Ozone Chemistry in the High-Latitude Boundary Layer

COLORADO

Linnea Avallone Department of Atmospheric and Oceanic Sciences Laboratory for Atmospheric and Space Physics

Outline

 Brief history of boundary layer ozone loss phenomenon

In situ observations of BrO at Arctic sites

 Preliminary results from Antarctic experiments in 2002 and 2004

Brief History

 Springtime ozone loss observed at many sites around Arctic since 1970s

Data courtesy NOAA CMDL

Data courtesy NOAA CMDL

Brief History

 Springtime ozone loss observed at many sites since 1970s

 Early studies suggested link to "Arctic Haze" - pollution transported from Europe and Asia

Filterable Br correlated with ozone loss

Barrie et al., Nature, 1988

Brief History

Tuckerman et al., Tellus, 1997

 Later studies show some correlation between ozone loss and presence of BrO

Ozone Loss in the Arctic

 $2 (Br + O_3 \rightarrow BrO + O_2)$ BrO + BrO $\rightarrow 2Br + O_2$ $2 O_3 \rightarrow 3 O_2$

• Natural chemistry in the Arctic caused by bromine episodically removes O_3 near the surface every spring

 Allows other gases to build up to unnaturally high levels, including mercury and certain hydrocarbons

Where does bromine come from?

"leads" spray deposits salt on snowv surfaces frost flowers made of brine

"Bromine Explosion"

 $\begin{array}{l} \mathsf{HOBr}_{(aq)} + \mathsf{Br}_{(aq)}^{-} + \mathsf{H}_{(aq)}^{+} \rightarrow \mathsf{H}_{2}\mathcal{O}_{(aq)} + \mathsf{Br}_{2(g)} \\ & \mathsf{Br}_{2} + hv \rightarrow 2\mathsf{Br} \\ & \mathsf{Br} + \mathcal{O}_{3} \rightarrow \mathsf{Br}\mathcal{O} + \mathcal{O}_{2} \\ & \mathsf{Br}\mathcal{O} + \mathsf{HO}_{2} \rightarrow \mathsf{HOBr} + \mathcal{O}_{2} \end{array}$

Net: $H^+ + Br^- + HO_2 + O_3 \rightarrow Br + H_2O + 2O_2$ [Fan and Jacob, 1992]

"Bromine Explosion"

 $\begin{array}{l} \mathsf{HOBr}_{(aq)} + \mathsf{Br}_{(aq)}^{-} + \mathsf{H}_{(aq)}^{+} \to \mathsf{H}_{2}\mathcal{O}_{(aq)} + \mathsf{Br}_{2(g)} \\ & \mathsf{Br}_{2} + hv \to 2\mathsf{Br} \\ & \mathsf{Br} + \mathcal{O}_{3} \to \mathsf{Br}\mathcal{O} + \mathcal{O}_{2} \\ & \mathsf{Br}\mathcal{O} + \mathsf{HO}_{2} \to \mathsf{HOBr} + \mathcal{O}_{2} \end{array}$

Net: H^+ + Br⁻ + HO₂ + O₃ \rightarrow Br + H₂O + 2O₂ [Fan and Jacob, 1992]

Source	рН	Cl/Br
Sea Water	7.6 - 8.2	650
Frost flowers, measured	8.1 - 8.7	269-367
Surface snow, measured	5.4 - 7.3	13-980

[Kalnajs and Avallone 2006]

Why should we care?

Bromine activation is widespread

BrO is widespread

Why should we care?

Bromine activation is widespread

 Bromine may react with gaseous mercury (Hg⁰), converting it to forms that are deposited into ecosystems

Correlation of Mercury with Ozone

Schroeder et al., Nature, 1998

Why should we care?

- Bromine activation is widespread
- Bromine may react with gaseous mercury (Hg⁰), converting it to forms that are deposited into ecosystems
- Possible climate implications of boundary layer ozone loss

d. JJA O_3 forcing

JJA tropospheric ozone forcing above pre-industrial levels [*L.J. Mickley 2001*]

 Tropospheric Ozone has significant climate forcing at poles

 ODEs affect arctic ozone budget

 Antarctic is cleaner than arctic → study non-anthropogenic contribution

ODEs play a role in aerosol formation \rightarrow ice core interpretation

In Situ Measurements of Halogens

- Prior to 1996, all observations of halogens had been made either by long-path spectroscopy (DOAS) or by collection and analysis of aerosols or air samples
- In situ measurements provide higher temporal resolution, and potentially higher spatial resolution

Measurement Sites

Instruments

ARCTOC '96 Ny Ålesund, April-May

Polar Sunrise 2000 Alert, May

ARCTOC '96 BrO

Avallone et al., JGR, 2003

Alert 2000 Ice Camp

Alert 2000 BrO

Avallone et al., JGR, 2003

Lessons from in situ BrO measurements

Ozone Lifetime

Ozone Lifetime

What about the Antarctic?

What about the Antarctic?

Questions about Antarctic boundary layer ozone

 Does surface ozone loss happen in the Antarctic?

 If so, can we explain it? Is it due to bromine?

Ozone loss in Antarctica?

Date

Ozone loss in Antarctica? Yes, but...

Measurements at Arrival Heights

Winfly 2002

First Results

Is there BrO at McMurdo?

Yes, but...

 There's something else present not the form we expected

 Continuing data analysis and lab work

So for 2004 season....

2004 Field Season Goals

- "Clean Air" site near Pegasus runway
- Continue to monitor "pollution tracers"
- Measure ozone fluxes from/to snow surface
- Sample snow for chemical content

Field Site - Fish Hut #12

Ozone Behavior

Ozone in town - for contrast

(tick at '00 UT)

Ozone Behavior

Ozone Surface Flux •Definition: Number of molecules per second crossing a surface parallel to the ground. •Expressed as a deposition velocity average vertical velocity of an ozone molecule

Vertical Profiles of Ozone

 Can we learn about the chemistry of ozone from its vertical profile?

 Ran a tethered balloon using a Univ. Wyoming ozonesonde

Vertical Profile of Ozone

Flux Measurements

Flux Measurements

Time (sec)

Outstanding Issues

- What is the real source of bromine to the atmosphere? Is direct BrO release from the snowpack important?
- What is the role of aerosols in ODEs?
- Are inter-halogen reactions important (Iodine?)
- Do these ODEs occur by the same mechanism in the Arctic and Antarctic?