
Theoret. Comput. Fluid Dynamics (1998) 11: 195–211
Theoretical and Computational

© Springer-Verlag 1998

Fluid Dynamics

Volume Visualizing High-Resolution Turbulence Computations1

John Clyne and Tim Scheitlin

Scientific Computing Division, National Center for Atmospheric Research,
Boulder, CO 80307-3000, U.S.A.

Jeffrey B. Weiss

Program in Atmospheric and Oceanic Sciences,
Campus Box 311, University of Colorado, Boulder, CO 80309, U.S.A.

Communicated by J.R. Herring

Received 30 April 1997 and accepted 27 August 1997

Abstract. Using several volume-visualization packages including a new package we developed called Volsh,
we investigate a 25-Gbyte dataset from a 2563 computation of decaying quasi-geostrophic turbulence. We
compare surface fitting and direct volume rendering approaches, as well as a number of techniques for
producing feature-revealing spatial cues. We also study the pros and cons of using batch and interactive
tools for visualizing the data and discuss the relative merits of using each approach. We find that each tool
has its own advantages and disadvantages, and a combination of tools is most effective at exploring large
four-dimensional scalar datasets. The resulting visualizations show several new phenomena in the dynamics
of coherent vortices.

1. Introduction

High-resolution computations of turbulence generate enormous four-dimensional datasets that contain de-
tailed information on turbulent processes. Traditional statistical measures are easy to compute, but in reducing
the data to relatively few numbers they filter out most of the information that has been computed at great
expense. Visualizations of still images reveal important details about the instantaneous structure of the tur-
bulence. Such images are necessarily two-dimensional projections of spatially complex three-dimensional
fields, and it is often difficult to interpret the three-dimensional structure from a single image. Given the
human brain’s ability to process visual information, the most efficient method of examining large datasets
and gaining understanding of turbulence is to view animations of the data. Animations of spatial rotations
of fields at a single instant in time allow us to clarify the three-dimensional structure, while temporal ani-
mations, perhaps combined with spatial rotations, show the evolution of that three-dimensional structure.
The software and hardware to create animations of large datasets is becoming increasingly available and
easy to use. However, there are a number of issues that arise in visualizing high-resolution four-dimensional
datasets. In this paper we describe our experiences in volume visualizing high-resolution computations of
quasi-geostrophic (QG) turbulence, focusing on the relative merits of different visualization techniques and

1 This work was partially supported by NSF ECS-9217394, DOC NA56GP0230, and the National Center for Atmospheric Research,
which is operated by the University Corporation for Atmospheric Research under the sponsorship of the National Science Foundation.
The dataset was calculated under NSF MetaCenter Grant MCA93S010P.

195



196 J. Clyne, T. Scheitlin, and J.B. Weiss

how the resulting animations have increased our understanding of QG turbulence. We discuss a few popu-
lar volume-visualization packages as well as a new volume-visualization tool, Volsh, that we produced to
complement existing software. We expect that the experience we gained in visualizing these data will carry
over to high-resolution computations of other turbulent flows.

The QG equations describe the asymptotic regime of rapid rotation and strong stable stratification and
are thus an appropriate description for large-scale motions in the atmosphere and oceans (Pedlosky, 1987;
McWilliams, 1991). The importance of rotation and stable stratification are measured by the smallness of
the Rossby number,R = U/fL, and the Froude number,F = U/NH, respectively, whereU is a horizontal
velocity scale,f is the Coriolis parameter,L is a horizontal length scale,N is the Brunt–Väisälä frequency,
andH is a vertical length scale. In so-called stretched coordinates, where the vertical dimension has been
scaled byN/f , the equations for decaying QG flow with constant rotation (f-plane) and constantN are

∂tq + J(ψ, q) = D, q = ∇2ψ, (1)

whereq is the potential vorticity,ψ is the streamfunction,J(ψ, q) = ∂xψ ∂yq − ∂yψ ∂xq is the horizontal
Jacobian,D is the dissipation, and∇2 = ∂2

x+∂2
y+∂2

z is the three-dimensional Laplacian. It is important to note
that the QG equations describe a flow with no vertical velocity; fluid parcels are only advected horizontally
via the Jacobian. The streamfunction is related to the horizontal velocity (u, v) by u = −∂yψ, v = ∂xψ.
Despite being two dimensional, the advecting velocity field depends on the entire three-dimensional flow
field through the three-dimensional Laplacian relatingq andψ.

In this paper we discuss visualizing the results of a direct numerical simulation of (1) with periodic bound-
ary conditions in all three directions, starting from random initial conditions. Dissipation is modeled using
a hyperviscous operator,D = −ν∇4q, whereν is a hyperviscosity coefficient. Hyperviscosity allows the
simulation to reach a higher effective Reynolds number than would Newtonian viscosity. In two dimensions,
hyperviscosity does not significantly affect the aspects of the solution we are interested in here; while no
detailed comparisons have been done for the QG equations, there is no reason to believe that hyperviscosity
introduces artifacts. The equations were integrated on grid resolutions of up to 3203; here we discuss visu-
alization of a 2563 computation which shows essentially the same phenomena as the higher-resolution case.
The integration was carried out on a Cray T3D using a parallel multigrid algorithm (Baillieet al., 1995;
Yavneh and McWilliams, 1996).

The statistical properties of QG turbulence and the general form of the coherent structures are now well
established (Charney, 1971; Herring, 1980; Hua and Haidvogel, 1986; McWilliams, 1989; McWilliamset
al., 1994; McWilliams and Weiss, 1994). QG turbulence is characterized by an inverse cascade of energy,
where energy flows from small to large scales. As a result, the energy is removed from the small scales where
dissipation acts, and it is conserved. Enstrophy (mean square vorticity) undergoes a direct cascade to small
scales and is dissipated. Traditional theories of QG turbulence ignore the possibility of coherent structures
and predict isotropic spectra (in stretched coordinates) with an inertial-range energy decay proportional to
k−3 (Charney, 1971).

Previous analysis of these computations showed that QG decaying turbulence deviates significantly from
the theoretical predictions, and that this deviation is associated with the emergence of coherent vortices
(McWilliams, et al., 1994). Before vortex formation the spectrum decays ask−3, but as vortices form the
slope steepens. In addition, the assumption of spectrum isotropy is found to be false.

It is becoming increasingly clear that coherent vortices are the primary cause of the failure of traditional
theories, and that turbulence is strongly influenced by the dynamics and evolution of the vortices. Coherent
vortices also play an important role in determining the transport properties of turbulence by coherently
carrying fluid parcels large distances (McWilliams and Weiss, 1994; Weiss, 1994; Babiano,et al., 1994).
Thus, it becomes important to understand the evolution and interactions of coherent vortices. The best method
to attain a qualitative understanding of vortex behavior, and thus the first step to achieving a quantitative
understanding, is to volume visualize the vorticity field.

Examining still images of the three-dimensional potential vorticity field at numerous times and from
different spatial perspectives resulted in the following view of coherent vortex evolution (McWilliamset
al., 1994; McWilliams and Weiss, 1994). A random initial potential vorticity field self-organizes into a
collection of nearly spherical, but slightly flattened coherent vortices. As the flow evolves, the population of
coherent vortices changes through two primary interactions: horizontal merger and vertical alignment. This
evolution is seen in Figure 1.



Volume Visualizing High-Resolution Turbulence Computations 197

Figure 1. Time evolution of the potential vorticity field showing the emergence and evolution of the coherent vortices. The field is
shown at (a) the initial time,t = 0, (b)t = 5.4, (c)t = 26.9, and (d) the final time,t = 80.0.

Merger occurs when two same-sign vortices at roughly the same vertical level approach closely. They
then merge to form a larger vortex and, in the process, shed vortex filaments, which are stretched out to small
scales, resulting in enstrophy dissipation. Vortex merger is relatively well understood due to its similarity
with merger in two-dimensional turbulence.

Vortex alignment is an intrinsically three-dimensional phenomenon and is poorly understood. When two
same-sign vortices are vertically aligned, they sometimes remain aligned in their subsequent evolution even
though the potential vorticity field falls to very small values between the two vortices. Because the motion
is purely horizontal, the vertically separated vortices can never merge. The process of alignment is poorly
understood and the stability of aligned vortices in response to vertical shears is not known. The temporal
animations discussed here shed significant new light on the alignment process.

As a result of horizontal merger and vertical alignment, the turbulence evolves until it eventually consists
of two columns, one with positive and one with negative potential vorticity. The columns are not barotropic



198 J. Clyne, T. Scheitlin, and J.B. Weiss

(i.e., independent ofz), but consist of individual vortices separated by regions of very small potential vorticity.
It is possible that the vertical scale of the individual vortices within the column is set by an instability recently
studied by Dritschel and de la Torre Ju´arez (1996). The axes of the final columns are not perfectly vertical
but support transverse waves. The animations discussed here show, for the first time, some of the possible
modes and how these oscillations are excited.

Because the previous analysis relied on static images, the process was quite tedious and only a small
fraction of the computed data could be viewed. Further, it did not reveal features of the dynamics that
only become apparent when viewing temporal animations. In Section 2 we review the basics of volume
visualization and present the framework for the discussion in Section 3 of the environment and tools used
to visualize the QG data. In Section 4 we present the results of our analysis and describe how volume
visualization has yielded new insights into the dynamics of QG turbulence.

2. Volume Visualization

Volume visualization is the subfield of scientific visualization that is concerned with the representation,
manipulation, and display of scalar fields in three dimensions. In essence, volume visualization is a process
for projecting a three-dimensional volume of data onto a two-dimensional image plane for the purpose of
providing insight into the features and structures contained within. Though its origins are strongly rooted
in the medical field, volume-visualization techniques may be applied to scalar data from any scientific
discipline. The algorithms covered here are generally constrained to uniformly spaced, scalar data on a
Cartesian grid. Papers addressing volume visualization of nonuniformly structured, or unstructured, data
may be found in (IEEE Computer Society Press, 1996).

2.1. Volume Visualization Pipeline

There are two fundamental volume-visualization approaches currently in practice: surface fitting (SF), also
called isosurfacing or surface-based rendering, and direct volume rendering (DVR). In SF, a threshold value
is specified and a surface detector applies this value to the data volume and “fits” geometric primitives to the
isovalued surface. The geometric primitives may then be displayed using conventional geometry rendering
techniques. SF is considered an indirect approach because of the required conversion of volume data elements
into geometric primitives prior to rendering (Kaufman, 1991). DVR methods, in general, require no such
intermediate representation: the sample array is projected directly to the image plane without first fitting
geometric primitives to the data (Levoy, 1988).

Both SF and DVR share a number of processes, called thevolume-visualization pipeline(Kaufman, 1991).
This pipeline attempts to capture the logical sequence of operations necessary to visualize a volume of data.
In practice, the order in which these stages are presented may differ, or in some implementations, multiple
stages may be combined. The intent here is not to provide a rigorous architecture, but only to provide a sense
of the processes involved.

Lastly, the reader should bear in mind that to produce artifact-free, accurate visual representations of the
data, it is imperative that at each step in the pipeline every effort is made to preserve the natural continuity
of the data (Drebinet al., 1988). Nonlinear operations, such as thresholding or all-or-none decisions, are to
be avoided wherever possible.

The first step in the volume-visualization pipeline is data preparation, beginning with data acquisition. The
QG data discussed herein were obtained through numerical simulation of the fluid equations (1) followed by
a discretization of the potential vorticity field from floating-point values down to byte values, i.e., an integer
from 0 to 255. In the language of volume visualization, the data samples are now referred to asvoxels.1 A
voxel, orvolume element, is the three-dimensional analogy to apixel, or picture element.

In the next step the voxels must be classified. Classification, the most user-demanding stage of the
pipeline, is the process of determining the visibility and possibly the appearance attributes (e.g., color) of

1 There is some variation in the definition of a voxel with regard to its dimensionality throughout the volume-visualization literature.
In the context of this paper, a voxel refers to a dimensionless sample point, located at an integer grid coordinate.



Volume Visualizing High-Resolution Turbulence Computations 199

the individual voxels. Classification determines which features or structures in the data will be visible in the
resulting image, and in the case of DVR, the classification process may also partially determine how those
features will appear.

For SF techniques, classification implies selecting a threshold value that defines the surface of interest.
For DVR techniques, classification implies defining a mapping between voxel values and opacity values, and
possibly between voxel values and appearance attributes as well. This mapping is most often accomplished
via a transfer function table (e.g., a color or opacity map). By choosing appropriate transfer functions one
can highlight or hide important aspects of the data (one also runs the risk of finding only what one is looking
for). Transfer functions should generally be constructed to be smooth and continuous if the continuity of the
data itself is to be preserved.

Classification is typically a highly interactive procedure. Choices are made, results are checked, and the
process is repeated. Because the results depend so sensitively on the transfer function, we found that several
different transfer functions are sometimes required to get an accurate picture of the data. Familiarity with
the data can greatly reduce the number of iterations involved (Elvins, 1992).

Following classification, voxels are mapped into display primitives. With SF, voxels are mapped into
geometric primitives (e.g., points, lines, polygons). Most common SF techniques are based on the Marching
Cubes algorithm (Lorensen and Cline, 1987), which represents surfaces as a triangle mesh. With DVR, the
voxels themselves are the display primitives: no mapping is required.

Display primitives created during the mapping step are projected to the two-dimensional image plane.
Projection of geometric primitives is simply performed using conventional three-dimensional geometry
rendering. Direct projection of volume primitives, required by DVR methods, necessitates the use of special
volume-projection algorithms, loosely referred to as ray-casting (Drebinet al., 1988; Lacroute and Levoy,
1994; Levoy, 1988; Sabella, 1988; Upson, 1988; Westover, 1990).

The projection stage determines which display primitives are visible to the observer, as well as their loca-
tion on the two-dimensional image plane. Shading and illumination, the last step in the volume-visualization
pipeline, determines the visible light contribution (color and intensity) each primitive makes toward the final
image. Shading and illumination algorithms vary widely in how they impact the appearance of the final
image.

Illumination models, which model the intensity of light at a point, are based on the premise that the
appearance of an object is determined by the light the object reflects, transmits, and emits (Foleyet al.,
1990). Shading algorithms compute the visible light that reaches an observer by employing an illumination
model at select locations on the visible display primitives. The two most common shading models found
in practice are Gouraud shading (Gouraud, 1971) and Phong shading (Bui-Tuong, 1975). Phong shading
typically yields vastly superior results over Gouraud.

Illumination models are classified as either local or global. Global illumination models attempt to model
the complex interaction of light with all visible surfaces. They are capable of creating global shading
effects such as shadows and reflections. However, global models are significantly more computationally
expensive, not necessarily advantageous for scientific purposes, and are consequently rarely used in volume
visualization. See Sobierajski and Kaufman (1994) for an example of one volume renderer that employs
global illumination.

Local illumination models are not able to capture global lighting effects but they are simple to implement
and their computational costs are low enough to permit interactive shading (their principal attraction for
use in visualization). Local illumination models perform their calculations using only localized information
such as a surface normal, a point light source, and viewer position. Illumination models that take advantage
of surface normal information are essential if the three-dimensional shape of a feature is to be accurately
represented. In volume visualization, surface normals are generally recovered from the data by using a local
gradient estimator. Central-differencing is adequate for most purposes and is probably the most common
technique. More expensive methods, such as spline-based approaches, are also used (Bentumet al., 1996).

2.2. Surface Fitting Versus Direct Volume Rendering

While the volume-visualization pipelines for SF and DVR are similar there are significant differences between
these two volume-visualization methods. By using intermediate geometric primitives, SF techniques offer



200 J. Clyne, T. Scheitlin, and J.B. Weiss

one important advantage over DVR: the ability to project and shade intermediate geometric primitives using
conventional graphics hardware. Commercial graphics accelerators, aimed at speeding up the rendering of
geometric primitives, are inexpensive and widely available. With current technology it is possible to render
static or even time-evolving geometric representations of complex surfaces interactively for moderately
large (2563) datasets.

DVR techniques, on the other hand, are memory and computationally expensive. Commercial products for
accelerating the task are virtually nonexistent. Interactive rendering of static datasets is difficult to achieve.
Interactive rendering of time-evolving data is possible only on the largest of supercomputers, and only with
moderately sized individual time steps.

However, despite its computational costs, DVR offers several advantages over SF techniques. Amorphous
features such as clouds or fog simply cannot be represented as surfaces. DVR handles these features nicely.
The surface detection process itself is error prone, particularly if the original data do not contain clear
surface boundaries. Visualization artifacts, particularly in high-frequency data, such as spurious surfaces
(false positives) and erroneous holes (false negatives), are possible. Useful information that does not lie on
a chosen surface is lost; only a small subset of the data is actually presented. Lastly, geometric primitives
can only approximate a surface.

2.3. Spatial Cues

Perhaps the greatest challenge of any volume-visualization approach is to represent unambiguously the
spatial relationships of a three-dimensional object, or objects, on a two-dimensional display. Volumetric
display technology is an active area of research (Blundellet al., 1994; Lucente and Galyean, 1995). However,
no viable commercial volumetric displays currently exist. To discern the relative depth (distance from the
viewer) of objects on the screen unambiguously, a number of spatial cues may be used. We conclude this
section with a brief listing of some of the spatial cues used by the human visual system and discuss how
these cues may be applied in computer graphics. For further information, see McAllister (1993).

Motion parallax: Motion of objects relative to each other can provide a strong sense of relative object
depth. For example, as we move our head from left to right, or up and down, objects that are close appear
to move more than objects that are further away. Motion parallax may be easily achieved in visualization
by simply transforming the view point in an animation sequence (e.g., rotating about an axis parallel to the
image plane).

Binocular disparity: Because of the approximate 2.5-in. horizontal separation between the left and right
eye, each of our eyes has a slightly different viewpoint. The closer an object, the more pronounced this
difference. Binocular disparity can be simulated by rendering separate left and right eye images and using
special stereo display technology to view the left/right pairs. Binocular disparity is considered one of the
strongest spatial cues (Julesz, 1971).

Shading: The amount of light reflected from an object toward the eye is strongly related to the object’s
surface normal, the location of the viewer, and the location of any light sources. The light reflected from a
curved object varies depending on the surface normal at a given point, giving strong clues about the object’s
shape. Shading cues may be taken advantage of by using illumination models that incorporate surface-normal
information, such as the Phong illumination model (Bui-Tuong, 1975).

3. Visualizing Quasi-Geostrophic Turbulence

In this section we first explore some of the QG data characteristics that influenced which visualization
methods and techniques we chose for processing the QG data. Next we discuss the different visualization tools
that were used and highlight some of their strengths and weaknesses in visualizing large, high-resolution,
four-dimensional turbulence datasets. Finally, we discuss what visualization products were generated and
mention some of the special tools and hardware that were employed to process and view the stereo imagery
output.



Volume Visualizing High-Resolution Turbulence Computations 201

3.1. Data Characteristics

Volume-visualization tools typically operate on small integer quantities. To accommodate the visualization
process, the QG computation performed a quantization of the floating-point data to produce single byte, scalar
values. Additionally, the temporal resolution of the model output was increased 30 times what traditional
statistical processing would require to facilitate the creation of smooth visual animations. Thus the total size
of the QG data was approximately 25 Gbytes, consisting of 1492 time steps of byte data dimensioned 2563

on a regular, Cartesian grid. Even with this reduction in numerical precision, the data had to be subsampled
or converted to other formats as part of the data preparation step, depending on which visualization tools
were used to process the data. For some tools, the data could be used without any preprocessing.

The QG data were computed at the Pittsburgh Supercomputing Center and were transferred to the National
Center for Atmospheric Research for analysis across the Internet in stages, a process that took approximately
10 days.2 As the data arrived, they were immediately archived to a tape-based mass storage system to free
up local disk space for the next stage of the transfer. Because of the large data size, this model of processing
the data in stages was a persistent issue throughout each step of the visualization process. Consequently, all
of the tools and procedures that we used had to accommodate this model.

The QG data can be characterized by their continuous nature and the existence of opposite-signed potential
vorticity values contained within the stably stratified turbulent volume. Another important characteristic is
the vorticity evolution that occurs as the data evolve from random initial conditions into well-defined coherent
vortices at the end of the animation. It was important to consider how different visualization approaches
would handle both the complex structures that existed at the beginning of the time series and the simpler,
coherent structures that formed at the end.

3.2. Visualization Approaches

We describe three approaches that we used to visualize these data using the Brick of Bytes software (version
1.2), Volsh (version 1.0), and Vis5D (version 4.2).3 Brick of Bytes (Bob) is logically a direct volume renderer.
However, contrary to our previous definition, Bob does not treat voxels as display primitives. For each voxel,
Bob draws a semitransparent polygon-oriented perpendicular to the dominant viewing axis. This “trick”
allows Bob to take advantage of ubiquitous hardware geometry accelerators. Bob’s illumination model is very
simple: light sources are not supported and no gradient information is used. Consequently, objects rendered
with Bob appear flat, lacking depth. Bob has a graphical user interface and can be considered interactive
to some degree: viewpoints may be altered dynamically, and a dataset can be subsampled interactively, but
moving temporally through the data is expensive. Bob’s greatest assets are its speed and graphical user
interface, which make Bob ideally suited as a volume-visualization browsing tool.

Bob runs only on Silicon Graphics Inc. (SGI) systems that have hardware support for alpha blending
and Z-buffering. To maximize performance, Bob keeps three copies of the data in memory (one for each
principal axis). A voxel in Bob is a single byte. Thus, Bob’s memory requirements are approximately three
times the number of data points (voxels).

Bob performs classification with an interactive color and opacity map editor called Icol. This is an easy-
to-use utility for defining transfer functions, changing color and opacity values within the volume rendering,
and for precisely adjusting image characteristics to highlight areas of interest.

Since the QG data ranged from relatively large negative potential vorticity values on one end of the
spectrum to relatively large positive potential vorticity values on the other end, a two-hue approach was used
in the color map. One end of the color map was set to a continuous range of red hues and the other end to
blue hues so that the red hues mapped areas of negative potential vorticity, and the blue hues mapped areas
of positive potential vorticity. The opacity map controlled the transparency coefficient applied to each value
in the data volume. Both ends of the opacity map were set to nearly opaque values, whereas the center of

2 As a subsequent experiment to test ATM network connectivity between the two locations, these same data were transferred across
the vBNS in just a few hours.

3 As this paper goes to press, the Brick of Bytes (Bob) software is freely available from the Army High Per-
formance Computing Research Center (http://www.arc.umn.edu/gvl-software), Volsh is available from the National Center
for Atmospheric Research (http://www.scd.ucar.edu/vg/Software), and Vis5D is available from the University of Wisconsin
(http://www.ssec.wisc.edu/˜billh/vis5d.html).



202 J. Clyne, T. Scheitlin, and J.B. Weiss

Figure 2. The two sets of transfer functions used in the ohter figures. The top pair are the color and transparency transfer functions used
to render images without haze, and the bottom pair are the functions used to render images with haze. The transfer functions only differ
in bytes 97–123, and 132–158. In each image the potential vorticityq is scaled by its maximum absolute valueqmax so thatq = −qmax

is scaled to byte 0 andq = qmax is scaled to byte 255.

the map was set to a range of transparent values (see Figure 2). Therefore, areas of high potential vorticity
were rendered mostly opaque giving an appearance of solid surfaces in the volume, and areas of mid to low
potential vorticity were mapped to a semitransparent coefficient giving these areas a cloudy appearance in
the final rendering. Areas of very low potential vorticity were mapped to an opacity coefficient of either zero,
or a small value, and were thus rendered either completely transparent (without haze) or slightly transparent
(with haze). At times early in the simulation the field is so complex that visibly rendering regions of low
potential vorticity would completely obscure the structures; here the transfer functions without haze are
used. At later times, the field simplifies enough that transfer functions with haze are used. We note that our
transfer maps are somewhat discontinuous and that these abrupt transitions would have led to artifacts in
the imagery were it not for the relatively high spatial resolution of the QG data.

Though Bob is interactive and well suited for data browsing, other tools were needed to perform nonin-
teractive, production visualization tasks. We developed a new volume renderer, named Volsh, to meet these
needs (see Figure 3(a), (d)). Volsh is designed to be compatible with Bob, allowing us to share the same
data formats, color maps, and opacity maps between the two applications. Volsh works hand-in-hand with
Bob in that we used Bob initially to explore the data interactively and to experiment with appropriate color
maps and viewing angles. Once these were determined, the maps were saved and the viewing angles were
recorded. These parameters were then fed into Volsh, and the full sequence was run out as a batch production
process.

Volsh is a true direct volume renderer: no intermediate display primitives are necessary. The Volsh
projection algorithm is highly optimized, based on Lacroute’s Shear-Warp factorization rendering library,
VolPack (Lacroute and Levoy, 1994). Volsh supports a local lighting model with gradient shading, i.e., Phong
(Bui-Tuong, 1975). Volsh is noninteractive and uses a scriptable user interface based on the Tcl scripting
language (Ousterhout, 1994). We saved the visualization parameters to a Tcl file and ran the rendering
process across multiple systems, allowing us to divide the rendering time by the number of available CPUs
currently at our disposal.

Volsh, like most DVRs, performs all rendering in software: no special graphics hardware is required.
Volsh stores surface gradient information for each voxel in the dataset. Thus Volsh’s memory requirements
are four times the number of voxels: four bytes are used for each voxel.

The last visualization experiment that we conducted used Vis5D (see Figure 3(c)), a general-purpose
visualization utility, aimed at the atmospheric sciences, that supports surface fitting based on Marching
Cubes (Lorensen and Cline, 1987). Display primitive rendering and shading are performed using the OpenGL
graphics language, which supports Gouraud shading and Phong illumination. Vis5D is portable to any system
supporting OpenGL. More importantly, Vis5D is the most interactive of all the tools we tested. It supports
a graphical user interface and permits temporal exploration of the data in real time.



Volume Visualizing High-Resolution Turbulence Computations 203

Figure 3. Identical datasets rendered with different tools and transfer functions. (a) Volsh DVR with haze. (b) Bob DVR with haze.
(c) Vis5D isosurface rendering. (d) Volsh DVR without haze. (e) Bob DVR without haze. (f) NCAR Graphics TDPACK isosurface
rendering.



204 J. Clyne, T. Scheitlin, and J.B. Weiss

We ran Vis5D on a 2-processor SGI Onyx system with 0.5 Gbyte of main memory and Infinite Reality
Graphics. Even with a relatively powerful visualization platform like this, the rendering time was a crucial
issue, especially when using Vis5D as an interactive tool. At full data resolution (2563), it took 40 min. to
extract isosurfaces for the least polygonally complex period (the last 100 time steps) of the model run. To
reduce the preprocessing time and to improve rendering performance, we subsampled the data down to 1283.
At this lower resolution, it took only 5 min. to extract the isosurfaces and interactive rendering performance
increased noticeably for the same 100 time steps.

To use Vis5D with the QG data, we had to increase the data size parameters in the Vis5D source code
to accommodate larger data structures and internal arrays. We also added code to support stereo rendering
and capture features. This gave us the ability to explore interactively the QG data in stereo mode while
animating and to save the stereo imagery to files for playback later. Vis5D also provided features for adding
multiple colored-slice planes at any angle and orientation in the data volume. These planes complemented
the isosurface structures, helped show the continuous nature of the potential vorticity field, and better defined
spatial relationships within the volume.

We also experimented briefly with a new NCAR Graphics utility named TDPACK (see Figure 3(f)). Like
Vis5D, TDPACK also uses a surface-fitting algorithm, and it can be used in combination with other NCAR
Graphics routines to label and annotate an image extensively. However, because TDPACK is strictly a batch
utility with a complex Fortran program interface, we did not use this tool for QG data analysis to any great
extent.

3.3. Visualization Products

For each of the visualization approaches discussed above, we saved either mono or stereo full-color images
with a minimum of 480×480 image resolution. These images were then filtered, scaled, and quantized using
a variety of image processing and movie composition tools to create mpeg and jpeg animation files, video
(Betacam, S-VHS, and VHS) animations, and a variety of still-image formats for sharing results locally and
on the Internet.

We used CrystalEyes active LCD stereographic hardware and a large screen front wall projection system
for viewing the stereo imagery. With this technology, we had the option of viewing the imagery interactively
with the stereo-enhanced software visualization packages, or we could play back the captured stereo images
as digital animations. For stereo playback, we used a locally developed digital movie player tool that displays
multiframe Sun-indexed image files.

4. Results

This section discusses the effectiveness of the various visualization approaches and tools employed in study-
ing the QG calculation. We address the importance of interactive and production visualization capability,
review the depth cues that help to resolve ambiguities in the spatial relationships of the time-evolving vor-
tices, and conclude by discussing some of the new findings in QG turbulence made possible by the use of
scientific visualization.

Quick-look, interactive visualization capability was critical to the visual analysis of the QG calculation.
The ability to change classification functions quickly and easily, move forward or backward in time, change
viewpoints, and zoom in and out on features of interest was essential. Vis5D, the most interactive of
all the visualization utilities employed, proved to be a powerful exploration tool. Isosurface extraction,
using opposite-signed isosurface values, clearly revealed the positive and negative rotating vortices in the
QG dataset. A concern with Vis5D was that with the reduced resolution imposed by system memory
requirements, we might lose too much information and not be able to create an enlightening visualization.
However, even at the reduced resolution, we produced imagery that revealed important details about the
turbulent structures. The horizontal vortex merger, vertical alignment, vortex filament shedding, and other
QG turbulence dynamics were all clearly evident.

Though SF techniques provided much insight into the large-scale dynamics of the QG simulation, the
isosurface approach was not well suited for representing the continuous range of data between large positive



Volume Visualizing High-Resolution Turbulence Computations 205

and negative scalar values. Witness the wispy filaments visible in Figure 3(a), (b) and their absence in Figure
3(c)–(f). Note that the images in Figure 3(d), (e) were created with DVR tools using transfer functions
without haze.

The QG data are highly continuous, and selection of isosurface values for surface fitting was somewhat
arbitrary. Unlike less continuous data, where clear boundaries between features exist, such as the transition
from tissue to bone in a medical computed tomography (CT) dataset, the QG data possess no distinct, implicit
surfaces. Thus, while arbitrarily chosen isovalues show overall vortex organization, many phenomena were
missed. Additionally, although isosurface renderings of the data easily resolved the simple vortex structures
at the middle and end of the animations, this approach was not appropriate for the early time steps. The
polygonal data structures that were needed to represent the numerous surfaces appearing early in the evolution
were too large and complex to render efficiently, especially with interactive visualization packages. Thus a
DVR approach, which neither stores nor processes polygonal information and which can effectively visualize
highly continuous data, was still required. We note, however, that the relative crudeness of SF is partially
what made the resulting images insensitive to the necessary subsampling.

The Army High Performance Computing Research Center’s Bob software provided us with a quick-look,
DVR capability that overcame the deficiencies of SF. Though not as interactive as Vis5D (time-evolutions
are not smoothly presented by Bob in real time), Bob proved to be an excellent tool for performing data
classification (creating color and opacity maps), exploring individual time steps, and testing viewing angles.

Despite these advantages, Bob was not particularly well suited for processing the entire 1492-frame
sequence at once. Bob does not have adequate state saving or scripting capabilities, so it was not possible to
restart the rendering process using the exact same viewing parameters. For this reason, it was also impossible
to multiprocess the job across several different systems to reduce the amount of wall-clock time required
to render the entire animation sequence. Without state-saving or scripting functionality, this visualization
approach was time consuming and error prone. If the inherently batch-oriented operation had to be interrupted
for any reason, then the whole process had to be restarted at the beginning for the viewing control parameters
(e.g., viewing angles) to be identical in each frame of the animation. This was a particularly important issue
since it took approximately 60 h to render the entire animation on a Silicon Graphics Indigo 2 system with
Extreme graphics and a single 150-MHz R4400 processor. It was for these reasons that it was imperative
for us to have the batch production processing capability provided by Volsh. Volsh, with its Tcl scripting
interface, could easily be stopped and subsequently restarted precisely where it left off.

Easy-to-use exploratory browsing capability, combined with tightly controllable batch production render-
ing played a significant role in the QG analysis. Also of importance was the ability to project the data onto a
two-dimensional image plane in a manner that preserved to the greatest degree possible the three-dimensional
nature of the data. Several spatial cues were employed in the QG visualization to expose unambiguously
the spatial relationships between vortices, and, to a lesser degree, to exhibit the spatiality, or shapes, of the
individual vortices themselves.

The most effective technique for visualizing the spatial relationships between vortices proved to be
stereo viewing. Monoscopic animations alone of the time-varying data, particularly from a fixed viewpoint,
were not sufficient to resolve the spatial relationships of the evolving structures. Since the main physical
evolution of QG turbulence involves increasing clustering of vortices, it is essential to distinguish which
vortices are actually close together from those that merely appear close due to the projection onto the image
plane. Stereo viewing of prerecorded animation sequences, interactive visualization sessions, and even
static images greatly clarified the relative positions of vortices, allowing us to determine the true evolving
three-dimensional spatial structure.

Shading methods whose illumination models took into account local gradient approximations were critical
to portraying the three-dimensional shape of the individual vortices correctly. The interactive DVR software,
Bob, incorporates only the simplest of lighting models; no surface gradient information is used. Hence,
individual vortices appeared flat and featureless. The spherical shape of vortices is undetectable in the
Bob renderings, and clearly visible in the Volsh renderings, which use lighting models supporting surface
gradients (see Figure 4). The Volsh images also show more clearly the structure of the low-level vorticity
rendered with haze.

By viewing stereo animations of the evolution, we were able to identify a number of events that shed
light on the dynamics of vortex evolution. At early times there are a large number of vortices, and from still
images it is nearly impossible to determine how the vortices are vertically aligned. By visualizing the field



206 J. Clyne, T. Scheitlin, and J.B. Weiss

Figure 4. (a) Bob image with no
lighting model. (b) Volsh image
with Phong illumination model.



Volume Visualizing High-Resolution Turbulence Computations 207

at a single time from several different perspectives and examining subvolumes, one can, with much effort,
determine that some vortices seem to be grouped into vertically aligned clusters. However, it is impossible
to tell whether these clusters evolve together or not.

Viewing stereo animations allowed us to see the nature of the vortex cluster dynamics at early times.
As an example, the evolution of two vertically aligned vortex clusters at early times is seen in the Volsh
renderings in Figure 5. In Figure 5(a), two separate clusters are identified by changing their colors: a green
cluster containing two vortices and a yellow cluster containing four vortices. Both clusters have negative
potential vorticity and were originally red. The clusters evolve coherently and are eventually brought close
together as seen in Figure 5(b), (c). The top two vortices of the yellow cluster then merge with the green
cluster, resulting in a single cluster, colored yellow (Figure 5(d)). In subsequent evolution this cluster is
pulled apart by vertical shear (Figure 5(e), (f)), with little change in the component vortices. This is the first
evidence that vortex alignment can be reversible, which is surprising since vortex merger is known to be
irreversible. It is unlikely that this would have been discovered in this dataset without viewing animations
of the evolution.

Another phenomenon first seen in the animations is the method by which the final columns of individual
vortices assemble themselves. In Figure 6(a) two separate blue vortex clusters are seen, one roughly in the
top third of the domain and the other in the lower two-thirds. The two clusters are nearly vertical. In Figure
6(b) the two clusters have been advected so that their horizontal separation is small but nonzero. Figure 6(c)
shows that the two clusters join into a single column by tilting of the clusters. The result is a single cluster
spanning the entire height of the domain. Note that the final blue column is not completely aligned in the
vertical, but it supports a transverse wave. The orientation of this wave evolves in time, as seen by comparing
Figure 6(c) with Figure 6(d).

The animations described here allowed us to see the excitation of transverse waves on the otherwise
vertically aligned clusters. One excitation mechanism is described above: two horizontally separated clusters
join through tilting. Another mechanism is that a single vortex (or a small cluster) can approach a column
and pull the portion of the column at its vertical level out of alignment. When the single vortex is either
advected away or merges with the column, the result is a column with a wave. The column acts like a string
that is “plucked” by the single vortex.

Two different types of waves are visible on the final red and blue columns. Figure 6(d) shows that the
wave on the blue column has a much larger amplitude. By viewing an animation from above (Figure 6(e),
(f)), one sees that the wave on the blue column is in a single plane that rotates in time. The wave on the
red column, however, is not in a single plane, but is rather in a helix that rotates in time. The waves here
are necessarily transverse waves. Longitudinal waves are not allowed because the QG equations (1) do not
allow vertical motion. Relaxing the QG approximation to allow gravity waves would presumably introduce
longitudinal waves.

5. Conclusion

Currently, there is no single visualization tool that adequately meets all of our volume visualization needs.
To examine a single time step in sufficient detail interactively, we found that the Bob software was the
most effective. Bob’s provision for quick data subsampling helped speed up interactive rendering times
and allowed us to focus on a particular data subdomain. Vis5D provided other features, such as slice
planes that could be drawn at any angle in the volume and then animated. More importantly, Vis5D’s less
computationally expensive surface fitting techniques permitted us to explore long time-evolving sequences
interactively, provided the surfaces were not too complex. The visual fidelity sacrifices required by these
hardware-dependent, interactive tools were acceptable for initial data interrogation purposes. Interactivity
greatly facilitated the selection of appropriate classification functions and viewpoints, which could later be
used by the batch-oriented, higher-quality rendering approaches necessary to capture all of the features of
interest in the QG calculation accurately.

For batch processing the data, we used Volsh. This package, with its support for gradient-based lighting
models and DVR, offered the greatest visual fidelity. Volsh also provided a Tcl scripting interface that was
imperative for running out long sequences in a batch environment over multiple processors.



208 J. Clyne, T. Scheitlin, and J.B. Weiss

Figure 5. Evolution of vortex clusters. (a) A cluster of two vortices (green) and a cluster of four vortices (yellow) att = 10.1. Both
clusters have been recolored from the original red color. (b) The cluster move coherently but separately,t = 11.6. (c) At t = 12.9
the clusters are relatively close. (d) The top two vortices of the yellow cluster merge with the green cluster, leaving a single cluster at
t = 14.7. (e) The cluster begins to be pulled apart att = 18.4. (f) By t = 21.7 there are two separate clusters, each with two vortices.



Volume Visualizing High-Resolution Turbulence Computations 209

Figure 6. Two independent blue clusters att = 46.1 (b) The blue clusters are closer together att = 48.9. (c) By t = 52.7 the clusters
have aligned, forming a single blue column spanning the entire domain. (d) Byt55.8 the column has rotated. (e) View from above at
t = 53.7. (f) View from above att = 55.8.



210 J. Clyne, T. Scheitlin, and J.B. Weiss

Determining which tool to use depended on whether we were browsing the data interactively or generating
movie images in batch mode. We found that the tools tended to complement one another, and we used each
one to process the data in a different way.

Viewing the entire suite of visualizations made it possible to isolate several phenomena in QG turbulence
that had never been seen before. We discovered that the alignment of vortices into vertical clusters is a
reversible process, and thus unlike irreversible horizontal vortex merger. These clusters form at relatively
early times and are coherently advected. The joining of clusters into larger columns excites deformations on
the column which can then oscillate in variety of patterns. These oscillations can also be excited by isolated
vortices which are advected near the column, and then either advected away or merge into the column.

The visualization tools and approaches outlined in this paper were well suited for analysis of the QG data.
We expect that other fluid datasets would also benefit from the techniques described. However, the QG data,
which is strongly dominated by the presence of coherent structures late in the simulation, was an excellent
candidate for exploration with SF techniques. Other, less feature-rich datasets, may find SF techniques not
as useful. DVR should work well for these more amorphous data.

Finally, the tools and the visualization platforms that we are using today are adequate for processing
and visualizing turbulence datasets with a resolution on the order of 2563. However, it should be noted that
these data were calculated in 1995, and the current state-of-the-art problem domain has grown to 10243.
Our current visualization tools would be stretched to their capacity and perhaps even beyond if we tried to
visualize a dataset of this size with a temporal resolution similar to the QG data. The volume-visualization
packages available today are lacking in terms of their ability to handle and process the turbulence data
sizes that are currently being generated. We anticipate that improvements in visualization tools will keep
pace with the size of the datasets, but will not overtake them. Thus, volume visualization of high-resolution
turbulence computations will continue to require a variety of tools, each having its own niche.

6. Acknowledgments

We would like to acknowledge James McWilliams, Irad Yavneh, and Clive Baillie for their work in helping
create the dataset used in this paper, Don Middleton and Hongqing Wang for their Vis5D stereo development,
Dave Kennison for his NCAR Graphics TDPACK imagery contributions, and Brian Bevirt for his editorial
comments.

References

Babiano, A., Boffetta, G., Provenzale, A., and Vulpiani, A. (1994). Chaotic Advection in Point Vortex Models and 2D Turbulence,Phys.
Fluids, 6, 2465–2474.

Baillie, C.F., McWilliams, J.C., Weiss J.B., and Yavneh, I. (1995). Implementation and Performance of a Grand Challenge 3D Quasi-
Geostrophic Multi-Grid Code on the Cray T3D and IBM SP2,Proceedings of Supercomputing ’95, ACM Press, New York.

Bentum, M.J., Lichtenbelt, B.A., and Malzbender, T. (1996). Frequency Analysis of Gradient Estimators in Volume Rendering,IEEE
Trans. Visual. Comput. Graphics, 3, 242–253.

Blundell, B.G., Schwarz A.J., and Horrell, D.K. (1994). The Cathode Ray Sphere: A Prototype System to Display Volumetric Three-
Dimensional Images,Opt. Engrg., 1, 180–186.

Bui-Tuong, P. (1975). Illumination for Computer Generated Pictures,Comm. ACM, 6, 311–317.
Charney, J.G. (1971). Geostrophic Turbulence,J. Atmos. Sci., 28, 1087–1095.
Drebin, R.A., Carpenter, L., and Hanrahan, P. (1988). Volume Rendering,Comput. Graphics, 4, 51–58.
Dritschel D.G., and de la Torre Ju´arez, M. (1996). The Instability and Breakdown of Tall Columnar Vortices in a Quasi-Geostrophic

Fluid, J. Fluid Mech., 328, 129–160.
Elvins, T.T. (1992). A Survey of Algorithms for Volume Visualization,Comput. Graphics, 3, 194–201
Foley, J., van Dam, A., Feiner, S., and Hughes, J. (1990).Computer Graphics Principles and Practices, Addision-Wesley, Readwing,

MA.
Gouraud, H. (1971) Continuous Shading of Curved Surfaces,IEEE Trans. Comput., 6, 623–629.
Herring, J.R. (1980). Statistical Theory of Quasi-Geostrophic Turbulence,J. Atmospheric Sci., 37, 969–977.
Hua, B.L., and Haidvogel, D.B. (1986). Numerical Simulations of the Vertical Structure of Quasi-Geostrophic Turbulence,J. Atmospheric

Sci., 43, 2923–2936.
IEEE Computer Society Press (1996).1996 Symposium on Volume Visualization, ACM, New York.
Julesz, B. (1971).Foundations of Cyclopean Perception, University of Chicago Press, Chicago, IL.



Volume Visualizing High-Resolution Turbulence Computations 211

Kaufman, A. (1991).Volume Visualization, IEEE Computer Society Press, Los Alamitos, CA, pp. 1–9.
Lacroute, P., and Levoy, M. (1994). Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transform,Computer

Graphics, Proceedings of SIGGRAPH ’94, pp. 451–457.
Levoy, M. (1988). Display of Surfaces from Volume Data,IEEE Trans. Comput. Graphics Appl., 5, 29–37.
Levoy, M. (1990). Efficient Ray Tracing of Volume Data,ACM Trans. Graphics, 3, 245–261.
Lorensen, W.E., and Cline, H.E. (1987). Marching Cubes: A High Resolution 3D Surface Construction Algorithm,Computer Graphics,

Proceedings of SIGGRAPH ’87, pp. 163–169.
Lucente, M., and Galyean, T.A. (1995). Rendering Interactive Holographic Images,Proceedings of SIGGRAPH ’95, pp. 387–394.
McAllister, D.F. (ed.) (1993).Stereo Computer Graphics and Other True 3D Technologies, Princeton University Press, Princeton, NJ.
McWilliams, J.C. (1989). Statistical Properties of Decaying Geostrophic Turbulence,J. Fluid Mech., 198, 199–230.
McWilliams, J.C. (1991). Geostrophic Vortices. InNonlinear Topics in Ocean Physics, Proceedings of the International School of

Physics, Course CIX(A.R. Osborne, ed.), North-Holland, New York, pp. 5–50.
McWilliams, J.C., and Weiss, J.B. (1994). Anisotropic Geophysical Vortices,CHAOS, 4, 305–311.
McWilliams, J.C., Weiss, J.B., and Yavneh, I. (1994). Anisotropy and Coherent Vortex Structures in Planetary Turbulence,Science,264,

410–413.
Ousterhout, J. (1994).Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA.
Pedlosky, J. (1987).Geophysical Fluid Dynamics, Springer-Verlag, New York.
Sabella, P. (1988). A Rendering Algorithm for Visualizing 3D Scalar Fields,Comput. Graphics, 4, 51–58.
Sobierajski, L.M., and Kaufman, A.E. (1994). Volumetric Ray Tracing,Proceedings of 1994 Symposium on Volume Visualization, ACM

Press, New York, pp. 11–25.
Upson, C., and Keeler, M. (1988). V-BUFFER: Visible Volume Rendering,Comput. Graphics, 4, 59–64.
Weiss, J.B. (1994). Hamiltonian Maps and Transport in Structured Fluids,Phys. D, 76, 230–238.
Westover, L. (1990). Footprint Evaluation for Volume Rendering,Computer Graphics, 4, 367–376.
Yavneh I., and McWilliams, J.C. (1996). Multigrid Solution of Stably Stratified Flows: The Quasigeostrophic Equations,J. Sci. Comput.,

11, 47–69.


