contains the
vast majority of particles. Local reaction rates are then cal-
culated using Eq. �4�, and particle scalar masses in each bin
are adjusted at each time step to reflect reactant loss.

Convergence of the 
 simulations is achieved based on
suitable choice of �ti, Np, and concentration bin size for a
given Pe and Da. Time steps are chosen via a forward Euler
approach such that the percent concentration change in any
bin before the reaction step does not exceed a set threshold
�C /C. Typical parameters for a converged 
 solution are
Np=105, �C /C=0.05, with 150�150 concentration bins
spanning the central 2L�2L region of the domain.

Snapshots of particle locations at five times within a rep-
resentative simulation �Pe=100, Da=1, E=0, and �=�� are
shown in the top row of Fig. 5. The resulting 
 versus t

10
-3

10
-2

10
-1

10
0

10
1

0

5

Θ

Da

t

t = 0.0025 t = 0.011 t = 0.048 t = 0.11 t = 0.65

FIG. 5. �Color online� Particle locations at five simulation times for scalars A �light gray �yellow online�� and B �dark gray �blue online�� for the case Pe
=100, Da=1, with symmetric initial condition E=0 and �=�. Also shown is the associated 
 vs t simulation result for a continuous range of times with the
corresponding snapshot times indicated as dashed lines.
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curve for the same simulation is shown below the snapshots,
and the time correspondence between the snapshots and the
curve is indicated with dashed lines. At early times �the first
two frames�, the scalars are advected and strained into fila-
ments by the vortex flow, but there are essentially no loca-
tions with co-occurring concentrations, and 
 remains neg-
ligibly small. At intermediate times �third and fourth frames�,
the vortex wraps the scalar filaments into increasingly close
proximity such that diffusion can bridge the radial gap, and

 rises and peaks. At long times �fifth frame�, diffusion
eradicates the scalar structure imposed by the vortex, and 

asymptotes back to zero. This general behavior occurs for all
values of Pe and Da.

Validation of the numerical model results at the low-Da
limit is achieved by comparison with analytical solutions de-
veloped in Sec. IV. Excellent agreement is seen for Pe=0
�Eq. �13�, Fig. 6�a�� and in the high-Pe limit �Eq. �21�, Fig.
6�b��.

B. Results

1. Effect of Pe

When Pe=0, the mixing process is purely diffusive, and
the nondimensional reaction rates 
 are minimized. By the
time diffusion alone bridges the distance L between the two
scalars, local concentrations and associated reaction rates are
small throughout the domain. As Pe increases, the ratio of
the diffusive to advective time scales increases, such that
scalar filaments are more concentrated as vortex stirring
more rapidly brings the two scalars into close proximity.
Higher Pe numbers thus produce peak reaction rates 
peak

that are larger, and that occur at smaller t �Fig. 7�.
In the slow reaction limit �Da�1�, the purely diffusive

case �Pe=0� has a peak reaction rate 
peak=Da that occurs
t=1. This serves as a baseline for the effect of vortex stirring
on the reaction rates. It is thus convenient to normalize the
nondimensional reaction rates by Da such that 
peak /Da=1
for Pe=0 and Da�1. This normalization is shown on the
right-hand axis in Fig. 7 and is used extensively in the re-
mainder of the paper. For a small, fixed Da, the value of


peak /Da indicates the factor by which vortex stirring in-
creases nondimensional reaction rates relative to the pure
diffusive case.

2. Effect of Da

The Damköhler number is a nondimensional form of the
reaction rate constant k �Eq. �4��. Increases in Da therefore
produce larger reaction rates 
 �Fig. 8�a��. For Da�1, the
increase in 
peak is linear with Da, but the increase is less
than linear at higher Da due to the resulting reactant deple-
tion. This effect is evident in Fig. 8�b�, where 
 /Da de-
creases with increasing Da. The 
 /Da normalization re-
moves the direct effect of k in Eq. �4�, revealing the
secondary effect of reactant depletion. This same effect
causes tpeak to decrease with Da, but the effect is quite weak
compared to that of Pe.
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FIG. 6. Comparison of simulation results �dashed lines� with analytical solutions �solid lines�. �a� Simulation at Pe=0, Da=0.01 compared to Eq. �13� and �b�
simulation at Pe=10 000, Da=0.01 compared to Eq. �21�.
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FIG. 7. Effect of Pe on the reaction rates for the symmetric initial condition
�E=0, �=��. The simulations here are for Da=0.01, which is within the
slow reaction regime. The left-hand axis shows nondimensional 
, and the
right-hand axis shows the normalized value 
 /Da. When Pe=0 and Da
�1, the normalized peak value is 
peak /Da=1, occurring at nondimensional
time t=1.
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3. Scaling relationships for �peak and tpeak

Since the general behavior of 
 versus t is similar for all
values of Pe and Da, it is useful to focus our attention on the
peak reaction values 
peak and tpeak. Motivated by the ana-
lytical results in Sec. IV, simulation results are used in this
section to illustrate how these peak delimiters scale with Pe
and Da in various regimes, again for the symmetric initial
condition �E=0, �=��. In all cases, the nondimensional
peak reaction rate is normalized as 
peak /Da. As discussed
above, this removes the direct multiplicative effect of k in
Eq. �4�, and also establishes 
peak /Da=1 as the baseline
peak reaction rate for Pe=0 and Da�1.

In Sec. IV, analytical results indicate that 
peak /Da
�Pe1/3 and tpeak�Pe−2/3 in the limit Pe�1 and Da�1.
Simulation results are consistent with this scaling, as shown
in Fig. 9. At high Pe, 
peak /Da simulations scale as Pe1/3 and
are insensitive to Da �Fig. 9�a��, and tpeak simulations scale as
Pe−2/3 and are likewise insensitive to Da �Fig. 9�b��. As Pe
→0, the simulations deviate from this scaling as 
peak /Da
and tpeak asymptote to their purely diffusive limits. For low
Da, this corresponds to 
peak /Da=1 and tpeak=1, but both
values are reduced at higher Da due to early reactant deple-
tion. The simulations indicate that the high-Pe scaling rela-
tionships are not limited to low Da as long as Pe is suffi-
ciently high.

The 
peak�Da scaling predicted at low Da can be seen
explicitly by examining the simulation results of 
peak /Da
versus Da �Fig. 10�a��. As Da→0, 
peak /Da asymptotes to a
constant that depends on Pe. At higher Da, the 
peak�Da
scaling breaks down due to reactant depletion. The Pe depen-
dence can be removed for high Pe by using a scaling of

peak / �Da Pe1/3� �suggested by 
s in Eq. �21��, as shown in
Fig. 10�b�. Once again, it is seen that the smallness of Da
required for the asymptotic low-Da behavior is less stringent
at high Pe.

Simulation results for tpeak, analogous to those shown in
the previous figure for 
peak, are shown in Fig. 11. As Da
→0, tpeak asymptotes to a constant that depends on Pe �Fig.
11�a��. The range over which this asymptote remains con-
stant increases with Pe, such that tpeak is relatively insensitive
to Da at low Da or at high Pe. The Pe dependence of the
asymptotic value of tpeak can be removed for high Pe by
using a scaling of tpeak Pe2/3 �suggested by ts in Eq. �21��, as
shown in Fig. 11�b�.

4. Effect of initial conditions

Numerical simulations on the effect of radial eccentricity
on reaction rates 
 /Da are shown in Fig. 12 for the angu-
larly symmetric case �=� at Pe=100. For small radial ec-
centricities �approximately E�0.2�, the peak reaction rates
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FIG. 8. Effect of Da on the reaction rates for the symmetric initial condition �E=0, �=�� in the case of pure diffusion �Pe=0�. Simulation results are shown
for �a� nondimensional reaction rate 
 and �b� normalized reaction rates 
 /Da. The latter result shows the effect of reactant depletion at higher Da.
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FIG. 9. Péclet scaling for �a� normalized peak reaction rates 
peak /Da and �b� peak reaction times tpeak. Simulations results are shown as symbols, and
reference scaling slopes Pe1/3 and Pe−2/3 are shown as lines.
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are enhanced beyond the symmetric case E=0, and the peak
occurs at smaller nondimensional times. At larger radial ec-
centricities, 
peak is reduced. In the limit as E→1, the reac-
tion rates for any Pe regress back to the purely diffusive
solution �compare the E=1 results in Figs. 12�a� and 12�b�
with those shown in Fig. 8�b��. Moderate values of radial
asymmetry alter the evolution of 
 such that there are two
local reaction rate maxima. Larger values of Da �Fig. 12�b��
favor the first peak over the second due to reactant limita-
tions at larger times �compare the two E=0.3 curves�.

The mechanisms responsible for producing dual maxima
at moderate E values are shown in Fig. 13 for E=0.15, Pe
=1000, Da=0.05, and �=�. The first maximum is driven by
asymmetric stirring and corresponds to the leading edge of
the outer filament catching the trailing edge of the inner fila-
ment. The second maximum is driven by radial diffusion
after the outer scalar has been well distributed in the circum-
ferential direction.

The effect of angular eccentricity � on peak nondimen-
sional reaction rates is relatively small, as shown in Fig. 14.
All simulations of 
peak /Da exhibit a local minimum at �
=� /2, with the effect of � becoming larger as Pe increases.

5. Effect of vortex type

The acceleration and enhancement of reaction rates due
to vortex stirring seen in this study are linked to circumfer-
ential strain associated with the radial distribution of the ve-
locity field. The effect of strain can be emphasized by replac-
ing the point vortex flowfield �Eq. �2�� with a Lamb–Oseen
vortex of the form

u��r� =
�

2�r
�1 − exp�− � r

Rc
�2�� , �23�

where Rc is the radius of the rotational vortex core. For r
�Rc, the vortex exhibits a solid-body rotation with no strain,
and for r�Rc, the vortex behaves as a point vortex. The
effect of the vortex on reaction rate enhancement thus de-
pends on the radial placement of the scalars relative to the
vortex core. Simulation results for 
peak /Da as a function of
the initial scalar location L /2Rc are shown in Fig. 15 for
Pe=1000 for the symmetric case E=0 and �=�. When
L /2Rc�1, the initial scalar placement is within the rota-
tional vortex core. Since there is no strain, the reaction rates
�symbols� asymptote to those found previously for pure dif-
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fusion �shown with dashed lines�. When L /2Rc�1, the ini-
tial scalar placement is in the straining tail of the vortex, and
the reaction rates equal those found for a point vortex.

VI. SUMMARY AND DISCUSSION

The analytical and numerical results presented herein
demonstrate the effect of stirring by a single vortex on reac-
tion rates between two isolated scalar sources. The scalar
configuration differs from previous studies in that the reac-
tants are initially separated by ambient fluid that acts as a
third nonreactive scalar. When molecular diffusion alone dis-
perses the reactants �Pe=0�, the nondimensional reaction rate

 is minimized, and the nondimensional time to the peak
reaction rate tpeak is maximized. The presence of vortex stir-
ring �Pe�0� always acts to increase 
 and decrease tpeak.
These findings are true regardless of the value of Da and of
the initial scalar geometry �E and ��.

Several general scaling relationships are shown to hold.
For high Péclet numbers, the peak reaction rate 
peak scales
as Pe1/3, and the peak time tpeak scales as Pe−2/3. These scal-
ing relationships were found analytically for the slow reac-
tion limit �Da�1�. However, for the regime Pe�Da, one
can argue that the scaling regime applies even if Da is not
small. The calculation presented above describes the motion
of fluid parcels regardless of their chemical reactions. If Pe
�Da, then the reactions are slow compared to advection,
reactant depletion can be ignored over advective time scales,
and peak reaction rates and peak reaction times should scale
as in the Da�1 case. The numerical simulations suggest
agreement with an extension of the scaling result to Pe
�Da�1, but we have not reached a sufficient separation of
Pe and Da to conclusively show this. The peak reaction rate
was also shown to scale linearly with Da in the slow reaction
limit. Reaction rates fall short of this scaling at higher Da
due to reactant depletion.
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It is important to note that an increase in 
 does not
automatically correspond to an increase in the dimensional

reaction rate 
̃. For example, a decrease in scalar diffusivity

D reduces the dimensional reaction rate 
̃ for both stirred
and unstirred cases due to reduced reactant mixing. How-
ever, this diffusivity decrease increases Pe and therefore 
.
The increase in 
 indicates that the ratio of dimensional
stirred reaction rates to dimensional unstirred rates is larger
at the lower diffusivity, even though both dimensional rates
are lower. On the other hand, an increase in Pe due to in-

creased vortex strength � results in increases in both 
̃
and 
.

Reaction rates were nondimensionalized in a way that
references them to the unstirred case in the slow reaction
limit. Thus, for Da�1, 
 /Da is the factor by which dimen-
sional reaction rates are enhanced by vortex stirring. It turns
out that, at higher Da, the factor by which stirring enhances
reaction rates is even larger than 
 /Da. To see this, consider
the reaction rate curves in Fig. 10�a�. At low Da, the 
 /Da
value for a given Pe is simply the reaction enhancement fac-
tor since 
 /Da for the unstirred case at low Da is unity. As
Da increases, the stirred 
 /Da values decrease, but the un-
stirred 
 /Da values decrease at an even faster rate. Thus, the
ratio of stirred to unstirred reaction rates increases as Da
increases. This effect is shown in Fig. 16, which is the same

as Fig. 10�a� except that each curve is normalized by the
Pe=0 curve. As Pe and Da increase, the relative reaction
enhancement increases dramatically.

The results have important implications for modeling of
systems with initially distinct scalars. Since 
 /Da is a mea-
sure of the reaction rate enhancement produced by stirring
relative to a purely diffusive process, 
peak /Da is always at
the minimum possible value of unity for any purely diffusive
process, even if the diffusivity D is replaced by a much
larger effective turbulent diffusivity. The implication is that
reactions between initially isolated scalars will be underpre-
dicted by any scheme using an effective diffusivity since the
scalar correlations imposed by coherent vortex structures are
not captured.25 This shortcoming is well understood for prob-
lems of the first topological class, but the present study ex-
tends the concept to a specific problem in the second topo-
logical class. Nonetheless, it is easy to imagine
configurations within the second class of problems where
vortex stirring will not enhance reactions, and generaliza-
tions about the effect of stirring on problems within the sec-
ond class are not yet possible.
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