# More from Discussions of Presentations

On biological 'disequilibrium' as a sign of life on a planet

On volcanoes and climate change

On comparing costs of different sources of energy

The ionosphere (reversing magnetic pole, expanding/contracting atmosphere)



#### From Wapedia

The Gaia hypothesis was first scientifically formulated in the 1960s by the independent research scientist James Lovelock, as a consequence of his work for NASA on methods of detecting life on Mars. <sup>[4] [5]</sup> He initially published the *Gaia Hypothesis* in journal articles in the early 1970s <sup>[6] [7]</sup> followed by a popularizing 1979 book *Gaia: A new look at life on Earth*.

The theory was initially, according to Lovelock, a way to explain the fact that combinations of chemicals including oxygen and methane persist in stable concentrations in the atmosphere of the Earth. Lovelock suggested detecting such combinations in other planets' atmospheres as a relatively reliable and cheap way to detect life, which many biologists opposed at the time and since. Later, other relationships such as sea creatures producing sulfur and iodine in approximately the same quantities as required by land creatures emerged and helped bolster the theory. Rather than invent many different theories to describe each such equilibrium, Lovelock dealt with them holistically, naming this self-regulating living system after the Greek goddess Gaia, using a suggestion from the novelist William Golding, who was living in the same village as Lovelock at the time (Bowerchalke, Wiltshire, UK). The Gaia Hypothesis has since been supported by a number of scientific experiments <sup>[8]</sup> and provided a number of useful predictions, <sup>[9]</sup> and hence is properly referred to as the Gaia theory.

Since 1971, the noted microbiologist Dr. Lynn Margulis has been Lovelock's most important collaborator in developing Gaian concepts. <sup>[10]</sup>

Until 1975 the hypothesis was almost totally ignored. An article in the New Scientist of February 15, 1975, and a popular book length version of the theory, published in 1979 as *The Quest for Gaia*, began to attract scientific and critical attention to the hypothesis. The theory was then attacked by many mainstream biologists. Championed by certain environmentalists and climate scientists, it was vociferously rejected by many others, both within scientific circles and outside them.

I commented that there's no life on Mars, a bit tongue-in-cheek. What this was in reference to is the fact that if you look at the atmosphere of Mars, it is in geologic equilibrium – meaning that if there is life, it isn't much – certainly not enough to throw the atmosphere out of balance as is the case for Earth. This doesn't mean, of course, that there can't be some very minor life (bacteria under rocks or under the ice), but it would have to be so small as to not change the composition of the atmosphere. It could also be the case that there used to be more life on Mars, but it is now long dead and the atmosphere is in equilibrium with the rocks.

See the following web site for more on "Life on Mars"

http://wapedia.mobi/en/Life\_on\_Mars

### On the Iceland volcano



"With the first phases, the ash was going up to 30,000 to 40,000 feet," Day said. "The current levels that the ash is being ejected to is maybe only 10,000 or 20,000 feet. It's probably also coarser-grained ash as well -- it's not quite so finely divided on the whole -- so it's going to settle out faster. So although the eruption may continue for a long time, and we may over the next few months see bursts of explosive activity, it's probably not going to be as much of a problem as it has been during this last week." – from CNN, April 20 So it's probably not going to affect climate very much, but it will sure have some local impacts on air quality, travel, and perhaps a short-term climate impact in some regions of the northern hemisphere.

What about alternative (renewable) energy? We discussed briefly how solar panels aren't carbon-free, so to speak. The manufacture of one solar panel with a  $1-m^2$  area produces about 300 kg of CO<sub>2</sub>. If one lives in an area where electricity is generated from coal, each kW-hr produces 1 kg of CO<sub>2</sub>. So the breakeven point is when this panel has generated 300 kW-hr. In Colorado, a 10000 kW solar PV system can generate 12,500 kW-hr of electricity in one year, so a 160 W solar panel with 1 m<sup>2</sup> area will generate 200 kW-hr in one year. Therefore, in 18 months a typical modern solar panel will 'break even' relative to coal in the CO2 emissions game. After those 18 months, all the electricity is essentially carbon free, so with an estimated lifetime of 25+ years, the solar panel produces only 6% of the CO<sub>2</sub> as would have otherwise been generated by coal.

AND - The estimate of 300 kg CO<sub>2</sub> per 1m<sup>2</sup> of solar panel area is on the high side. As production costs decrease with larger scale production, this number will certainly decrease. For a 160 W solar panel, which produces about 5000 kW-hr of electricity in 25 years and costs about \$950 to install, including purchase price, a kW-hr costs about \$0.19, which is only 50% more than the current cost of electricity in Colorado from coal. If the price of coal increases...well, you get the point. Solar is almost equal to coal, and the impact on the environment is much smaller. It's only a matter of time.

Here is a recent estimate of the total carbon footprint of different energy sources, which includes production, distribution, etc. It would be interesting to try to find the sources for this information. The units are  $CO_2e/kWh$ , meaning the equivalent grams of Co2 per kilowatt hour of useful energy production. That is, electricity production from coal is responsible for 1 kg of CO2 per kWh of energy. New solar panels (which are easier to make now than older ones were) is responsible for only 3.5% of the CO2 from coal. Yet the price of solar electricity is about 5 times larger than production of energy from coal.

1000 - coal
900 - oil
750 - open cycle natural gas
580 - closed cycle natural gas (closed cycle natural gas combined with cogeneration might bring this down to 400 CO<sub>2</sub>e/kWh)

110 - old solar photovoltaics

85 - nuclear

- 40 concentrated solar thermal with thermal storage
- 35 new solar photovoltaics
- 21 wind
- 15 hydroelectricity
- <10 geothermal doublet

## 2010 Environmental Performance Index



SUMMARY FOR POLICYMAKERS

Yale Center for Environmental Law and Policy Yale University

Center for International Earth Science Information Network Columbia University tu collaboration with the World Economic Forum Geneva, Switzerland

Joint Research Centre of the European Commission Ispra, Italy

Report and additional materials available at: http://epi.yale.edu

This report has been made possible by generous support from FedEx, The Summit Foundation, and The Sumuel Family Foundation

A pretty disheartening report, if you are the USA!

See where we rank on the next pages.

## Environmental Performance Index – Rankings & Scores

| Rank | Country        | Score |
|------|----------------|-------|
| 1    | Iceland        | 93.5  |
| 2    | Switzerland    | 89.1  |
| 3    | Costa Rica     | 86.4  |
| 4    | Sweden         | 86.0  |
| 5    | Norway         | 81.1  |
| 6    | Mauritius      | 80.6  |
| 7    | France         | 78.2  |
| 8    | Austria        | 78.1  |
| 9    | Cuba           | 78.1  |
| 10   | Colombia       | 76.8  |
| 11   | Malta          | 76.3  |
| 12   | Finland        | 74.7  |
| 13   | Slovakia       | 74.5  |
| 14   | United Kingdom | 74.2  |
| 15   | New Zealand    | 73.4  |
| 16   | Chile          | 73.3  |
| 17   | Germany        | 73.2  |
| 18   | Italy          | 73.1  |
| 19   | Portugal       | 73.0  |
| 20   | Japan          | 72.5  |
| 21   | Latvia         | 72.5  |
| 22   | Czech Republic | 71.6  |
| 23   | Albania        | 71.4  |
| 24   | Panama         | 71.4  |
| 25   | Spain          | 70.6  |

| Rank | Country           | Score |
|------|-------------------|-------|
| 56   | Syria             | 64.6  |
| 57   | Estonia           | 63.8  |
| 58   | Sri Lanka         | 63.7  |
| 59   | Georgia           | 63.6  |
| 60   | Paraguay          | 63.5  |
| 61   | United States     | 63.5  |
| 62   | Brazil            | 63.4  |
| 63   | Poland            | 63.1  |
| 64   | Venezuela         | 62.9  |
| 65   | Bulgaria          | 62.5  |
| 66   | Israel            | 62.4  |
| 67   | Thailand          | 62.2  |
| 68   | Egypt             | 62.0  |
| 69   | Russia            | 61.2  |
| 70   | Argentina         | 61.0  |
| 71   | Greece            | 60.9  |
| 72   | Brunei Darussalam | 60.8  |
| 73   | Macedonia         | 60.6  |
| 74   | Tunisia           | 60.6  |
| 75   | Djibouti          | 60.5  |
| 76   | Armenia           | 60.4  |
| 77   | Turkey            | 60.4  |
| 78   | Iran              | 60.0  |
| 79   | Kyrgyzstan        | 59.7  |
| 80   | 1.000             | 50.6  |

| Rank | Country         | Score |
|------|-----------------|-------|
| 111  | Tajikistan      | 51.3  |
| 112  | Mozambique      | 51.2  |
| 113  | Kuwait          | 51.1  |
| 114  | Solomon Islands | 51.1  |
| 115  | South Africa    | 50.8  |
| 116  | Gambia          | 50.3  |
| 117  | Libya           | 50.1  |
| 118  | Honduras        | 49.9  |
| 119  | Uganda          | 49.8  |
| 120  | Madagascar      | 49.2  |
| 121  | China           | 49.0  |
| 122  | Qatar           | 48.9  |
| 123  | India           | 48.3  |
| 124  | Yemen           | 48.3  |
| 125  | Pakistan        | 48.0  |
| 126  | Tanzania        | 47.9  |
| 127  | Zimbabwe        | 47.8  |
| 128  | Burkina Faso    | 47.3  |
| 129  | Sudan           | 47.1  |
| 130  | Zambia          | 47.0  |
| 131  | Oman            | 45.9  |
| 132  | Guinea-Bissau   | 44.7  |
| 133  | Cameroon        | 44.7  |
| 134  | Indonesia       | 44.6  |
| 105  | Buranda         | 110   |

| 25 | Spain               | 70.6 |
|----|---------------------|------|
| 26 | Belize              | 69.9 |
| 27 | Antigua & Barbuda   | 69.8 |
| 28 | Singapore           | 69.6 |
| 29 | Serbia & Montenegro | 69.4 |
| 30 | Ecuador             | 69.3 |
| 31 | Peru                | 69.3 |
| 32 | Denmark             | 69.2 |
| 33 | Hungary             | 69.1 |
| 34 | El Salvador         | 69.1 |
| 35 | Croatia             | 68.7 |
| 36 | Dominican Republic  | 68.4 |
| 37 | Lithuania           | 68.3 |
| 38 | Nepal               | 68.2 |
| 39 | Suriname            | 68.2 |
| 40 | Bhutan              | 68.0 |
| 41 | Luxembourg          | 67.8 |
| 42 | Algeria             | 67.4 |
| 43 | Mexico              | 67.3 |
| 44 | Irəland             | 67.1 |
| 45 | Romania             | 67.0 |
| 46 | Canada              | 66.4 |
| 47 | Netherlands         | 66.4 |
| 48 | Maldives            | 65.9 |
| 49 | Fiji                | 65.9 |
| 50 | Philippines         | 65.7 |
| 51 | Australia           | 65.7 |
| 52 | Morocco             | 65.6 |
| 53 | Belarus             | 65.4 |
| 54 | Malaysia            | 65.0 |
| 55 | Slovenia            | 65.0 |

| 80  | Laos                 | 59.6 |
|-----|----------------------|------|
| 81  | Namibia              | 59.3 |
| 82  | Guyana               | 59.2 |
| 83  | Uruguay              | 59.1 |
| 84  | Azərbaijan           | 59.1 |
| 85  | Vietnam              | 59.0 |
| 86  | Moldova              | 58.8 |
| 87  | Ukraine              | 58.2 |
| 88  | Belgium              | 58.1 |
| 89  | Jamaica              | 58.0 |
| 90  | Lebanon              | 57.9 |
| 91  | Sao Tome & Principe  | 57.3 |
| 92  | Kazakhstan           | 57.3 |
| 93  | Nicaragua            | 57.1 |
| 94  | South Korea          | 57.0 |
| 95  | Gabon                | 56.4 |
| 96  | Cyprus               | 56.3 |
| 97  | Jordan               | 56.1 |
| 98  | Bosnia & Herzegovina | 55.9 |
| 99  | Saudi Arabia         | 55.3 |
| 100 | Eritrea              | 54.6 |
| 101 | Swaziland            | 54.4 |
| 102 | Côte d'Ivoire        | 54.3 |
| 103 | Trinidad & Tobago    | 54.2 |
| 104 | Guatemala            | 54.0 |
| 105 | Congo                | 54.0 |
| 106 | Dem. Rep. Congo      | 51.6 |
| 107 | Malawi               | 51.4 |
| 108 | Kenya                | 51.4 |
| 109 | Ghana                | 51.3 |
| 110 | Myanmar              | 51.3 |
|     |                      |      |

| 135 | Rwanda                   | 44.6 |
|-----|--------------------------|------|
| 136 | Guinea                   | 44.4 |
| 137 | Bolivia                  | 44.3 |
| 138 | Papua New Guinea         | 44.3 |
| 139 | Bangladesh               | 44.0 |
| 140 | Burundi                  | 43.9 |
| 141 | Ethiopia                 | 43.1 |
| 142 | Mongolia                 | 42.8 |
| 143 | Senegal                  | 42.3 |
| 144 | Uzbekistan               | 42.3 |
| 145 | Bahrain                  | 42.0 |
| 146 | Equatorial Guinea        | 41.9 |
| 147 | North Korea              | 41.8 |
| 148 | Cambodia                 | 41.7 |
| 149 | Botswana                 | 41.3 |
| 150 | Iraq                     | 41.0 |
| 151 | Chad                     | 40.8 |
| 152 | United Arab Emirates     | 40.7 |
| 153 | Nigeria                  | 40.2 |
| 154 | Benin                    | 39.6 |
| 155 | Haiti                    | 39.5 |
| 156 | Mali                     | 39.4 |
| 157 | Turkmenistan             | 38.4 |
| 158 | Niger                    | 37.6 |
| 159 | Togo                     | 36.4 |
| 160 | Angola                   | 36.3 |
| 161 | Mauritania               | 33.7 |
| 162 | Central African Republic | 33.3 |
| 163 | Sierra Leone             | 32.1 |

For detailed analysis of each country, visit http://epi.yale.edu