

By: Ben Bernardo

Main Control Technologies for SOx

Remove the sulfur from the fuel before it is burned

Remove the SO₂ from the exhaust gases

Sulfur Removal

Sulfur is removed from crude oil by the catalytic reaction:

$$R-S + H_2 \rightarrow H_2S + R$$

- Until the mid 1970's the H₂S was mixed back into the fuel gas.
- The problem with this is that the H₂S is burned in fuel producing SO₂, but at a different stage

Claus Process

$$R-S + H_2 \rightarrow H_2S + R$$

$$H_2S + 3/2 O_2 \rightarrow H_2O + SO_2$$

$$2 H_2S + SO_2 \rightarrow 2 H_2O + 3 S$$

The elemental sulfur is then sold and the emissions of SO₂ and H₂S are reduced drastically

Limestone Scrubbing

Most widely used because it is very cost effective

Current efficiency of 98 - 99% removal of SO₂ compared to 88 - 90% in the 1980's

Limestone Scrubbing Chem

$$CaCO_3 + 2 SO_2 + H_2O \rightarrow Ca^{+2} + 2 HSO_3^- + CO_2$$

$$CaCO_3 + 2 HSO_3^- + Ca^{+2} \rightarrow 2 CaSO_3 + CO_2 + H_2O$$

$$CaCO_3 + SO_2 \rightarrow CaSO_3 + CO_2$$

- This is a two step process including the scrubber and the effluent hold tank.
- □ CaSO₄ (gypsum) is also formed by the oxidation of CaSO₃

The first reaction occurs in the scrubber and if there is an excess of CaSO₃ or CaSO₄ it will precipitate and cause scaling in the scrubbing tower.

- Therefore, there must be a second process to ensure that the precipitation occurs in a different chamber.
- The second chamber is called the effluent hold tank (EHT) where more CaCO₃ is added in order to precipitate the CaSO₃ and CaSO₄

Limestone Scrubbing Chem

$$CaCO_3 + 2 SO_2 + H_2O \rightarrow Ca^{+2} + 2 HSO_3^- + CO_2$$

$$CaCO_3 + 2 HSO_3^- + Ca^{+2} \rightarrow 2 CaSO_3 + CO_2 + H_2O$$

$$CaCO_3 + SO_2 \rightarrow CaSO_3 + CO_2$$

Main Control Technologies for NOx

Combustion Modification

Flue Gas treatment

Combustion Modifications

11. Reduce peak temperatures of the flame zone

2. Reduce the gas residence time in the flame zone

3. Reduce the oxygen concentration in the flame zone"

Alley, F.C., and C. David Cooper. *Air Pollution Control: A Design Approach*. 3rd ed. New York, NY: Waveland Pr Inc, 2002

Flue Gas Treatment

Selective Catalytic Reduction (SCR)

$$4 \text{ NO} + 4 \text{ NH}_3 + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

$$2 \text{ NO}_2 + 4 \text{ NH}_3 + \text{O}_2 \longrightarrow 3 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

- SCR's are usually 80% efficient in reducing NOx
- □ Operates at temperatures from 300 to 400 C

Flue Gas Treatment Contd.

Selective Noncatalytic Reduction (SNR)

- Operates at 900 to 1000 C
- NH₃ at this high temperature will reduce the Nox into N₂ without a catalyst
- ☐ Only around 40 60% reduction in Nox.
- More cost effective than SCR's if only 40 to 60% reduction is needed

