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Revisiting freely decaying two-dimensional turbulence
at millennial resolution

A. Braccoa)

Istituto di Cosmogeofisica del CNR, corso Fiume 4, I-10133 Torino, Italy

J. C. McWilliams
Institute of Geophysics and Planetary Physics, University of California at Los Angeles, Los Angeles,
California 90095-1567

G. Murante
Osservatorio Astronomico di Torino, I-10025, Pino T.se, Italy

A. Provenzale
Istituto di Cosmogeofisica del CNR, corso Fiume 4, I-10133 Torino, Italy

J. B. Weiss
PAOS, University of Colorado, Boulder, Colorado 80309

~Received 28 October 1999; accepted 12 July 2000!

We study the evolution of vortex statistics in freely decaying two-dimensional turbulence at very
large Reynolds number. The results obtained here confirm that the peak vorticity inside vortex cores
is conserved and that the number of vortices as a function of time,N(t), decreases as a power law.
In addition, the numerical findings are consistent with the predictions of the scaling theories
proposed by Carnevaleet al. @Phys. Rev. Lett.66, 2735~1991!# and Weiss and McWilliams@Phys.
Fluids A 5, 608~1993!#. We also obtain new evidence for a self-similar distribution of vortex radii
and circulations, that suggests the possibility of a generic statistical behavior of the decaying phase
of two-dimensional turbulence at high Reynolds number. ©2000 American Institute of Physics.
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I. INTRODUCTION

In recent years, the behavior of two-dimensional~2D!
turbulence has been widely investigated, due to its interes
a simple conceptual model of vortex-dominated large-sc
planetary flows.1,2

Two-dimensional turbulent flows at high Reynolds nu
ber,~Re!, are characterized by the spontaneous emergenc
coherent vortices with lifetimes longer than the characteri
time scale of the nonlinear turbulent interactions.3–7 The co-
herent vortices contain most of the energy and enstroph
the system,8 and they extend their influence to the who
field, as shown by the analysis of velocity distributions.9,10 A
low vorticity background, where strong filamentation pr
cesses take place, is observed outside the vortices.

In freely decaying 2D turbulence, coherent vortic
emerge from random Gaussian initial conditions, after
time of maximum energy dissipation, whenever advect
effects dominate over diffusion. How and why the fluid se
organizes into a collection of coherent elements remain
partially open question. The inverse energy cascade
thought to be at the origin of the phenomenon as it implie
significant growth of the integral scale and hence some s
tial organization. The formation of the vortices is believed
be related to local axisymmetrization about a sufficien

a!Author to whom correspondence should be addressed: Electronic
annalisa@icg.to.infn.it
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dominant extremum, as well as to the evolutionary seque
of inflectional instabilities of the initial velocity field and
roll-up of vortex sheets.

Once the vortices have formed and thevortex generation
period is over, at intermediate times the evolution proce
through mutual vortex advection and strong inelastic inter
tions of same-sign vortices.3,11,12At very late times, systems
with zero average vorticity in bounded domains tend to
final state consisting of a vortex dipole at the largest sca
which decays slowly due to dissipation.13

The intermediate, vortex-dominated evolution stage
been studied by several authors. A temporal scaling the
has been proposed by Carnevaleet al.14 and revisited by
Weiss and McWilliams15 with the addition of finite Reynolds
number corrections. According to this theory, the vort
properties display self-similar behavior in time. In particula
average quantities such as the vortex number and the ave
vortex radius have a power-law dependence on time. Mo
over, all the decay rates are expressed in terms of a si
fundamental exponent. The inferences drawn from the s
ing theory were shown to agree with the results of numer
simulations of 2D turbulence and point-vortex systems15 and
with laboratory experiments.16

In later work, however, the above results were claim
to be dominated by the presence of strong dissipation, be
unrepresentative of the high Reynolds number limit.17 In par-
ticular, the number of vortices that was found to be decay
with time in the scaling theory of Carnevaleet al.,14 was
il:
1 © 2000 American Institute of Physics
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claimed to be growing in time at high Reynolds number, d
to the generation of small vortices during strong vorte
vortex interactions. The agreement between the sca
theory and the simulations was attributed to the limited R
nolds number achieved in the pseudospectral or fin
difference calculations and in the experiments, with the
servation of a different behavior in simulations perform
with contour-surgery methods, which were claimed to rep
sent the evolution at higher Reynolds number. In the follo
ing years, the issue remained unresolved.

In this work we reconsider this problem, and analy
numerical solutions of two-dimensional turbulence in
grated on a doubly periodic domain at very high resolut
and at high Reynolds number. In the following, we study
low-order statistical moments of the velocity and vortic
fields, the probability distributions of the main quantiti
characterizing the vortex population, such as the total nu
ber of vortices and the distributions of vortex radii, circul
tions, and vorticity amplitudes, and the time evolution of t
average values. The temporal scaling of the solution in
cates that the peak vorticity of the vortices is constant,
that the number of vortices decays in time as predicted by
scaling theory of Carnevaleet al., with no evidence of a
growth of the population of small vortices. In addition, th
work provides evidence for a self-similar shape of the pr
ability distributions of vortex radius and circulation. Whi
such scaling distributions have been seen in lower Reyn
number solutions with broad-band initial conditions, this
the first case where narrow-band initial conditions evo
into vortex populations with self-similar distributions of ra
dius and circulation.

The article is organized as follows. In Sec. II we intr
duce the equations of two-dimensional turbulence and
numerical solutions at different Reynolds number~i.e., dif-
ferent resolution and viscosity coefficient!. Low-order statis-
tical moments of the turbulent flow and one-point vortic
and velocity distributions are analyzed in Sec. III. In Sec.
we discuss the temporal evolution of the probability dis
bution of vortex properties and of their average quantiti
The instantaneous probability distributions of vortex prop
ties, providing evidence for self-similarity in the distribu
tions of vortex radius and circulation, are considered in S
V. Section VI gives conclusions and perspectives.

II. DYNAMICS OF DECAYING TWO-DIMENSIONAL
TURBULENCE

The Navier–Stokes equations for a two-dimensional,
compressible, freely-decaying flow are written as

]v

]t
1J@c,v#5D, ~1!

wherev5¹2c is vorticity, c is the streamfunction, andJ is
the two-dimensional Jacobian operator,

J@c,v#5
]c

]x

]v

]y
2

]c

]y

]v

]x
.

D represents a generic dissipation term due to either mol
lar or eddy viscosity. Here we use the form
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D5~21!n21nn¹2n¹2c, ~2!

wheren51 for a standard Newtonian dissipation andn.1
for so-called hyperviscosity. In the solutions below we u
n52, i.e., a biharmonic hyperviscosity. This choice allow
for confining momentum dissipation at the smallest sca
and for reaching higher effective Reynolds numbers a
given resolution. At high resolution, the use of hypervisco
ity does not significantly affect the statistical properties
the flow on scales larger than the dissipative range. At l
resolution, hyperviscous diffusion withn@1 can lead to lack
of accuracy in vortex profiles and to the formation of spu
ous spike-like structures near the vortex centers.18

The mean kinetic energy per unit areaE and the mean
enstrophyZ are defined by

E5
1

2~2p!2 E ~¹c!2 dx dy, ~3!

Z5
1

2~2p!2 E ~¹2c!2 dx dy, ~4!

where we have considered a square domain with size 2p.
Both energy and enstrophy are conserved in the invis

case~n50!; their simultaneous conservation induces a dir
cascade of enstrophy from large to small scales and an
verse cascade of energy from small to large scales.19 Energy
conservation is recovered in the limitn→0, since enstrophy
is bounded by its initial value. In the same limit, vorticit
gradients are amplified with the formation of thin filamen
that are stretched until they reach the dissipation scale
that enstrophy and all positive-order vorticity moments d
cay.

The first stage of the evolution, including the emergen
of coherent structures, is characterized by maximum ens
phy dissipation. Once formed, vortices tend to axisymm
trize. It is worth mentioning that there is an open debate
vortex axisymmetrization. Whenever Newtonian viscosity
hyperviscosity are used, the currently achieved resolution
dicates a tendency toward vortex axisymmetrization, s
gesting a tendency of isolated vorticity patches to reac
local stationary solution of the equations of motion. By co
trast, the use of dissipation schemes based on predeterm
mechanisms of vorticity reconnection, such as contour s
gery, leads to vortex shapes that do not necessarily tend t
axisymmetric shape.20

Since any axisymmetric structure is an exact steady
lution of the inviscid equations of motion, for approximate
axisymmetric vortices there is no nonlinear enstrophy tra
fer within vortex cores, and therefore no cascade.5,21 Axi-
symmetric vortex cores are protected from deformation, d
sipation, and cascade even during close interactions, w
vorticity filaments are generated from the edge of t
structures.22,23 Thus, in the intermediate, vortex-dominate
evolution stage, it is mainly the area outside the vortex co
that actively participates in the cascade. The vortices kee
indirect, albeit important, role in enstrophy transfer,
stretching and folding the vorticity filaments emitted durin
the strong vortex–vortex interactions. The filaments
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characterized by low energy and high values of the turbu
strain,24,25 rapidly reaching the dissipation scale where th
are eliminated.17

Using classical scaling arguments, Batchelor26 predicted
an enstrophy decay rateZ(t)}t22. The derivation is based
on the observation that in the limit of high Re the energy
the only conserved quantity whereas even positive-order
ticity moments decay likêuvua&;t2a, wherea is the order
of the moment~e.g.,a52 for enstrophy!. Energy is predicted
to cascade upscale and the theory applies only to unbou
flows or to intermediate stages of the evolution when
ratio between the energy containing scale and the dom
size is much smaller than one. Important implications
Batchelor’s hypothesis are the self-similar form of the on
point vorticity density and the prediction that it narrows co
tinuously with time because of the enstrophy decay. On
contrary, velocity statistics are fixed by the value of the e
ergy and they are approximately invariant.

Past numerical studies, however, have indicated that
self-organization of an initially random vorticity field into
collection of vortices induces a depletion of nonlinearit
inside vortex cores and a considerable slowing down of
enstrophy decay rate.21 Carnevaleet al.14 suggested that the
classic similarity theory fails because a second asympt
invariant appears when coherent structures emerge. In
ticular, these authors noted that the vorticity amplitude ins
the cores of coherent vortices is conserved, and it is the m
reason for the slow-down of the enstrophy decay.

The scaling theory of Carnevaleet al. provides predic-
tions on the evolution of the mean vortex properties and
lower statistical moments of the vorticity field, assuming th
vorticity is concentrated inside coherent structures. The
tistical properties of the vortex population are described
terms of the vortex numberN, the average vortex radiusr a ,
the average vortex circulationGa , and the average vorticity
peakza of the vortices. As suggested by the results of
numerical simulations, the time evolution of the vortex nu
ber is assumed to have a power-law form

N~ t !5N~ t0!S t

t0
D 2j

. ~5!

As a further hypothesis, it is assumed that the time e
lution of the probability distribution functions of vorte
properties is self-similar. This allows for expressing the a
erage of powers of dynamical quantities as powers of
averages, and for deriving from Eq.~5! the time evolution of
the other average quantities by using the relationships

E~ t !;Nza
2r a

4;const,

Z~ t !;Nza
2r a

2;Z~ t0!S t

t0
D 2j/2

, ~6!

Ga~ t !;zar a
2;Ga~ t0!S t

t0
D j/2

.

A fit of the results of a numerical simulation~corresponding
to our low Re case! to the vortex decay~5!, found
j'0.72.14,15
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Finally, both the scaling theory of Carnevaleet al. and
the classic similarity theory are strictly valid only in the lim
Re→`. For finite Reynolds number, diffusive correction
can be taken into account.15

Experimental confirmation of the temporal scaling b
havior of decaying 2D turbulence has been obtained
Tabeling et al.16 More recently, the numerical study o
Clercxet al.27 has considered the behavior of turbulent so
tions in square containers with no-slip boundary conditio
Analyzing an ensemble of runs with Re51000–2000, an in-
termediate decay range fromt50.2ARe tot53ARe ~in non-
dimensional units! was detected, withN(t).t20.760.1. It
must be noted, however, that more limited agreement
found with the other scaling exponents. At later times,
situation changes and the vortex decay rate increases.
late evolution stage can be due to the fact that energy
reached the largest scales in a domain with no-slip bou
aries; vortices are substantially weakened after str
vortex–wall interactions and may then be dissipated fast

Most of the above results refer, however, to situatio
where the Reynolds number is quite moderate. Soon afte
scaling theory of Carnevaleet al. was developed, the criti-
cism was raised that this scaling theory is appropriate o
for low Re where diffusion is still a dominant effect, while
loses its validity at larger Reynolds number.17 One way to
address this issue, and the one that is followed here, i
perform numerical simulations at much larger Re~although,
of course, not infinitely large!. If the basic result of a power
law decay of the vortex number found at lower resoluti
still holds at larger Reynolds number, then this supports
view that a scaling theory correctly captures the high
behavior.

III. GLOBAL PROPERTIES OF 2D TURBULENCE AT
HIGH REYNOLDS NUMBER

In the present work, the 2D Navier–Stokes Eq.~1! is
integrated by using a parallel, fully implicit multigrid elliptic
solver. The time discretization is based on a Cran
Nicholson scheme. The second-order spatial discretiza
follows an Arakawa scheme on a nonstaggered grid. T
fluid evolves in a periodic square box of size 2p32p.

We consider two solutions. One is a high Reynolds nu
ber solution, with resolution 40962 grid points and hypervis-
cosity coefficientn259.53* 10213. The second is a lowe
Reynolds number simulation with resolution 5122 and hyper-
viscosity n253.531029. This latter value was used b
Weiss and McWilliams,15 in a pseudospectral numerical in
tegration. A typical vortex at timet56 spans approximately
16 grid points in the high-Re simulation and 6 points in t
low-Re simulation.

The initial conditions are given by a zero mean, Gau
ian vorticity field with random Fourier phases. At both res
lutions, the initial energy spectrum is narrow-band and it
given byE(k)5C0k6/@(11k/60)18#, whereC0 is a normal-
ization constant. The spectrum is peaked at wave num
k0530. The initial vorticity field has kinetic energyE(t
50)50.5 and averaged enstrophyZ(t50)52200, which
implies a typical eddy-turnover timete5Z21/2'0.021. Com-
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FIG. 1. Panels~a!–~c! show the vorticity field for the simulation at high-Re~resolution 40962) at timest53, 7, 11. Panels~d!–~f! show the vorticity field for
the simulation at moderate Re~resolution 5122) at the same times, starting from the same random initial conditions. Note the different number of vort
the two cases.
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2935Phys. Fluids, Vol. 12, No. 11, November 2000 Revisiting freely decaying 2D turbulence at millennial resolution
paring the high- and low-resolution cases, we see that
former corresponds to ‘‘opening’’ the availability of sma
scales ~high wave numbers! to the dynamical evolution
without initially introducing energy at the small scales.

For both values of the Reynolds number conside
here, the evolution of the system leads to the presenc
coherent structures, whose emergence is completed by
time t'2. In the high resolution case, a large number
well-formed, small-scale vortices surrounded by lo
vorticity filaments can be observed already at timet53, see
Figs. 1~a! and 1~d!. A smaller number of vortices is prese
in the lower resolution simulation.~Note the presence o
numerically-generated wiggles in the low-Re simulatio
Here, we used the same viscosity employed by Weiss
McWilliams.15 However, since we employ a finite-differenc
code, no spectral dealiasing is implemented and small-s
wiggles due to the computational mode can be genera
These, however, do not affect the properties of the field
larger scales, as shown by performing simulations w
slightly larger viscosity that provide analogous statistics.! In
both cases, dipoles of opposite-sign vortices and merg
interactions between vortices of the same sign characte
the dynamics, resulting in a slow growth of the average v
tex size and a decrease of the total number of coherent s
tures as time progresses@compare for example Figs. 1~b!–
1~c! and 1~e!–1~f!#. In the simulations at higher Reynold
number, the number and the amplitude of the vortices
definitely larger, with a considerable amount of small stru
tures that cannot be observed at lower Reynolds numbe

We next consider the global statistical properties of
flow. First we concentrate on the second-order mome
E(t) andZ(t), shown in Fig. 2. In the high-Reynolds num
ber case, 0.4% of the initial kinetic energy is dissipated d
ing the evolution fromt50 to t511. In the low-resolution
experiment, dissipation is much larger and 10.8% of the
ergy is lost.

In our simulations, the enstrophy decay is much slow
than thet22 law deduced from classical arguments. After t
initial transient phase, the slope is consistent with the sca
theory prediction with j50.72, obtained by Weiss an
McWilliams15 analyzing a long-time integration of Eq.~1!
and a modified point vortex model. The high-resoluti
simulation att>3 provides a noticeable improvement com
pared to the 5122 case.

The energy power spectra from timet51 to t511 are
shown in Fig. 3. Energy is primarily transferred to lar
scales and the occurrence of coherent structures induc
spectral slope at small scales that is steeper than thek23

cascade predicted by classical similarity theories. Note
during the time interval considered here, the energy spect
is not strongly peaked atk51, indicating that the domain
size is still unimportant.

The one-point vorticity probability density function
~PDFs! are shown in Fig. 4. In the high Reynolds numb
case@Fig. 4~a!# the central core of the distribution narrow
significantly with time. Correspondingly, filaments in th
background are stretched and dissipated. The tails of the
tribution, however, are almost invariant. The invariance
the tails in the distribution indicates that the high-vortic
e

d
of

the
f
-

.
nd

le
d.
t

h

g
ze
r-
c-

is
-

e
ts

r-

-

r

g

s a

at
m

r

is-
f

levels, typical of the cores of the most intense vortices, a
nearly conserved, in agreement with the scaling theory
pothesis. Note also that past simulations4,28 did not fully re-
veal the invariance of the tails at high vorticity. Th
characteristic is revealed here due to the high Reynolds n
ber achieved.

The velocity distribution ~Fig. 5! is clearly non-
Gaussian, with pronounced tails that are approximately
scribed by an exponential distribution. It has been noted9,10

that non-Gaussian velocity PDFs with approximately exp
nential tails characterize high-Re two-dimensional turbul

FIG. 2. Panel~a! shows the normalized mean kinetic energyE(t)/E(0) for
the simulation at high-Re~solid line! and for that at moderate-Re~dashed
line!. Panel~b! shows the normalized mean enstrophyZ(t)/Z(0) for the
same two simulations. Predictions from classic scaling arguments~dotted
line! and from the scaling theory of Carnevaleet al. ~dashed-dotted line! are
also shown. The inset shows the normalized mean enstrophy and the sc
theory prediction from timet53 to t511.
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flows when the dynamics is controlled by strongly peak
vortices with small radius. In this case, the properties of
velocity field are determined by the characteristics and
shape of the vortices, not only in regions close to the vorti
but everywhere. As in point-vortex systems, the velocity d
tribution of 2D turbulent flows is dominated by the far-fie
velocity component induced by the coherent vortices. In
presence of small strong vortices, the far-field velocity co
ponent generated by the vortices is non-Gaussian.

IV. TEMPORAL SCALING BEHAVIOR OF THE VORTEX
POPULATION

In the present work, coherent vortices are identified
the vortex census algorithm discussed by McWilliams.4 Lo-
cal vorticity concentrations are selected and tested; only c
nected domains of high vorticity that are monotonically d
creasing from a central extremum with an approximat
axisymmetric shape are recognized as vortices.

Figure 6~a! shows the time evolution of the total numb
of vorticesN(t) for the two values of the Reynolds numb
considered. The integration for the higher Re value reac
the ~nondimensional! time t511, while the solution at lower
Re proceeds until timet520.

Two facts emerge from this figure. First, the total nu
ber of vortices is not the same in the two simulations, wit
much larger number of vortices in the case at high Re. W
filtering the high-resolution simulation once vortices ha
formed~at, say,t55), and reducing it to the same resolutio
used in the low-Re case, the number of vortices does
change much, indicating that most of these high-Re vortic
once formed, are large enough to survive also at lower re
lution. We have also evolved a low-Re case until vort
formation was over~again,t55), and then ‘‘upgraded’’ it to
resolution 40962 and correspondingly higher Re, evolving
further. The population of vortices remained that of t
low-Re case, and the filaments emitted during strong vo

FIG. 3. Energy spectra for the solution at high Re for timest51,2,...,11.
Solid line shows thek23 classical prediction.
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interactions did not roll up into new small-scale vortice
Taken together, these results indicate that the vortex gen
tion process is sensitive to the value of the Reynolds num
with a larger number of vortices formed at high Re, ev
starting from the same initial conditions. From the inspect
of the time evolution of the vorticity field, we have note
that in the initial incoherent phase enstrophy is rapidly tra
ferred to the smaller scales, down to the dissipative ran
where vortex generation starts to occur. With the initial co
ditions employed here, vortices are born at the smal
scales where advection dominates over dissipation, su
quently growing by merging events. In the evolution from
random Gaussian initial field to a vortex-dominated syste
the dissipation thus sets the lower limit to the size and
amplitude of the vortices that are generated. The larger
Reynolds number, the more numerous, smaller, and m

FIG. 4. Panel~a! shows the vorticity distribution for the high-Re solution a
timest50, t52 ~dashed line!, t55 ~dashed-dotted line!, t58 ~dotted line!,
and t511 ~solid line!. Panel ~b! shows the vorticity distribution for the
low-Re solution at the same times.
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intense are the vortices generated during this initial sta
Presumably, this is because in the time interval preceed
vortex generation the vorticity peaks that will evolve in
coherent vortices are dissipated much less in the high
case, surviving until they become part of a coherent vor
As a consequence, this initial stage is definitely sensitive
the value of the Reynolds number.

After the vortices have been generated and the sys
has become dominated by vortex dynamics, the situa
changes. The intermediate regime, for which the sca
theory of Carnevaleet al. has been proposed, is the focus
the present study. In Fig. 6~a! we show the number of vorti
ces as a function of time for the two simulations consider
together with the power-law decay with the exponentj50.72
proposed by Weiss and McWilliams.15 A least-square-fit es
timate of the vortex decay rate at high Reynolds num
gives j50.7660.03, where the indicated uncertainties a
the 63.8% confidence limits. We also compute the minim
and maximum estimates to the decay exponent as given
‘‘jackknife’’ approach, consisting in making estimates of th
decay exponent by dropping one point at random in the se
values to be least-square-fitted. These give respectivelyjmin

50.7360.02 andjmax50.7760.02.
In Fig. 6~b! we show the time evolution of the averag

vortex circulationGa , the average vortex radiusr a , and the
average modulus of the vorticity peakza inside vortex cores,
for the solution at higher Re. The predictions of the scal
theory, corresponding toj50.72, are shown as solid lines
Table I reports the least-square fits to the scaling expon
together with the 63.8% confidence limits and the minimu
and maximum jackknife estimates.

The least-square-fit values reported in Table I for
vortex radius and circulation reveal an interesting discr
ancy with the scaling theory of Carnevaleet al. A possible
explanation of this discrepancy is suggested by careful
spection of Fig. 6~a!. Here, some deviations from scalin

FIG. 5. Velocity distribution at timet511 for the solution at large Reynold
number.
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behavior are observed at timest54, 5, where the decay is
slightly faster than predicted. This deviation is associa
with the presence of a population of small, weaker vortic
patches that are dissipated faster than the stronger vort
and can be considered a transient phase that is still in
enced by the vortex generation processes.

Figure 7 shows the modulus of the vorticity amplitude
each coherent vortex versus its radius, for two different tim
in the evolution, for the high Re solution. Two differen
populations of vortices emerge from these plots. These c
sist of a population of small vortices with amplitude weak

FIG. 6. Panel~a! shows the time evolution of the vortex number at high-R
~circles! and low-Re~triangles!. The prediction of the scaling theory with
j50.72 is shown as a solid line. Panel~b! shows the time evolution of the
vortex number~crosses!, the average vorticity peak magnitudeza ~dots!, the
average vortex radiusr a ~pentagons!, and the average vortex circulatio
magnitudeGa ~triangles! for the simulation at large Reynolds number. Sol
lines show the slopes predicted by the scaling theory withj50.72.



c
te
n
p

w
a-
o
in
o
e
h
g
ue

o

o
re
re
o
t

ith
th
ee
al
r

th

f
u
n-
k
n

Th
io
s
el
ul
la

es
e
a

g
ol

b-
r the
the

Of
tion
ven
ow
rtant

at
p-
ns

ion

fo
sid
ti

nd
d

2938 Phys. Fluids, Vol. 12, No. 11, November 2000 Bracco et al.
than the average, and of another population of stronger
herent structures with larger radius. Figure 7 also indica
that the weak vortex population is not a self-similar exte
sion of the ensemble of strong vortices, as a definite ga
visible between them.

The comparison between the two different times sho
in Fig. 7 confirms that the time evolution of the two popul
tions proceeds differently. In particular, the population
weaker vortices is depleted more effectively than that of
tense vortices. In addition, intense vortices display an alm
invariant distribution of peak vorticity, consistent with th
scaling theory. To quantitatively distinguish between t
fates of the two populations, we separate them by settin
threshold on the vorticity amplitude. An appropriate val
~as evident from Fig. 7! is z tr550.

Figure 8 shows the time evolution of the number
strong (uzu.z tr) and weak (uzu,z tr) vortices in the high
Reynolds number simulation. The decay of the number
weaker vortices is more rapid than that of the strong cohe
structures, the latter displaying full agreement with the p
dictions of the scaling theory. Table II reports the values
the scaling exponents as obtained from least-square fits to
time evolution of the strong, coherent vortex population w
uzu.z tr , the associated 63.8% confidence limits, and
minimum and maximum jackknife estimates. A better agr
ment is now observed with the scaling theory of Carnev
et al., and the least-square fit uncertainties have been
duced. However, a small discrepancy is still observed for
value of the scaling exponent of the vortex circulation.

We interpret this result as indicative of the presence o
population of weak vorticity patches that are generated d
ing the process of vortex formation from random initial co
ditions, and that decay rapidly. Presumably, these wea
vortices are not truly coherent structures, since they do
live long enough to be classified as coherent vortices.
deviation of the collapsing weak-vortex population behav
from the scaling theory does not contaminate our analysi
later times, since the weak-vortex population is relativ
small and it decays much faster than the population of tr
coherent vortices. The scaling theory then applies to this
ter population of intense vortices that survive for long tim

Note, finally, that even at the higher Reynolds numb
considered here we do not observe the production of sm
vortices by instability of the filaments during vortex mergin
interactions. As mentioned above, by upgrading the res
tion ~and correspondingly lowering the viscosity! of a

TABLE I. Decay exponents of vortex statistics in the high-Re simulation
the whole vortex population. The first column indicates the quantity con
ered; the second column shows the result of the least-square fit on the
interval 5<t<11 together with the 63.8% confidence limits; the third a
fourth columns show the minimum and maximum estimates as obtaine
a jackknife method.

Quantity Least-square fit Min estimate Max estimate

N21 0.7660.03 0.7360.02 0.7760.02
za 0.0960.02 0.0660.02 0.160.02
Ga

2 1.0060.09 0.9060.08 1.0760.09
r a

4 0.9460.10 0.8260.09 1.0360.10
o-
s
-
is

n

f
-
st

e
a

f

f
nt
-
f
he

e
-
e
e-
e

a
r-

er
ot
e
r
at
y
y
t-
.
r
ll

u-

low-Re simulation once vortex generation is over, one o
serves that the vortex population remains the same as fo
low-Re case, suggesting that once vortices have formed
value of the Reynolds number plays a more limited role.
course, we cannot exclude that at still higher Re a transi
occurs and other statistical properties are present, e
though the fact that similar results are found at high and l
resolution suggests that scaling behavior can be an impo
property of 2D turbulence at high Reynolds number.

V. SELF-SIMILARITY OF THE VORTEX DISTRIBUTION

As a further test of the scaling behavior, we recall th
the assumption of a self-similar evolution of the vortex pro
erties implies that the instantaneous probability distributio

FIG. 7. Scatter plot of peak vorticity versus radius for the vortex populat
at high-Re, at timest55 ~panel a! and t511 ~panel b!.
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of vortex amplitude, radius, and circulation should be ind
pendent of time when normalized to the average value
given time, i.e., considering for example the vortex circu
tion G,

p~ uG8~ t !u!5pF uG~ t !u
Ga~ t ! G5pF uG~ t* !u

Ga~ t* ! G , ~7!

whereGa(t) is the average circulation at timet, andt andt*
are two times in the scaling range.

In Figs. 9~a!–9~c! we show the instantaneous distrib
tions of the modulus of the vorticity peak, radius, and circ
lation for the vortex population at several times fromt54 to
t511, for the simulation at high Re. Within sampling va
ability, the distributions are identical, and they are consist
with the self-similarity hypothesis. For comparison, in Fig
9~d!, 9~f! we show the distributions of vorticity peak, radiu
and circulation for the situation of lower Re. Notwithstan
ing the presence of a larger sampling variability due to
smaller number of vortices, also in this case the distributi
are consistent with the scaling hypothesis.

There is, however, an intriguing difference between
instantaneous distributions of the vortex properties at h

FIG. 8. Time evolution of the number of strong~diamonds! and weak
~squares! vortices, compared with the evolution of the total number of v
tices ~triangles!, for the solution at high Reynolds number.

TABLE II. Decay exponents of vortex statistics in the high-Re simulat
for the population of strong coherent vortices withuzu.z tr . The first column
indicates the quantity considered; the second column shows the result o
least-square fit on the time interval 5<t<11 together with the 63.8% con
fidence limits; the third and fourth columns show the minimum and ma
mum estimates as obtained by a jackknife method.

Quantity Least-square fit Min estimate Max estimate

N21 0.6760.02 0.6660.03 0.7060.01
za 0.0160.01 20.0160.01 0.0260.01
Ga

2 0.8460.04 0.8060.05 0.8560.03
r a

4 0.6860.04 0.6460.05 0.7060.04
-
a

-

-

t
.

e
s

e
h

and moderate Reynolds numbers. Figures 9~b! and 9~c! indi-
cate that the instantaneous distributions of radius and ci
lation for the high Re case have an approximate power-
behavior. By contrast, no power law is visible in the dist
bution of vortex radius and circulation for the lower Re
nolds number, as shown in Figs. 9~e! and 9~f!.

A self-similarity of the distribution of vortex radii has
been previously detected by Benziet al.29 in the analysis of
freely-decaying turbulence with broad-band initial conditio
and resolution comparable to our low-Re simulation. T
same authors did not find any evidence of spatial s
similarity in the distribution of vortex radii for narrow-ban
initial conditions, consistent with the results discussed h
for the low-resolution case and the results of Weiss a
McWilliams15 for 2D turbulence and point-vortices. How
ever, here we observe that when the Reynolds numbe
large enough, even narrow-band initial conditions lead
spatially self-similar distributions of vortex properties. E
amination of the time evolution of the flow indicates that t
population of small vortices is not generated by roll-up
filaments after vortex–vortex interactions, but rather by se
organization of the small vorticity peaks at the time of vort
formation.

In Fig. 9~b! we also show the power-law fit to the dis
tribution, as suggested by Benziet al. for broad-band initial
conditions. This power-law behavior is consistent with t
distribution of vortex properties at high Re obtained he
The approximate agreement between these two situati
that differ in both the value of the Reynolds number and
type of initial conditions, suggests a generic nature of s
similar distributions of vortex properties at large Reynol
number. Since the rationalization of size-scaling is merge
smaller to larger vortices in a temporally stationary way, t
question of end effects in numerical simulations natura
arise; i.e., what is the impact of having a finite range of siz
with no vortices larger and smaller than that range? Be
et al. showed that the end effects did not affect their resu
for a broad-size population, and our results suggest that
are unimportant even when the size range is not too br
and the whole evolution is temporally scaling rather th
stationary.

VI. CONCLUSIONS

In this work we have numerically studied the evolutio
of vortex statistics in freely-decaying two-dimensional turb
lence at very large Reynolds number. At intermediate tim
the evolution of the low order moments of the turbulent flo
and the decay of the vortex number display a temporal s
ing behavior consistent with the scaling theory of Carnev
et al.14 The global statistical properties, namely the one-po
vorticity and velocity distributions and the instantaneous d
tributions of vortex properties, confirm the basic assumptio
of the theory on the conservation of the vorticity amplitu
inside vortex cores and on the temporal evolution of
vortex population. The average vortex radius and circulat
for the strong-vortex population decay as power laws with
exponent close to that predicted by the scaling theory,
though a small discrepancy is observed for the value of

the

-
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FIG. 9. Panels~a!–~c! show the instantaneous distributions of normalized peak vorticityuz8u, vortex radiusr 8 @the full line has a slope20.90 as suggested by
Benzi et al. Ref. 29# and circulationG8 for the high-Re turbulent solution at timest54,5,6,...,11. Panels~d!–~f! show the instantaneous distributions o
normalized peak vorticity, vortex radius, and circulation for the solution at low-Re.
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exponent for the circulation. Note, also, that no generation
small-scale vortices after strong vortex interactions is
served, contrary to the earlier claims of Dritschel.17

Overall, the results discussed in this work indicate t
scaling theories such as those developed by Carne
et al.,14 Weiss and McWilliams,15 Riccardiet al.,30 and Sire
and Chavanis,31 based on a simplified description of the vo
tex interactions, provide a good description of the dynam
during the intermediate, vortex-dominated evolution sta
In particular, scaling theories appear to be able to cap
most of the relevant aspects of the behavior of free
decaying two-dimensional turbulence at large Reyno
numbers. It is also interesting to note that average vo
quantities show a similar temporal evolution for both valu
of the Reynolds number considered here. This suggests
already at lower resolution (5122), scaling theories provide a
proper description of the turbulent dynamics, and that so
of the average properties of two-dimensional turbulence
already be studied at moderate resolution.

In addition, we have obtained evidence for a self-simi
distribution of vortex radii and circulations even for narrow
band initial conditions, partially confirming the size-scalin
theory proposed by Benziet al.29 and suggesting the possib
existence of a generic statistical behavior of the decay
phase of two-dimensional turbulence at high Reynolds nu
ber.

Clearly, the results reported here are in contrast with
earlier findings of Dritschel17 that were based on the use of
contour surgery approach. The discrepancy with the res
of Dritschel17 remains unexplained. One possibility is th
contour surgery possesses a superior performance comp
to any other numerical scheme, that makes it capable of
turing the turbulent behavior at much larger Reynolds nu
ber that the one achieved in any simulations using Newt
ian viscosity or hyperviscosity. Alternatively, th
discrepancy could be due to the fundamental inability of c
tour surgery to properly represent Navier–Stokes dynam

The present work has also shown that the initial per
of vortex formation, prior to the intermediate vorte
dominated stage described by the scaling theory, is defin
dependent on the value of the Reynolds number. In our o
ion, the main open issue of decaying two-dimensional tur
lence is the understanding of the mechanisms that lea
vortex formation starting from different types of initial con
ditions, and of the consequent dependence of the vortex
tistics on initial conditions. We plan to address some of th
issues in future studies.
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