Exoplanets and their Atmospheres

Josh Destree

ATOC 3500

4/22/2010

Outline

- What is an exoplanet?
- Why do we care?
- Detecting exoplanets
- Exoplanets compared to planets in the solar system
- Exoplanet atmospheres

What is an Exoplanet?

 An exoplanet is a planet outside our solar system (Also called an extrasolar planet)

 The first exoplanet was discovered in the early 1990s

To date over 450 exoplanets have been discovered

Why do we Care?

- We are continually trying to answer the following questions:
 - Is the Earth and our solar system common in the universe?
 - Are there other planets that might be habitable?
 - Can we detect indicators of life?

How do we Detect Them?

- Several ways:
 - Doppler Method
 - Transits
 - Directing Imaging
 - Astrometry, Microlensing, and Others...

Doppler Shift Detections

 The light from a star is shifted slightly in wavelength due to the velocity of the star

As a planet orbits a star the velocity of the star will oscillate

Larger planet = larger effect

Close to star = easier to find

Transit Detections

 If the planet's orbit is oriented just right it can pass in front of the host star.

We can detect the slight drop the star's

brightness

Larger planet = larger signal

Closer to star = more likely

Direct Imaging

 In some cases we can directly photograph an exoplanet

 Works well with large planets far from their host star

Fomalhaut System
Hubble Space Telescope • ACS/HRC

Are Exoplanets like the Solar System?

We still don't know

- Selection bias has favored very large planets, often very close to their host star
- There has been some very surprising discoveries...

Transit Doppler Imaging

Hot Jupiters

- Massive planets up to 10 M_J
 (M_J = 1.9 x 10²⁷ kg or about 300 Earths)
- Often closer to their star than Mercury
- Very Hot: 1000-2000 K
- High temperatures cause large atmospheric scale heights

Atmosphere Types

- What do we expect atmospheres to be like?
- Highly mass dependent:
 - Dominated by H and He planet must be large so that these light elements won't escape
 - H-rich atmospheres planets in the range of 10-30 Earth masses that are not too hot could have a mixture of H2 as well as gases from outgassing. May be dominated by H2, H2O and CH4 or CO.

Atmosphere Types

Outgassed Atmospheres – Planet not large or cold enough to keep its H. Likely to be CO2 dominated.

Hot Super Earths – High temperature has caused H, N, C, O and S to all escape. A thin atmosphere may contain silicates.

No Atmosphere – Mercury and the moon are good examples of this

Studying Exoplanet Atmospheres

- How can we study the atmosphere of a planet that is light years away?
- Eclipses are Key:

Discoveries so Far

- About a dozen exoplanet atmospheres have been observed so far.
- Only hot Jupiters have been studied in a significant way
- Interpreting observations are often heavily based on models
- Largely based on two space telescopes: Hubble and Spitzer

Discoveries so Far

- Large IR emission confirms that atmospheres are exceedingly hot.
- Implies efficient absorption of visible light
- Albedos less than about 0.2 (Earth = 0.37, Jupiter = 0.5)
- Several species have been detected:

Na, CH4, CO, CO2, H2O

H2O mixing ratio ~ 10⁻⁴

Transmission spectrum of planet around HD 189733

Thermal emission of planet around HD 189733

CO2 in the Atmosphere

 The abundance of CO2 in the atmosphere of a Hot Jupiter was a surprise (CO2 may be much larger than expected in one hot Jupiter studied)

CO2 is in equilibrium with CO:

$$CO + H2O \Rightarrow CO2 + H2$$

 But at high temperatures and with H2 dominating the atmosphere CO is expected to be much more abundant than CO2

CO2 in the Atmosphere

 It is likely that in this case photochemistry plays a significant role:

CO2 is also produced by OH:

$$CO + OH \Rightarrow CO2 + H$$

Where OH is from photolysis of H2O

$$H2O + hv \rightarrow OH + H$$

Other Hydrocarbons

There may be trace amounts of hydrocarbons in the atmospheres of Hot Jupiters – C2H2, C2H6 and NH3

Photolysis of CO can make C2H2, CH4 and C2H6 $-CO + hv \rightarrow C + O$

Just In Case you Care:

CH4 Production

$$CO + h\nu \rightarrow C + O$$
,

$$C + H_2 + M \rightarrow {}^{3}CH_2 + M,$$

$$2^{3}CH_{2} \rightarrow C_{2}H_{2} + 2H$$

$$C_2H_2 + H + M \rightarrow C_2H_3 + M,$$

$$C_2H_3 + H_2 \rightarrow C_2H_4 + H_1$$

$$C_2H_4 + H + M \rightarrow C_2H_5 + M,$$

$$C_2H_5 + H \rightarrow 2CH_3$$
,

$$CH_3 + H + M \rightarrow CH_4 + M$$
.

Other Discoveries

- Transmission spectra provide evidence for haze Small particles
- Planets are likely tidally locked

Day/night temperature differences can be relatively small (200 K) or very large (1000K)

Strong winds likely

Other Discoveries

- Inversions were not expected with the lack of molecules to efficiently heat the upper atmosphere (O3 for example)
- Tentative evidence for in some hot Jupiters
- Possible absorbers could include TiO or photochemical hazes

Future Research

Continue to push to discover Earth-like planets or biosignatures

 What would Earth look like with these type of observations

 This would be VERY difficult to observe

Future Research - Biosignatures

- Biosignatures gas whose abundance is completely out of equilibrium
- Eamples:

CH4 and O2 (both)

Large O2

- Must avoid other possible scenarios (O2 due to sudden loss of oceans)
- Most of the work so far has focused on O2, O3, N2O and CH4

References

Seager, S. & Demin, D. (2010), "Exoplanet Atmospheres." ARA&A, In Press

Liang, M.C., et al. (2003), "Source of Atomic Hydrogen in the Atmosphere of HD 209458b." 2003, ApJ, 596, 247

Madhusudhan, N. & Seager, S. (2009), "A Temperature and Abundance Retrieval Method for Exoplanet Atmospheres." ApJ, 707, 24

Swain, M. R. et al. (2008), "Molecular Signatures in the Near Infrared Dayside Spectrum of HD 189733b." arXiv:0812.1844v2