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Abstract:  Due to position errors traditional methods of data assimilation 

can broaden and weaken jets or other flow structures leading to reduced 

forecast skill.  Here we develop and test a technique to assimilate 

properties of coherent structures. Focusing on jets, the technique identifies 

jets in both the modeled and observed fields and warps the model grid so 

that the jet positions are better aligned prior to further assimilation of 

observations.  We test the technique using optimal interpolation on the 

flow in a two-layer quasi-geostrophic channel.  The results show that a 

simple and fast jet position correction algorithm can significantly improve 

the skill of a 12-hour forecast. Furthermore results indicate that this 

method of position correction maintains its utility when observations 

become sparse.
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1. Introduction

Current operational data assimilation techniques such as 3DVAR are designed to 

correct local differences in magnitude between an observed field and a modeled field.  

These methods do very well in many situations but fall short when a model produces a 

structure of the correct form but at the wrong location.  In the process of correcting 

magnitudes the form of the modeled structure is degraded in the analysis field that is 

produced.  The goal of this study is to show that it is possible to preserve structures more 

accurately by implementing a process that will take into account errors in the locations of 

structures.

Defining error is important when evaluating the predictive skill of a model.  Error 

is commonly calculated from differences in magnitude between a predicted modeled state 

and an observed state.  This intuitive approach can mislead the assessment of a model’s 

skill.  One way in which simple definitions of error fail is in errors of location.  Models 

produce structures such as cyclones, storm fronts, and jet streaks, but may not be able to 

predict all-important characteristics of these structures.  Forecast model bias is a 

persistent problem in numerical modeling and data assimilation (Dee and Silva 1998).  

For instance Alexander et. al. (1998) show that the MM5 model has trouble accurately 

predicting the position of cyclones.   A complicated structure such as a cyclone can be 

described using parameters such as the center of the storm’s location and velocity, and 

the cyclone’s radius, elongation, and rotational speed (Matyas, 2007).  In this study we 

use the simpler structure of a jet whose characteristics include the location of the jet’s 

maximum velocity and its width.  The aspects of a structure that are useful depend on its 

nature. For example, the jet stream’s position is important because it has a large influence 

on storm tracks and surface temperatures.  In fact the jet stream’s behavior is so 
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important that a method to identify the its location and size has been developed for the 

purpose of describing it’s climatology (Koch et al. 2006).    For many hazardous weather 

events it can be argued that the precise location of the event is more important than its 

specific amplitude.  For this reason definitions of error using errors in position have been 

formulated and used to measure the skills of forecasts and in ensemble-based data 

assimilation (Hoffman et al., 1995, Nehrkorn et al. 2003, and Lawson and Hansen, 2005).  

Defining a new measure of error with position differences included leads to increased 

ability to diagnose position errors and correct them in a model.

While trying to create a method to improve the assimilation of structures it is 

useful to refer to the most capable assimilator of information that we know of, the human 

brain, which is very good at finding, labeling, and comparing structures.  For instance it 

would be a simple task for a person to identify the jet stream in a model and its analog in 

the observed wind patterns.  The person might also note that the jet stream that the model 

is producing is dipping too far into the Great Plains or that this dip is propagating too 

quickly to the east.  A meteorologist would compare the model’s prediction with 

observations and use their experience and intuition to marry the two to produce a 

forecast. In the same way improving computational data assimilation techniques to 

account for errors in the locations of structures will improve the model’s prediction.  

Tools have been developed for a forecaster to locate structures and correct their positions 

by hand (Hou & Strum 1999), however an objective, automated algorithm is more suited 

for the vast amounts of data in use today.

The causes of location errors are complicated but certainly model simplifications, 

discretization, poor estimates of the background error, and sparse observation in space 

and time play the major part (Brewster 2003).  Many different methods that attempt to 

reduce location errors have been implemented.  Mariano (1990) reduces fields to 
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contours, analyzes the shape and location of the contours, identifies their analogs in 

another field, and creates an analysis field by averaging the contours’ shapes and 

locations.  Brewster (2003) finds volumes that define analogous structures in two 3D data 

fields, and then searches for and implements a displacement that minimizes the error 

associated with them. Chen and Snyder (2007) chose to correct vortex structures by 

moving the location of the center of the vortex.  In addition they explore correcting the 

shape of the vortex by correcting aspects such as major and minor axis length and 

rotation angle.  Alexander et al. (1998) looked at a model field and an observation field 

then manually selected what he called “tie points” representing analogous points of 

structures in the different fields.  He then warped the grid so that the location of the tie 

points in the model’s field matched those in the observation field.  Here we also consider 

grid warping, but simplify and automate the technique and study the resulting 

improvements in forecast error.  A more sophisticated method for warping grids in two 

dimensions is described in Ravela et. al. (2006).

In this paper we focus on the identification and alignment of jets. In the case of 

jets a simple example makes it clear that alignment before interpolation is advantageous. 

With many accurate observations at short time intervals optimal interpolation works well, 

doesn’t require much computational effort, and will always improve the model state.  

However if the model is allowed to deviate from reality interpolation begins to show its 

weaknesses and structures appear to be destroyed.  If the distance between the locations 

of the observed and modeled jet centers is large then the jet produced by interpolation, 

referred to as the analysis jet, will be wider and weaker than the observed and modeled 

jets as seen in Fig. 1a.  However if the jets peaks can be aligned prior to this averaging 

then the magnitude and width of the analysis jet is comparable to that of the observed and 
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modeled jets shown in Fig. 1b. This provides motivation for aligning jets before the 

assimilation cycle in a prognostic model.

The jet structure was chosen because it is easy to model with a simple geophysical 

representation and its structure information can be simplified to the location and width of 

the jet.  However, modifications of the technique would render it applicable to vortices, 

fronts, and other coherent features.  Jets in the atmosphere can be difficult to observe 

with standard methods of determining winds aloft, such as soundings, even when dealing 

with large scale features such as the jet stream. In reality the ability to detect the location 

of structures requires that the observations are fine enough to resolve them.  If the 

observation network is not dense enough structures will be missed.  This is a problem for 

all data assimilation methods, in that coarse observations can miss large amplitude small-

scale features.  In the case of the proposed algorithm, if the observations are too coarse to 

see a jet the algorithm merely continues without jet alignment and will not change the 

analysis.  An advantage of this technique is that the structure’s location may be 

determined from the data that is most suitable, including currently under-utilized 

information from sources such as such as satellite retrievals, radar reflectivity, and 

aircraft data.  

In this study a standard and simple form of data assimilation is implemented and 

then a jet-aligning algorithm is added in order to study improvements made in forecasting 

skill.  Section 2 gives a brief background of the data assimilation technique used in this 

study. The alignment technique we explore does not critically depend on this choice of 

data assimilation method and could be modified to work with other standard methods. 

Section 3 describes the algorithm used to identify and align jet structures. Section 4 

describes the numerical model used in the study.  Section 5 describes the experimental 
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procedure and evaluates the improvement in forecast skill resulting from jet alignment.  

Finally, conclusions are given in section 6.

2. Data Assimilation

Statistical data assimilation methods produce an analysis state using linear 

combinations of the model state and the observations.  One simple method of data 

assimilation is optimal interpolation. Here, this combination is weighted using knowledge 

of errors in the observations and error growth in the model in the form of error covariance 

matrices.  Error covariance matrices can be difficult to fully compute if there are many 

grid points in the state space as their size is the number of grid points squared.  We chose 

to use optimal interpolation in this study because when proper assumptions are made the 

result is a technique with low computational cost, due to vanishing covariances, yet still 

similar to 3DVAR in many ways. The jet alignment technique we investigate is 

independent of the choice of data assimilation method and could be adapted to work with 

other methods as well. 

Optimal interpolation uses a background state Xb and observations Y to produce 

an analysis state Xa by adding their weighted difference.  

 Xa = Xb + W (Y − HX b ) , (1)

 W = BHT (HBHT + R)−1 ,                                         (2)                                           

Where W is a weight matrix, H is a transform from model space into observation space, B

is the background error covariance matrix, and R is the observation error covariance 

matrix.  An element of an error covariance matrix represents error at one point due to the 

influence of error at another point.  The background error covariance matrix B includes

the effects of error in the model due to discretization and faulty model physics.  For 
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simplicity we assume that this error is spatially uncorrelated and that the background 

error covariance matrix B is diagonal (Parrish and Derber, 1992).  We further assume that

observation errors are not spatially correlated, making R diagonal.  We also assume that 

observation errors are Gaussian perturbations of a spatially homogenous value so that R

is the identity multiplied by the field’s value times a constant.

The matrix B is calculated using the so-called National Meteorological Center 

(NMC) method (Parrish and Derber 1992; Rabier et al. 1998). To determine a 12-hour 

background error using this method we start with three experiments, one to represent the 

truth, Et and two for accumulating error called E12h and E24h.  The experiments Et and E24h

are initialized with the same initial conditions and then E24h is perturbed by observation 

error.  These are then run forward in time 12 hours.  The E12h experiment is then set to 

equal to Et at 12 hours and perturbed by the observation error.  The experiments are then 

run for another 12 hours so that for the last twelve hours we can calculate the errors in 

both E12h and E24h denoted Err24h and Err12h.  An ensemble of n such experiments is run, 

in our case we used 250.  The background error is then calculated at every point i in the 

grid as:

 Bi = C (Err24hr
i − Err12hr

i ) /n
n
∑ (3)

Where C is a normalization factor (Bouttier 1994) given by the ratio of the average 

maximum of error in a 12 hour run and the average maximum error in a 24 hour runs.  

The NMC method is used because errors arising at short time scales manifest at small 

scales, which when averaged over many runs cancel out.  The NMC method looks at the 
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error from 12 to 24 hours, which occurs on larger scales and is more representative of the 

background error. 

Observations are simulated by treating one of a twin pair of models as “truth”.  

We will work with the velocity field in a quasi-geostrophic model, described in detail 

below.  The observed velocity Vo is obtained by taking the value from the model 

representing truth and adding Gaussian noise.  The velocity in the second model is the 

background velocity Vb, and the analysis velocity Va at each grid point is the background 

velocity plus a weighted difference of the background and the observations: 

 Va = Vb + (Vo − Vb ) * εb

(εo + εb )
,                                   (4)

Where εo and εb are, respectively, the observation and background errors at the grid point. 

If the observation error εo is much larger than the background error εb, the analysis is 

approximately equal to the background; in the opposite situation the analysis is 

dominated by the observations.

3. Structure Alignment

To develop a data assimilation technique that can correct the locations of 

structures three tasks must be addressed: defining the structure in the background and 

observational fields, assimilating the variables that define the properties of the structure, 

and creating an analysis field with the modified structure. A structure identification 

algorithm typically produces variables describing the structure such as its location, 

strength, and width. Examples of such techniques are given in Davis et al. 2006 and 

Wernli et al. 2008. The properties of the observed and background structure can be 
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assimilated using any standard data assimilation technique. Here we use optimal 

interpolation for simplicity. Finally warping the grid produces a structure in the analysis 

field with the appropriate properties. 

There are a variety of procedures one can use to identify structures in complex 

flows.  Although some of these methods can be quite complex, it is often the case that 

very simple methods provide significant benefits.  Here we use a simple one-dimensional 

jet identification method to demonstrate the utility of jet identification and assimilation.  

More complex methods such as identifying the jet using an isoline of potential vorticity 

(i.e. Martius et al. 2006) and then employing a two-dimensional grid warping approach 

were considered, however while using a more complex method is expected to lead to 

improvements it is unclear if these will be significant enough in this case to justify the 

additional computational cost.  On each meridional grid line we use the one-dimensional 

zonal velocity to define the location and width of a possible jet on that cross-section.  The 

maximum zonal velocity on each meridional grid line is identified as the center of the jet. 

The width of the jet on each meridional grid line is calculated using the standard 

deviation of the zonal velocity.

If the locations of the jets are the same there is no need for alignment and the 

process is aborted. The process is also aborted when the difference in location between

the observed and background jet locations are larger than a threshold dmax.  In this 

situation the background and observed jets are not interpreted as analogous features.  For 

example, one could have a split jet, where in the observations one branch has a larger 

zonal velocity and is interpreted as the main jet, while in the background, the other 

branch has a larger zonal velocity.  This situation can also arise if the background has 

deviated too far from truth. These situations could be treated with a more complex 
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algorithm but it was found that they are rare occurrences with negligible effects and the 

simpler method was chosen.

If analogous jets are found in the background and observations, the analysis jet 

location is determined using optimal interpolation. In order to accomplish this the jet 

location background error and the jet location observation error must be known along 

with the modeled and observed jet locations.  The jet location background error for each 

longitude represents the error in jet location produced by the model at each meridional 

cross-section and is determined by running the model forward in time and using the NMC 

method described above.  The jet location observation error represents the average error 

created in the location of the jet’s maximum from the process of observing and is

calculated by performing Monte Carlo runs perturbing a jet containing field with 

Gaussian noise equivalent to observational error.  It is assumed that the observation errors 

are the same on each meridional slice.

The analysis jet is produced independently on each meridional grid line for which 

analogous jets are identified in the background and observation. The background and 

observed fields are each modified through grid warping to move the location of their 

respective jets to the analysis jet location.  In order to isolate the jet from other features of 

the flow, which we do not want to be affected by the structure alignment procedure, grid 

warping is done on only a subset of the latitude range in the model. To obtain this region 

the observed and background jet widths are scaled by a jet width factor, cwidth < 1, the 

resulting scaled width determines a jet region around each jet location, and the union of 

the background and observation jet regions determines the region over which grid 

warping is implemented. 

In mathematical terms the grid warping is a mapping from an original space x to a 

warped space x*. The warping is defined by requiring that a certain critical point xc, in 
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this case the background or observed jet location, is mapped to a specific location xc*, the 

analysis jet location. The boundaries of the warped region xmin, xmax remain fixed, 

xmin=xmin*, xmax=xmax*.  Grid points between the critical point and the boundary are 

warped using linear interpolation, resulting in separate transformations for x < xc and x > 

xc:

 x* =
xc

* − xmin

xc − xmin
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Values of fields f(x) such as velocity are mapped so the new value at the mapped grid 

point is equal to the old value at the original grid point, f*(x*) = f(x). The grid warping 

transformation is illustrated in Fig. 2.

The jet alignment procedure has two parameters, the maximum jet separation 

dmax, and the jet width scaling factor cwidth. If the detected jets are separated by more than

dmax the transform is not performed because the two jets are most likely not analogous.  

The algorithm was empirically found to work well with dmax equal to 10 grid points, 

which corresponds to roughly 1000 km, and cwidth = ¾. The results were found to be fairly 

independent of the values of these parameters.

In general, grid warping will result in an unbalanced velocity field. Here, 

geostrophic balance is maintained by using the aligned velocity field to compute a 

vorticity field, which is then used to create a streamfunction. The streamfunction is used 

to evolve the system in time via the quasi-geostrophic equations described below.

4. Model Description
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We test the effectiveness of jet alignment in improving forecasts using a simple 

two-layer quasi-geostrophic channel model with periodic boundary conditions in the 

zonal direction (Vautard et al. 1988; Duane and Tribbia 2004). Evolution of the potential 

vorticity is calculated in a pseudo-spectral code using the quasi-geostrophic potential 

vorticity equations

 Dqi

Dt
=

∂qi

∂t
+ (∂Ψi

∂x
)(∂qi

∂y
) − (∂Ψi

∂y
)(∂qi

∂x
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where q is the potential vorticity, which is conserved if there is no forcing or dissipation. 

Ψi is the stream function with layers i = 1, 2.  The forcing Fi and dissipation Di are
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The forcing is defined by the vorticity field qi
*, displayed in Fig. 4, which is the state to 

which the model tends to relax. This shape is chosen because it is a simple way to create 

a constrained channel using meridional gradients in stream function and force a jet-like 

flow.  The dissipation includes four terms which are from left to right:  The friction 

between the layers internally, the friction at the surface or Ekman damping (note this only 

affects Ψ2), hyper viscosity, and extra terms in D that damp the slow modes. A typical 

instantaneous flow field is depicted in Fig. 5, which shows a jet with a zonal wave
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number near 7 and is trapped by the high gradient of potential vorticity that acts as a 

waveguide (Schwierz et al. 2004). The details of the model setup and parameters are 

discussed by Vautard and Legras (1988) and Duane and Tribbia (2004). We use a 

resolution of 256 by 64 grid points in the zonal and meridional directions respectively.  

The background error covariance obtained using the NMC method described above is 

shown in Fig. 6.  As is evident in this figure the background error is highest near the 

forcing and is advected to the right with the flow.

5. Results

The jet alignment technique was tested by running three independent channel 

models: one to represent the truth and two for data assimilation.  Of the two data 

assimilation channels, one is used as a control, with optimal interpolation alone, and the 

other tests the addition of the new jet alignment algorithm as an additional step.  Error is 

defined as an average kinetic energy given by the RMS differences of velocities at each 

grid point i as:

 ∑ −=
i

ii iUUError )2/()( 2'   (11)

Where Ui and Ui’ are the velocities of the models representing truth and that used for data 

assimilation respectively at gridpoint i.  Error saturation was determined by letting two 

channels run independently for a long time and then computing an average inter-channel 

‘error’.  The model is run past its transient state to obtain an initial field that is used to 

initialize all three channels.  The initial states of the two assimilation channels are then 

slightly perturbed and all three channels are stepped forward in time.  Every 12 hours an 
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observed field is generated by perturbing the ‘truth’ field at each grid point with Gaussian 

noise generated with the Box-Muller algorithm. A value of 10% of the field value is used 

as the standard deviation of the noise as errors in jet streaks in data sparse regions tend to 

be 5-9% (Cardinali et al. 2004). Assimilation is then done in the two channels using this 

observation field.  The control field assimilates the observations using only optimal 

interpolation; the experimental field first aligns the modeled jet with the observed jet and 

then proceeds to implement optimal interpolation.  The 12-hour assimilation cycle is then 

repeated 1000 times and the 12 hour forecast errors are collected.  

The average kinetic energy of the RMS error as a function of time for a typical 

run (Fig. 7) shows that both data assimilation techniques consistently keep the error 

below the saturation point, and that there is nearly always an improvement with the jet 

alignment algorithm.  The error through the 12-hour assimilation cycle, averaging over 

1000 assimilation cycles, is shown in Fig. 8.  Immediately after assimilation the error 

slightly decreases for roughly 1.5 hours while stable modes perturbed by the adjustment 

equilibrate (Lindzen and Farell, 1980).  The two assimilation techniques produce similar 

error traits but aligning the jets prior to assimilation decreases the average error at 12 

hours by 51%. 

The variability in improvement is seen in the probability distribution function 

(PDF) of the average ratio of the kinetic energy of the error per grid point in the control 

assimilation to that in the jet-aligned assimilation (Fig. 9).  The average value of the ratio 

is 3.62 indicating a clear reduction of error when using the jet aligning technique.  The 

PDF has a long tail, indicating that in some cases the alignment technique vastly 

outperformed the control assimilation, however there are members of the distribution 

with values as low as 0.12 indicating that the jet alignment does sometimes fail and in 

certain cases has up to 8 times larger error.  We examined some of the extreme cases and 
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found no clear or consistent pattern that would explain the spectacular success or failure 

of the method.

The above tests were done by taking observations at every grid point in the 

model. To test the effects of reduced observations additional experiments were 

performed.  In experiments SG0 through SG7 observations were created at sparse 

locations, skipping 0 to 7 grid points respectively.  The unobserved points on the grid are 

then filled in using cubic spline interpolation and the assimilation is done as described 

above.  The impact of reducing observations on the effectiveness of jet alignment is 

shown in Fig. 10.  At all observation resolutions, jet alignment has a consistent error 

reducing effect.  The remapping process continues to show improvement even when 

using a spacing of 7 gridpoints in the observations because the jets are typically 

significantly wider than 7 grid points.  As the number of observations decreases, the 

average ratio of the error in the control runs to the error in the jet-aligning runs decreases 

until the observations are so sparse that both errors near saturation (Fig. 11).  The 

standard deviation of the ratio decreases as observation density decreases due to fewer 

improvements by jet alignment.

6. Discussion

We propose that data assimilation can be improved by assimilating properties of 

coherent structures.  This idea is relevant in any data-assimilation situation and is tested 

here using a simple one-dimensional jet alignment technique in a two-layer QG channel.  

The results show that aligning structures can significantly improve a basic data 

assimilation method, and suggest that assimilating information about coherent structures 

can improve forecasts in operational numerical weather prediction.  This method 

improves as observational information is increased and is therefore most useful with 
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high-resolution or high-frequency data such as that offered by radar stations and 

satellites.

Determining properties of structures, such as jet location, can be considered a 

nonlinear transformation of the field variables.  Structure alignment is thus outside the 

scope of traditional assimilation techniques which assume linear transformations.  Once 

one has defined a nonlinear transformation through a structure identification algorithm 

applied to both the observations and background, any traditional data assimilation method 

can be used to fix the structure property in the analysis. An inverse nonlinear coordinate 

transformation, implemented here by grid warping, creates a field containing a structure 

with the desired property.  In general the difficulty of considering a full nonlinear 

transformation is that the space of such a transformation is too large.  By focusing on the 

properties of coherent features, such as a jet, we eliminate this problem and obtain a 

specific physically motivated nonlinear transformation. 

The simple algorithm presented here works independently on each meridional 

grid line and assumes that the jet is a single coherent streak throughout the channel. 

Problems can arise when the jet splits and two velocity maxima exist on a single 

meridional grid line.  The algorithm then identifies only a single jet. If different sections 

of a split jet are identified in the observations and background, then the grid warping can 

lead to discontinuities.  Adding the possibility of multiple jets to the one-dimensional 

algorithm would be a relatively straightforward improvement that would eliminate this 

problem.

Rather than improving the one-dimensional technique it might be more useful to 

employ two or three-dimensional mesh warping techniques similar to those used in image 

processing (Ravela et. al. 2007).  Although these techniques are more involved and 
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therefore more expensive they could be worth the effort in that they can identify a wider 

variety of more complex structures.

The modular nature of the proposed algorithm clarifies the path to implementing 

structure assimilation in more realistic models, and simplifies developing and testing the 

steps of the algorithm. The first step is structure identification, which would probably be 

best accomplished with a two or three dimensional structure identification algorithm. The 

type of structures one wishes to align will determine which fields are used in the 

identification. Jets are most readily identified in the velocity field while vortices are most 

clearly seen in the vorticity field. Fronts might be identified using moisture, temperature 

and wind. Once analogous structures are identified in the model and observations, the 

parameters of the assimilated structure can be found using OI, as done here, or another 

data assimilation technique. The final step of structure assimilation is warping the 

background and observations to align the structures, and might be done using a 

multidimensional grid warping as discussed above. In more general models than those 

considered here, such as an operational numerical weather prediction (NWP) model like 

the Weather Research and Forecasting model (WRF), grid warping would destroy 

balances in the fields, and as part of the subsequent data assimilation of the warped fields 

a balancing procedure might be needed.

For instance to implement this technique to improve a WRF forecast, which is 

the current state of the art in operational forecasting, one might start by improving the 

initial condition.  Typically a first guess from an operational global model such as the 

Rapid Update Cycle (RUC) is used in conjunction with observations to produce an 

analysis used to initialize the forecast.  In packages such as the Local Analysis and 

Prediction System (LAPS) (Albers et al. 1996) a standard data assimilation scheme such 

as Barnes analysis, which is similar to OI but uses a radius of influence (Barnes 1964), is 
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used to assimilate the observations.  This will cause misaligned structures such as jets to 

be weakened as mentioned previously.  To use an alignment method here one would 

develop a technique to identify jets and quantify their properties using a combination of 

all of the available data.  This would include soundings, visible and infrared satellites, 

aircraft measurements, etc.  Once the observed structure is parameterized a shift in the 

model representation can be defined that will better align the structure with the truth and

all modeled fields can be transformed in the same way.  Warping all fields the same way 

will preserve some balances but ultimately this transform of the model fields will 

unbalance the model.  This is not a large hurdle as there are many techniques and tools 

that will balance a set of model fields post assimilation and in fact many analysis 

packages such as LAPS and the Space-Time Mesoscale Analysis System (STMAS) have 

balancing built in (McGinley et al. 2001 and Xie et al. 2005).  The improved and 

balanced analysis can then be used to initialize a new forecast cycle.

Acknowledgements.  Throughout this study BEB was partially supported by NSF 

Grant ATM-0327929 and the NOAA Earth Systems Research Lab.  JBW and GSD were 

partially supported by NSF Grant ATM-0327929.  The National Center for Atmospheric 

Research is sponsored by the National Science Foundation.



20

REFERENCES

Albers S., J. McGinley, D. Birkenheuer, and J. Smart 1996: The Local Analysis and 
Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. 
Weather and Forecasting, 11, 273-287.

Alexander G.D., J.A. Weinman, and J.L. Schols, 1998: Use of digital warping of 
microwave integrated water vapor imagery to improve forecasts of marine 
extratropical cyclones. Mon. Wea. Rev., 126, 1469-1496

Barnes, S. L., 1964: A technique for maximizing details in numerical weather map 
analysis. J. Appl. Meteor., 3, 396-409.

Bouttier, F., 1994: A Dynamical Estimation Of Forecast Error Covariances In An 
Assimilation System. Mon. Wea. Rev., 122, 2376-2390

Brewster K.A., 2003: Phase-correcting data assimilation and application to storm-scale 
numerical weather prediction. Part I: Method description and simulation testing. 
Mon. Wea. Rev., 131, 480-492

Cardinali, C., L. Rukhovets, and J. Tenenbaum, 2004: Jet Stream Analysis And Forecast 
Errors Using Gads Aircraft Observations In The DAO, ECMWF, And NCEP
Models. Mon. Wea. Rev., 132, 764-779

Chen, Y.S., and Snyder C., 2007: Assimilating Vortex Position With An Ensemble 
Kalman Filter. Mon. Wea. Rev. 135, 1828-1845

Davis, C., B. Brown and R. Bullock, 2006: Object-Based Verification of Precipitation 
Forecasts. Part I: Methodology and Application to Mesoscale Rain Areas. Mon. 
Wea. Rev. 134, 1772-1784

Dee, D.P., and da Silva, A.M., 1998: Data assimilation in the presence of forecast bias. 
Quart. J. Roy. Meteor. Soc., 124, 269-296

Duane, G.S., and J.J. Tribbia, 2004: Weak Atlantic-Pacific teleconnections as 
synchronized chaos. . J. Atmos. Sci., 61, 2149-2168

Hou, Z., and S. Strum, 1999: Brutal but effective data assimilation for convective 
weather.  Preprints, Third Conf. on Coastal Atmos. And Oceanic Prediction 
Process, Amer. Meteor. Soc., 297-284

Hoffman R.N., Z. Liu, J.F. Louis, et al., 1995: Distortion representation of forecast errors. 
Mon. Wea. Rev. 123, 2758-2770



21

Koch, P., H. Wernli and H. C. Davies, 2006: An event-based jet-stream climatology and 
typology. Int. J. Climatology, 26, 283-301

Lawson, W.G., J.A. Hansen, 2005: Alignment Error Models and Ensemble-Based Data 
Assimilation. Mon. Wea. Rev., 133, 1687-1709

Lindzen, R.S. and B. Farrell, 1980: A Simple Approximate Result for the Maximum 
Growth Rate of Baroclinic Instabilities. J. Atmos. Sci., 37, 1648-1654

Matyas, C., 2007: Quantifying the shapes of US landfalling tropical cyclone rain shields.  
Professional Geographer, 59, 158-172

Mariano, A.J., 1990: Contour analysis - a new approach for melding geophysical fields. 
J. Atmos. & Oceanic Tech. 7, 285-295

Martius, O., C. Schwierz, and H.C. Davies, 2006: A refined Hovmöller diagram.  Tellus 
A. 58, 221-226

McGinley, J.A. and J.R. Smart, 2001: On providing a cloud-balanced initial condition for 
diabatic initialization. Preprints, 18th Conf. on Weather Analysis and 
Forecasting, Ft. Lauderdale, FL, Amer. Meteor. Soc.

Nehrkorn, T., R.N. Hoffman, C. Grassotti, et al., 2003: Feature Calibration and 
Alignment To Represent Model Forecast Errors: Empirical Regularization. Quart. 
J. Roy. Meteor. Soc., 129, 195-218

Parrish D.F., and J.C. Derber, 1992: The National-Meteorological-Centers Spectral 
Statistical-Interpolation Analysis System. Mon. Wea. Rev., 120, 1747-1763

Rabier F., A. McNally, E. Andersson, et al., 1998: The ECMWF implementation of 
three-dimensional variational assimilation (3D-Var). II: Structure functions 
Quart. J. Roy. Meteor. Soc., 124, 1809-1829

Ravela, S., Emanual, K., and McLaughlin, D., 2007: Data assimilation by field 
alignment.  Physica D: Nonlinear Phenomenon, 230, 127-145

Schwierz, C.,S. Dirren, and H.C. Davies, 2004: Forced Waves On A Zonally Aligned Jet 
Stream. J. Atmos. Sci., 61, 73-87

Vautard, R., B. Legras, and M. Deque, 1998: On the Source of Midlatitude Low-
Frequency Variability 1. A Statistical Approach to Persistence. J. Atmos. Sci., 45, 
2811-2843

Wernli, H., M. Paulat, M. Hagen, C. Frei, 2008: SAL – a novel quality measure for the 
verification of quantitative precipitation forecasts. Mon. Wea. Rev. 136, 4470-
4487

Xie, Y. F., S. E. Koch, J. A. McGinley, S. Albers, and N. Wang, 2005: A sequential 



22

variational analysis approach for mesoscale data assimilation. Preprints, 21st 
Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather 
Prediction, Washington, DC, Amer. Meteor. Soc., 15B.7. [Available online at 
http://ams.confex.com/ams/pdfpapers/93468.pdf.]



23

Figure 1:  (a) Optimal interpolation of two fields containing jets (thin) into an analysis 
field (thick). Notice that the resulting structure is not only different in magnitude but is 
also qualitatively different in that it is wider and may have two peaks.  (b) Assimilation 
of two jets (thin) which are first warped so that their peaks have the same location 
(dotted) and then assimilated into an analysis jet which retains the magnitude and shape 
of the original jets (thick).
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Figure 2:  Idealization of the grid warping procedure. The dashed line is the result of 
mapping the peak of the background jet in solid black located at xc to the analysis jet 
location xc*.
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Figure 3:  Illustration of the grid warping process on model data.  (a) shows the velocity 
profile of the model (solid) and the observations (dashed) and the jet locations (xloc_model
and xloc_obs)  and jet widths (xreach_model and xreach_obs)  associated with them.  Note that the 
union of the spaces spanned by the jet widths is bounded by xmin and xmax.  (b) is similar 
to Fig. 2 and depicts the warping of the model’s velocity profile (dashed transformed to 
solid) to realign the  jet’s location to xloc_analysis.  The original (top) and warped (bottom) 
grids are also shown.  Note that this process is also applied to the observed velocity 
profile but is not shown here for clarity.  Finally (c) shows the velocities resulting from 
the control technique (dashed) and the jet-aligning one (solid).  In this case the correction 
has improved the location of the solution and preserved the structure’s unimodal nature.
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Figure 4:  Horizontal cross-section of the stream function of the forcing field at midlevel 
in units of 1.48 x 109 m2s-1.



27

Figure 5:  Horizontal cross-section of a typical instantaneous zonal velocity at midlevel in 
m/s.  The maximum zonal velocity of the meridional cross-sections is highlighted in 
black.  Notice the split jet in the center.
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Figure 6:  Horizontal cross-section of the background error covariance of the zonal 
velocity at midlevel in m/s.
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Figure 7:  A typical week of assimilations as error (equation 11) versus time.  The dotted 
horizontal line is error saturation, the dashed line is the control run and the solid line is 
the jet-aligning run.  Note that the jet-aligning run typically has less error but 
occasionally has more error, such as the end of day 2.
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Figure 8:  The average error for a 12-hour assimilation cycle averaged over an ensemble 
of 1000 cycles.  The dashed line represents the control run and the solid line shows the 
jet-aligning method.  The thin grey lines denote the standard deviations.
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Figure 9:  The probability distribution function of the ratio of error of the control 
assimilation to the jet-aligned assimilation at time 12 hours (1000 samples).  The tail of 
this distribution has been truncated for the purposes of the diagram.  The mean is 3.62, 
the median is 2.3, the standard deviation is 4.02, and the minimum and maximum values 
of the sample are 0.12 and 55.25.
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Figure 10:  The range of the KE of the error, the expected value, and the range of the 
median 50% of the data for each experiment. The jet-aligned (solid) groups have 
consistently lower error than the control runs (dashed).  Also as the number of 
observations is reduced the error increases, note that as one makes fewer observations the 
quality of the forecasts becomes poor and the error nears saturation (SAT).
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Figure 11:  The average ratio of KE of the error in the control runs to the error in the jet-
aligning runs at 12 hours (solid) and the standard deviation of the ratio (dashed) as a 
function of the number of grid points skipped in the observation.  There is marked 
improvement up to 4 skipped grid points, where both forecasts begin to become poor and 
the improvement levels off.
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Figure 5:  Horizontal cross-section of a typical instantaneous zonal velocity at midlevel in 

m/s.  The maximum zonal velocity of the meridional cross-sections is highlighted in 

black.  Notice the split jet in the center.
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observations is reduced the error increases, note that as one makes fewer observations the 

quality of the forecasts becomes poor and the error nears saturation (SAT).

Figure 11:  The average ratio of KE of the error in the control runs to the error in the jet-

aligning runs at 12 hours (solid) and the standard deviation of the ratio (dashed) as a 

function of the number of grid points skipped in the observation.  There is marked 

improvement up to 4 skipped grid points, where both forecasts begin to become poor and 

the improvement levels off.




