

Thermosphere "Heat Sphere"

- Temperature increases with height
- •~80km to ~600km
- Includes Ionosphere
- Affected by solar radiation
- A Reducing Environment

Thermosphere Cooling?

- Thermosphere thins with height
- Lower density = fewer collisions
- Fewer collisions = less energy radiated back to Earth, and thus cooling
- Density has decreased by 10% in the last 35 years

- Increasing amounts of greenhouse gases work in the opposite way in the thermosphere, they radiate heat back to space
- As this happens, thermosphere condenses, each layer moves down, creating smaller differences between the layers
- Example is Venus, extremely hot troposphere and an extremely cold thermosphere

Chemistry

- Three body collisions aren't common due to low pressures
- Atomic Oxygen = main constituent
- High temperatures drive oxidation reactions in the reverse direction
- Photodissociation of Oxygen

Photodissociation

Oxygen

- $O2 + hv \rightarrow O + O$
- Gravity separates molecules (Nitrogen at bottom, Oxygen in middle, H and He at top)
- Doesn't occur at any other part of the atmosphere

Nitrogen

- $N2 + hv \rightarrow N + N$
- Photodissociation of N2 only occurs at high altitudes

Recombination

Oxygen

• O + O → O2

• O + N + [M] → NO

Nitrogen

• $N + O2 \rightarrow NO + O$

Cyclical Process

Thermosphere Reactions

Ionosphere

- •Shell of electrons and electrically charged atoms and molecules
- •UV, X-Rays, and short wavelengths of solar radiation are ionizing
- Dependent on the sun and its' solar activity
- Auroras occur here due to solar wind, collisions between ions and atoms become more frequent, causing them to release energy in the visible wavelength

Solar Wind

- Solar wind: flux of electrons and protons
- Usually deflected by magnetic field
- During intense sunspot events, flux can reach as low as 150km
- High ion densities increases the conductivity of the atmosphere
- This disrupts power distribution and communication systems

Effects on Satellites

- Dependent on density of the thermosphere
- Extra heating from solar fluxes causes the outer atmosphere to expand, causing more drag on satellites
- Satellites enter lower regions of the atmosphere, and disintegrate

- Damaging CO2 caused by fossil fuel burning
- Condensing atmosphere causes more space junk to be suspended

Economy

- Satellites orbit in the Thermosphere
- Lower density means less drag by the atmosphere
- Lower fuel costs
- Projected millions of \$
 of fuel costs saved

SPACE JUNK It's like dodging bullets up there

Dangers of Space Junk

- 4 million lbs of junk, some traveling at speeds of up to 17,500mph
- Any contact could destroy a satellite or spacecraft
- Usually are pulled down by gravity and disintegrate
- Since the atmosphere is becoming less dense, the junk is suspended for longer periods of time
- "For the first time, junk is the single biggest risk factor to equipment in some orbits" (Fred Guteri, Newsweek)

Conclusion

References

- http://www.chem1.com/acad/pdf/AtmosPhysics.pdf
- http://www.sp.ph.ic.ac.uk/~ingo/Reading material/Rees Chapters
 1 2.pdf
- http://www.chem1.com/acad/pdf/AtmosPhysics.pdf
- http://ecjones.org/propag.html
- http://www.newsweek.com/id/209955
- http://www.google.com/imgres?imgurl=http://www.science.uwate rloo.ca/~cchieh/cact/fig/atmosphere.gif&imgrefurl=http://www.science.uwaterloo.ca/~cchieh/cact/applychem/atmosphere.html&usg= FCvDcOFo9Ct4CnTmglBbQ-
 - KYJD0=&h=340&w=520&sz=5&hl=en&start=14&itbs=1&tbnid=HWv HX3EOASqrEM:&tbnh=86&tbnw=131&prev=/images%3Fq%3Datmosphere%2Bchemistry%26hl%3Den%26gbv%3D2%26tbs%3Disch:1

