Peroxyacetyl Nitrates: Ozone in the cooling PAN

Farrah Qureshi
Atmospheric Chemistry
Spring 2010

History

- In southern California, farmers noticed that crops and rubber products were deteriorating. Some oxidants were suspected.
- John Middleton first recorded that SO2 and HF (which were postulated to cause this) did not cause the damage; instead of reduction, it was oxidation that caused this damage.
- This area was notorious for its air pollution
- A Perfumery chemist, Arie Haagen-Smit, at Caltech noticed that the smog smelled like the terpenes (a type of hydrocarbon usually produced by plants) in his lab.

- Ellis Darley from UCE exposed various plants to a wide range of chemicals to determine what caused the bronzing with no success.
- Haagen-Smit also fumigated some plants, but did so when he performed an ozonolysis reaction on gasoline. He theorized that the bronzing of foliage was caused by partially ozonized hydrocarbons!
 - Suggested that olefins/alkenes (a molecule with at least one double bond) were responsible for this
 - Suspected causes:
 - Automobiles and oil refineries

The discovery

- Researchers from the Franklin Institute Laboratories (Stephens, Hanst, Doerr, and Scott) used long path infrared gas cell to identify products
 - It allowed probing of the IR spectrum of the alkene-NOx mixture
 - 1954
- Found a "compound X"
 - IR spectrum indicated that there were strong bands at 1740 cm^-1 and 1841 cm^-1
 - Found when 3-methylpentane reacted with biacetyl
 - Could not isolate; caused violent reaction
 - Shuck and Doyle synthesized acyl nitrate which had similarities to the nitrate, but was not identical to compound X IR

 Edgar stephens finally produced the correct structure for compound X: peroxyacyl nitrate

Peroxyacetyl Nitrate formation

- Hydrocarbon chains form aldehydes as an intermediate; hydroxyl attacks and forms acyl; other reaction with hydroxyl forms peroxyacyl radical.
- Reacts with NOx
 - More energetically favorable to react with NO than NO2
- Mechanism with acetaldehyde:
 - CH3CHO + OH → CH3CO +H2O
 - CH3CO +O2 → CH3CO-O-O
 - CH2CO-O-O +NO2 , ← → CH3CO-O-O-NO2 (PAN!)

Where does this come from?

- Naturally, it comes from the degradation of isoprene
 - Isoprene the building blocks of terpenes
 - From anthropogenic sources it comes from the degradation of hydrocarbons, acylation, reactions with OH*, and NOx from automobile exhaust and refineries
- Studies suggest that using blended gasoline with ethanol increases PAN; NOx increases with 10% ethanol

Reaction Mechanisms

- CH3CO-O-O + NO → CH3CO-O + NO2
- CH3CO-O → CH3 + CO2
- CH3 + O2 → CH3O2
- CH3O2 + NO → CH3O + NO2
- CH3O + O2 → CH2O + HO2
- CH2O + hv → CO + H2
- \rightarrow HCO + H \rightarrow (O2) \rightarrow 2 HO2 + CO
- HO2 + NO → OH + NO2

How NOx usually reacts

- NO2 + hv → O(3P) [ground state] + NO
- $O(3P) + O2 \rightarrow O3$

- How does the presence of hydrocarbons affect this?
 - $-NO + RO2* \rightarrow NO2 + RO*$
- What does this imply?
 - PANs, through the formation of NO2, are responsible for tropospheric ozone creation!

What does PAN do for me?

- Damages plants, art, people, and anything affected by free radicals
 - Causes decay of foliage and skin because of high oxidant power
- Very powerful lachrymator
- PAN and its analogs are 10-50x more toxic than ozone.
- Can react explosively
- Plays a very large role in photochemical smog
- Very stable in colder temperatures
 - Life of PAN 1.7 hrs at 20 C
 - 50 hrs at 0 C
 - 105 days at -20 C
 - Implications?
 - Can move to the layers of the upper atmosphere and last a very long time
 - Can transport NO2 very long distances; globally important

More PAN impact

- PAN leads to a slight mutagenic effect based on an Ames test conducted on Salmonella typhimurium when exposed to low concentrations of PAN
- Trajectories of "Asian air" indicate that PAN, as well as other atmospheric chemicals were transported from Asia to the United States based on chromatographic data

PAN and policy

 Originally mentioned in the Clean Air Act of 1970 along with hydrogen peroxide and NO2 because there were difficulties measuring and synthesizing standards

Ways to analyze PAN

- Electron Capture Detector (ECD)
 - Use a nonpolar column to separate PANS fro other gases present (such as organonitrates, Freon, oxygen, etc.)
 - Had difficulties with said process
- Luminol chemiluminescence
 - Fast capillary chromatography
- Mass spectroscopy
- NMR
- IR
- But NOT UV-Vis spectroscopy

Works Cited

- Kleindeist, Shepson et al. "Peroxyacetyl nitrate: Measurement of its mutagenic activity using the Salmonella/mammalian microsome reversion assay." Mutagenic Research/Genetic Toxicity.
 http://www.sciencedirect.com/science? ob=ArticleURL&_udi=B73FB-475J9RV-Y&_user=918210&_coverDate=09%2F30%2F1985&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&/searchStrld=1287558120&_rerun Origin=scholar.google&_acct=C000047944&_version=1&_urlVersion=0&_userid=918210&md5=d485a5cf13a0f3ede7ff24f02bb57a22>
- Jaffe, Geoffery et all. "Transport of Asian Air Pollution to North America." Geophysical Research Letters. Vol 26, 711-714. 15 March 1999. http://faculty.www.edu.org/particle/995.0df
- All photographs under fair use of the US copyright law; I own none of these pictures and this lecture is only meant for educational purposes.

- Ohkubo and Sato. "An INDO-MO Study of Peroxyacetyl Nitrate Formation." Bulletin of the Chemical Society of Japan, Volume 52, 1525-1526.
- Wayne, Richard P. *Chemistry of Atmospheres: Third Edition.* Oxford University Press: Padstow, Great Britain, 2000.
- Gaffney and Marley. "Peroxyacetyl Nitrate (PAN):
 Historical Perspective." Argonne National
 Laboratory, Environmental Research Division. 8
 November 2000.
- Gaffney and Marley. "Comment on the 'Environmental Implications on the Oxygenation of Gasoline with Ethanol in the Metropolitan Area of Mexico City." American Chemical Society: Environmental Science and Technology, Vol. 35, 24. http://pubs.acs.org/doi/pdf/10.1021/es0110832?cookieSet=1.