
The Atmospheric Boundary Layer 
 

 
 
Atmospheric boundary layer – the lower part of the atmosphere that is most 
affected by the surface 
 
That portion of the troposphere that is directly influenced by the presence 
of the earth’s surface and responds to surface forcing with a timescale of 
about one hour or less (Stull, 1988: An Introduction to Boundary Layer 
Meteorology) 
 
What is the depth of the boundary layer? 
 
Free atmosphere – region above the boundary layer where the direct 
effects of the surface are not immediately felt. 
 
Turbulence may also occur in localized regions in the free atmosphere that 
are not directly coupled to the surface. 
 
Capping inversion – stable layer between the boundary layer and free 
atmosphere 
 
What are the typical diurnal changes in temperature, humidity, and winds in 
the boundary layer under fair weather conditions? 
 



Turbulence 
 
Turbulence – irregular, quasi-random motion spanning a continuous 
spectrum of spatial and temporal scales 
 
Turbulence can be thought of as gustiness superimposed on the mean 
wind by irregular swirls of many sizes called eddies. 
 
Laminar – smooth (non-turbulent) flow 
 

 
 
What mechanisms are responsible for the generation of turbulence? 
 
Thermal or convective turbulence 
(free convection) – turbulent 
motions generated by convective 
updrafts and downdrafts in a 
statically unstable layer 
 

 
 



 
Mechanical turbulence (forced 
convection) – turbulent motions 
generated by wind shear 
 
 
 
 
 
 
 
 
Inertial turbulence – turbulence 
generated by shear due to larger 
eddies 

 
 

 
 
Turbulent cascade – inertial energy from larger eddies is transferred to 
smaller eddies 
 
This process is described by a fluid dynamics poem by L.F. Richardson: 
 

Big whorls have little whorls, 
that feed on their velocity, 

And little whorls have lesser whorls, 
And so on to viscosity. 

 

 

The kinetic energy 
contained in eddies can be 
shown as a turbulent 
kinetic energy (TKE) 
spectrum. 
 



The smallest scale eddies (~1 cm or smaller) are dissipated as heat 
(internal energy).  
 
For turbulence to persist new eddies must be continually generated. 
 
Turbulence is created when an instability (thermal or mechanical) exists. 
The resulting turbulent motions act to reduce this instability through mixing. 
 
What are examples of thermal and mechanical instabilities and how does 
turbulence act to reduce these instabilities? 
 
The details of an individual eddy can only be predicted on time scales of 
seconds to minutes. In order to account for the effects of turbulence for 
longer time scale forecasts it is necessary to describe the net effect of 
turbulent motions on the atmosphere. 
 
Statistical Description of Turbulence 
 
For turbulent flows 
atmospheric variables 
(u, v, w, T, etc.) 
measured at a point vary 
rapidly in time as 
turbulent eddies of 
various scales pass the 
measurement point. 
 
 

 
 



Consider high temporal resolution measurements of zonal velocity given 
by: 
 

 
 
where i is the index of the data point (observation) and Dt is the time 
interval between measurements. 
 
In order to get measurements representative of the large-scale flow we 
need to average our point measurements over time. 
 
The average can be calculated as: 
 

 

 
The averaging time used should be long enough to average out turbulent 
fluctuations but short enough to retain trends in large-scale flow. 
 
The mean part  is often calculated as an average over ~30 minutes. 
 
The turbulent fluctuations  can then be calculated as: 
 

 
 
The intensity of turbulence in the zonal direction can be quantified by the 
variance: 
 

 

 
The mean and variance can vary over time (from one averaging period to 
the next). 
 
The turbulence is said to be stationary when the variance does not vary 
with time. 
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The turbulence is said to be homogeneous when the variance does not 
vary from one location to another. 
 
The turbulence is said to isotropic when the intensity of the turbulence is 
the same in all directions . 
 
Turbulence Kinetic Energy and Turbulence Intensity 
 
The kinetic energy associated with turbulent fluctuations can be calculated 
as: 
 

 

 
What is the value of TKE for a laminar flow? 
 
Larger values of TKE indicate increased intensity of turbulent motions. 
 
The change in TKE with time can be expressed as: 
 

 

 
where Ad is the advection of the TKE by the mean wind and is given by: 
 

 

 
M is the rate of mechanical generation of turbulence, and depends on the 
vertical wind shear 
 
B is the rate of buoyant generation or consumption of turbulence, and 
depends on the static stability (vertical potential temperature gradient) 
 
Tr is the rate of transport of turbulent energy by the turbulence itself 
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e is the viscous dissipation rate and can be approximated as: 

, where Le is the dissipation length scale. 

 
Ad and Tr can only redistribute TKE (these terms do not account for 
creation or destruction of TKE). 
 
M is usually positive (or zero). 
 
B depends on the static stability and can be positive or negative. 
 
If Ad, M, B, and Tr are all zero then TKE will decrease towards zero. For 
this reason turbulence is said to be dissipative. 
 
In a statically stable environment B is negative and acts to dissipate 
mechanically generated turbulence. 
 
The Richardson number (Ri) is defined as the ratio of the buoyant 
consumption and mechanical generation terms: 
 

 

When will Ri be positive 
(negative)? 
 
What causes Ri to be large 
(small)? 
 

 
Laminar flows are observed to become turbulent when Ri drops below a 
critical value of 0.25. 
 
Turbulent flows are observed to remain turbulent up to Ri = 1.0. 
 
Flows in which Ri < 0.25 are said to be dynamically unstable. 
 
Ri is almost always < 0.25 adjacent to the surface, where the vertical wind 

shear (  and ) is large. 

What causes this large wind shear near the surface? 
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The figure at the left 
summarizes the types 
of turbulence for 
varying buoyant 
generation (horizontal 
axis) and shear 
generation (vertical 
axis) of turbulence. 
 
The intensity of 
turbulence in the 
vertical and horizontal 
directions varies with 
stability (dispersion 
isotropy). 
 
When the turbulence 
intensity is not equal in 
all directions the 
turbulence is said to be 
anisotropic. 
 
How does the intensity 
of horizontal and 
vertical turbulent 
motions change under 
stable, neutral, and 
unstable conditions? 
 
 

 
  



Turbulent Transport and Fluxes 
 
Turbulent fluctuations in the velocity components are often accompanied by 
fluctuations in other scalar quantities (such as temperature or humidity). 
 
The degree to which velocity and other variables vary together is quantified 
by the covariance (cov): 
 

 

 

 

Consider the 
covariance of w and 
q as shown to the 
left: 
 
As air parcels mix 
vertically they 
conserve their initial 
potential 
temperature, 
resulting in vertical 
heat transport in the 
presence of a non-
zero vertical 
potential 
temperature 
gradient. 
 

What is the sign of  for the example above on the left (right)? 
 

How will  change as a result of this mixing? 

 
The covariance of two turbulent variables describes the transport of those 
variables, or the flux. 
 
For the example above  is the kinematic heat flux, FH,kinematic. 
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What are the units of FH,kinematic? 
 
The kinematic heat flux can be related to the heat flux, FH by: 
 

 
 
This heat flux is one possible diabatic (dq or J) contribution to the 
thermodynamic energy equation: 
 
dq = cpdT - adp (Wallace and Hobbs) 
 
or 
 

 (Holton and Hakim) 

 
Fluxes of any other variable can be formulated in a similar manner. 
 
What is the physical interpretation of the following: 
 

? 
 

? 
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Reynolds Averaging (HH Chapter 8) 
 
As discussed above any variable can be expressed as a mean part and a 
turbulent fluctuation: 
 

 
 
Consider the average (known as the Reynolds average) of the product of 
two variables ( ): 
 

 

 
From the definition of the mean and turbulent components above we note 
the following rules for Reynolds averaging: 
 

 
 

 
 

 and is referred to as the covariance 
 
As shown above the covariance term represents the turbulent flux. 
 
This then gives: 
 

 
 
We will now apply Reynolds averaging to the governing equations. 
 
First we will note that the variation in density over shallow layers of the 
atmosphere, such as the boundary layer, can be neglected in the governing 
equations, except when multiplied by gravity. 
 
Boussinesq Approximation – density (r) is replaced by a constant mean 
density (r0) in the governing equations, except in the buoyancy term in the 
vertical momentum equation 
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Using the Boussinesq approximation the governing equations are given by: 
 

 

 
where q is the departure of the potential temperature from the base state 
(q0) and . 
 

We will now apply Reynolds averaging to the total derivative  

 

First we will rewrite this derivative in flux form by adding  to 

 and noting that . 

 
This gives: 
 

 

 

€ 

Du
Dt

= −
1
ρ0

∂p
∂x

+ fv+ Frx

Dv
Dt

= −
1
ρ0

∂p
∂y

− fu + Fry

Dw
Dt

= −
1
ρ0

∂p
∂z

+ g θ
θ0

+ Frz

Dθ
Dt

= −w dθ0
dz

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0

€ 

θtot = θ0 z( ) + θ x,y,z,t( )

€ 

Du
Dt

€ 

u ∂u
∂x

+
∂v
∂y

+
∂w
∂z

# 

$ 
% 

& 

' 
( 

€ 

Du
Dt

€ 

u ∂u
∂x

+
∂v
∂y

+
∂w
∂z

# 

$ 
% 

& 

' 
( = 0

€ 

Du
Dt

=
∂u
∂t

+ u∂u
∂x

+ v∂u
∂y

+ w∂u
∂z

+ u ∂u
∂x

+
∂v
∂y

+
∂w
∂z

# 

$ 
% 

& 

' 
( 



From the chain rule we note that: 
 

 

 
Then: 
 

 

 
Replace the dependent variables (u, v, w) with mean and fluctuating 
components: 
 

 

 
Expanding the products in this equation gives: 
 

 

 
We will now take an average over time of this equation to give: 
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Based on the rules for Reynolds averaging the following terms are equal to 
zero and can be dropped from the equation: 
 

 

 
This gives: 
 

 

 
From the chain rule we note that:  
 

 

 
which gives: 
 

 

 

Noting that  (from the continuity equation) then: 
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With this our expression for the total derivative becomes: 
 

 

 
Defining the rate of change following the mean motion as: 
 

 

 
This gives: 
 

 

 
Now we will consider the zonal momentum equation: 
 

 

 
Replace the dependent variables with their mean and perturbation parts: 
 

 

 
Now take an average over time of this equation to give: 
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But  so: 

 

 

 

Using  gives: 

 

 

 
What does each term in this equation represent? 
 
The same method can be used to derive the other governing equations: 
 

 

 
These equations describe the time rate of change of the mean variables. 
 
The terms that include the covariances (turbulent fluxes) are known as the 
turbulent flux divergence terms. These terms represent the effects of 
turbulent transport of momentum and heat. 
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In the boundary layer the turbulent flux divergence terms are of the same 
magnitude as the other terms in the equations and thus cannot be 
neglected. 
 
The presence of turbulent flux divergence terms in these equations indicate 
that even if we are only interested in predicting the time evolution of the 
mean atmospheric state we still need to consider the effects of turbulence. 
 
In the free atmosphere the turbulent flux divergence terms are much 
smaller than the other terms in the equations, and can thus be neglected, 
so the equations used in previous chapters are still valid above the 
boundary layer. 
 
It is typical to neglect horizontal variations in the turbulent fluxes (i.e. we 

assume that the turbulence is horizontally homogeneous) so the  and  

turbulent flux divergence terms can be neglected and the governing 
equations reduce to: 
 

 

 
In the boundary layer this set of five equations is not a closed set of 
equation, since we have five unknown mean variables  plus the 
unknown turbulent flux terms . 
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Therefore, in order to solve these equations we must make a closure 
assumption that relates the unknown turbulent fluxes to the mean 
variables. 
 
Before considering turbulence closure let’s look at how the turbulent flux 
divergence terms in the governing equation can be interpreted. 
 

 

What does the heat 
flux profile (right figure) 
imply about the vertical 
turbulent flux 
divergence? 
 
How will this alter the 
mean potential 
temperature in the 
boundary layer? 
 
 

 
How will the turbulent momentum flux change from the surface to above 
the boundary layer? 
 
What does this momentum flux profile imply about the vertical momentum 
flux divergence? 
 
How will this alter the mean wind in the boundary layer? 
 
  



Non-local Influence on Stability and Turbulence 
 
Observations from convective daytime boundary layers show large heat 
fluxes but very small (or zero) vertical temperature gradients. In this case 
the local closure fails and a non-local closure must be used. 
 

 

Based on the potential 
temperature profile shown at the 
left why do we have a non-zero 
flux over much of the depth of the 
boundary layer? 
 

 
Traditionally static stability is defined by the local vertical potential 
temperature gradient  although this can occasionally lead to 
incorrect conclusions regarding the stability. 
 
A more accurate method to assess static stability is to consider both local 
and non-local mixing as shown below: 
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Turbulence Closure 
 
A common closure assumption is to assume that turbulent mixing acts in a 
manner analogous to molecular diffusion and the turbulent flux is linearly 
proportional to and directed down the local gradient.  
 
Using this assumption the turbulent heat flux can be approximated as: 
 

, 

 
where K is the eddy diffusivity.  
 
K represents the intensity of turbulence, which varies with stability, wind 
shear, and height above the ground. 
 
One possible parameterization of K is: 
 

, 

 
where l is the mixing length and is approximated by  (k = 0.4 is the 
von Kármán constant). 
 
For this parameterization the effects of static stability have not been 
included. 
 
This closure assumption is a local closure since the flux depends on the 

local gradient . 
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The Surface Energy Balance 
 
Radiative Fluxes 
 
Radiative heating or cooling of the surface drives changes in surface 
temperature and thus boundary layer stability and properties. 
 

 

: Downwelling 
solar (shortwave) 
radiation 
 

: Upwelling solar 
(shortwave) radiation 
 

: Downwelling 
longwave radiation 
 

: Upwelling 
longwave radiation 
 

Net radiation flux:  
 
How does  vary throughout the year? 
 
How will clouds alter ? 
 
Example: ATOC weather station observations 
 

, where a is the surface albedo. 
 
What factors can cause surface albedo to vary at a given location? 
 
What impact do changes in cloud cover have on ? 
 

, where e is the surface emissivity and Tsfc is the surface 
temperature 
Why is  out of phase with solar noon? 
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Surface Energy Budget Over Land 
 
We can consider the surface energy budget by assuming that the surface 
(just the interface between the atmosphere and the Earth) has no heat 
capacity. 
 
In this case the net radiation is balanced by turbulent sensible heat flux 
(FHs), the turbulent latent heat flux (FEs), and conduction (FGs) into the 
surface and the surface energy budget is given by: 
 

 
 
The sign convention for this equation is: 
 
F* is positive downward (energy gain at the surface) 
 
FHs and FEs are positive upward (energy loss from the surface to 
atmosphere) 
 
FGs is positive downward (energy loss from surface to ground) 
 
How do the components of the surface energy budget vary over the diurnal 
cycle? 
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Example of daytime (left) and nighttime (right) surface fluxes over a moist 
surface: 

 
 
How do the terms in the surface energy budget differ for a dry (desert) 
surface (left) and a moist oasis surface (right)? 
 

 
 
Under what conditions can the upward latent heat flux exceed the 
downward net radiative flux? 
 



Turbulence Scales 
 

Friction velocity:  

 
The friction velocity characterizes the intensity of turbulence generated by 
wind shear. 
 
The friction velocity is related to the surface stress (drag force per unit 
surface area) by: 
 

 
 
Length scales 
 
The altitude of the capping inversion, zi, is relevant for unstable and neutral 
boundary layers. 
 
In the lowest part of the boundary layer, called the surface layer, the 
aerodynamic roughness length, z0, characterizes the roughness of the 
surface and is the height at which the wind speed goes to zero. 
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Bulk Aerodynamic Formulae for Surface Fluxes 
 
The turbulent sensible and latent heat fluxes are the primary way that the 
surface alters the overlying atmospheric temperature and moisture content. 
 
What factors will control the sign and magnitude of the surface turbulent 
sensible and latent heat fluxes? 
 
The surface turbulent sensible heat flux can be parameterized as: 
 

 

 
where CH is a dimensionless bulk transfer coefficient for heat. 
 
What are the units of the FHs,kinematic and FHs? 
 
What factors will influence the value of CH? 
 
How will CH vary between stable and unstable conditions? 
 
The surface turbulent latent heat flux can be parameterized as: 
 

 

 
where Lv is the latent heat of vaporization (=2.5x106 J kg-1) and CE is the 
dimensionless bulk transfer coefficient for moisture . 
 
What are the units of the FEs,kinematic and FEs? 
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The surface turbulent momentum flux can be estimated in a similar 
manner. 
 

 

 
  

 
where CD is the dimensionless drag coefficient. 
 
Typical values of the neutral drag coefficient (CDN) are given in W&H table 
9.2. 
 

 

 
where k = 0.4 (von Kármán constant) 
zr is the reference height at which the wind is measured (usually 10 m) 
z0 is the roughness length (see Table 9.2) 
 
How will CD differ from CDN for stable (unstable) conditions? 
 
Unlike CH and CE which are controlled by the intensity of turbulence, CD is 
also controlled by the form drag exerted by obstacles in the flow. 
 
The equations above can be combined to give: 
 

 

 
In the neutral surface layer the wind speed (M) varies logarithmically with 
height and the wind speed profile can be calculated using: 
 

  or   
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If the stability is not neutral the wind speed profile in the surface layer will 
no longer be logarithmic. 
 

  
 
What causes the surface layer wind to be faster than in the neutral case for 
unstable conditions? 
 
What causes the surface layer wind to be slower than in the neutral case 
for stable conditions? 
 



Vertical Structure of the Boundary Layer 
 
Temperature 
 
Consider an atmosphere with an initial temperature profile that matches the 
standard atmosphere temperature profile. 
 

 

How will surface heating and 
the resulting turbulence alter 
the original temperature 
profile? 
 
Why is potential temperature 
constant with height in the 
boundary layer? 
 
What mechanism has 
generated the enhanced 
stability in the capping 
inversion? 

 

 

The boundary layer exhibits large 
diurnal variations in temperature 
(and potential temperature), 
humidity, and wind while the 
overlying free atmosphere 
experiences slower changes in 
response to changing synoptic 
conditions. 
 



Typical Diurnal Boundary Layer Evolution 

 

 

 

 

Daytime 
 
FA: Free atmosphere 
 
EZ: Entrainment 
zone 
 
ML: Mixed layer 
 
SL: Surface layer 
 
 



 

 
Nighttime 
 
FA: Free atmosphere 
 
CI: Capping inversion 
 
RL: Residual layer 
 
SBL: Stable 
boundary layer 

 
How does the vertical temperature (and potential temperature) profile vary 
between day and night? 
 
What implications does this change have for turbulence in the boundary 
layer? 
 
How does the diurnal BL evolution differ between summer and winter? 
 

 



Humidity 
 
What is responsible for the observed vertical humidity profile from the 
surface through the boundary layer and into the free atmosphere? 
 
Why does humidity decrease near the surface at night? 
 
Winds 
 
How does wind speed change as one moves upward away from the 
surface? 
 
For neutral conditions observations indicate that in the surface layer wind 
speed increases approximately logarithmically with height: 
 

, where k is the von Karman constant (=0.4) and z0 is the 

aerodynamic roughness length (see W&H Table 9.2 for typical values). 
 
The wind profile also differs between unstable (day) and stable (night) 
conditions through the entire depth of the boundary layer. 
 

 

Why is the wind sub-
geostrophic through 
the depth of the 
daytime boundary 
layer? 
 
Why is the wind 
speed nearly 
constant with height 
in the mixed layer? 
 
Why is the wind 
supergeostrophic in 
the nighttime 
boundary layer? 
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Planetary Boundary Layer Momentum Equations (Mixed Layer) (HH Ch 8) 
 
We will consider the Reynolds averaged horizontal momentum equations: 
 

 

 
We will consider the flow above the viscous sublayer, so  and  can 
be neglected and scale analysis for typical mid-latitude weather systems 

indicates that  and  can be neglected. 

 
This then gives: 
 

  

 
What balance of forces is expressed by these equations? 
 
In the mixed layer we will assume that the wind and potential temperature 
are constant with height, consistent with observations. 
 
Observations in well mixed boundary layers indicate that the turbulent 
momentum flux varies linearly with height, and goes to zero at the top of 
the layer. 
 
Why is the turbulent momentum flux zero at the top of the well mixed layer? 
 
The turbulent momentum flux at the surface can be estimated using 
empirical bulk aerodynamic formulas: 
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Integrating the horizontal momentum equations over the depth of the mixed 
layer (h) gives: 
 

  

 

If we rotate our axes such that =0 (i.e. ) then: 

 

  

 

where  and  

 
These are diagnostic relationships that allow us to determine  and  from 
a known horizontal pressure field (i.e. ), the drag coefficient, and the 
mixed layer depth. 
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Consider a zonal flow that is initially in geostrophic balance.  
 
What happens to this flow once the turbulent momentum flux divergence 
term is introduced? 
 
What is the sign of ? 
 
How will  compare to ? 
 
What does this imply about the wind direction relative to the geostrophic 
wind direction (and the pressure field)? 
 

 
 
How will this change if Cd increases (decreases)? 
 
Since the turbulent momentum flux divergence reduces the wind speed 
from the geostrophic value this term is often referred to as boundary layer 
friction. 
 
These equations can be written in vector form as: 
 

 

 
What is the direction of the Coriolis force and boundary layer friction terms 
relative to the wind direction? 
 
These forces can only balance if the wind is directed towards low pressure. 
 
As Cd increases the angle between the wind vector and the isobars 
increases. 
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Ekman Layer (HH Ch 8) 
 
Vertical motion driven by convergence or divergence in the boundary layer 
can influence large-scale synoptic weather systems.  
 
To see how this occurs we will take a closer look at wind profiles in the 
boundary layer. We will not require that properties in the boundary layer are 
well mixed in the vertical, as was done previously. 
 
We will start with the horizontal momentum equations: 
 

  

 
We will parameterize the turbulent momentum fluxes as: 
 

  

 
If we assume that Km does not vary with height then: 
 

  

 
Is it reasonable to assume that Km does not vary with height? 
 
Using this we can rewrite the horizontal momentum equations as: 
 

  

 
These equations are known as the Ekman layer equations. 
 
These equations can be solved to find  and  in the boundary layer. 
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In solving these equations we note that: 
 
-  and  at z=0 m (this is a no-slip lower boundary condition) 
 
-  does not vary in the vertical 
 
-  and  as  
 
We will also rotate our coordinate system such that  
 
Example: Show that the solution of the Ekman layer equations is: 
 

  
 

where  and has units of m-1 

 
This solution can be plotted as a 
hodograph.  
 
A hodograph is a graph with 
points defined by the values of u 
and v plotted at multiple heights. 
These points are then 
connected by a line which starts 
at the point defined by u and v 
at the surface.  
 

 
Labels on curve are values of gz (the 
non-dimensional height) 

 

At a height of  (or )  

 
This height is referred to as the Ekman layer depth (De). 
 
Example: What is the Ekman layer depth for f = 10-4 s-1 and KM = 5 m2 s-1? 
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The Ekman layer solution indicates that the wind is directed to the left of 
the geostrophic wind in the Northern hemisphere (i.e. towards low 
pressure). 
 
This is consistent with the wind direction and force balance between PGF, 
Coriolis, and turbulent drag derived for winds in a mixed layer. 
 
Secondary Circulation and Spin Down 
 
The flow towards low pressure in 
the boundary layer implies mass 
convergence into low pressure and 
mass divergence from high 
pressure. 
 
The continuity equation then 
requires rising motion out of the 
boundary layer for the low 
pressure center and sinking motion 
into the boundary layer for the high 
pressure center. 

 

 
For vg = 0 the cross-isobaric mass flux is given by  and the cross-
isobaric mass flux in the boundary layer (M) is then given by the vertical 
integral of  over the boundary layer depth: 
 
In the Ekman layer this gives: 
 

 

 
The units for the mass flux (M) are kg m-1 s-1 
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Integrating the continuity equation through the depth of the Ekman layer, 
and assuming that w at the surface is 0 m s-1 gives: 
 

 

 
The terms in the integral can be evaluated using the Ekman solution to 
give: 
 

  and   

 
If we assume that vg = 0 (isobars are oriented east/west only) then ug does 

not vary in the x direction and  

 
Then: 
 

 

 

This indicates that the horizontal mass convergence  is equal to the 

mass flux out of the top of the Ekman layer . 
 

Noting that  but for vg = 0 this reduces to  
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Integration of the Ekman layer equation through the depth of the Ekman 
layer gives: 
 

 

 
Noting that  gives: 
 

 

 
This indicates that the vertical velocity at the top of the Ekman layer is 
proportional to the geostrophic vorticity. 
 
For cyclonic flow (zg > 0) there is rising motion at the top of the Ekman 
layer [w(De) > 0] which increases with increasing zg 
 
For anticyclonic flow (zg < 0) there is sinking motion at the top of the Ekman 
layer [w(De) < 0] which increases with decreasing zg 
 
Example: What is the vertical velocity forced by a cyclonic system with  
zg = 10-5 s-1, f = 10-4 s-1, and De = 1 km? 
 
This forcing of vertical motion due to turbulent fluxes is known as boundary 
layer pumping and only occurs in rotating fluids. 
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Consider boundary layer pumping for a low pressure system: 
 

• Turbulent momentum fluxes in the boundary layer result in flow 
towards the low pressure center in the boundary layer 

 
• This flow towards the low pressure center results in mass 

convergence and rising motion through the top of the boundary layer 
 

• Assuming that there is no vertical motion at the tropopause the rising 
motion through the top of the boundary layer must go to zero at the 
tropopause 

 
• This results in a divergent flow above the boundary layer 

 

 
 
The flow described above is referred to as a secondary circulation. 
 
This secondary circulation is a circulation that is superimposed on the 
primary circulation (CCW geostrophic flow around the low pressure center) 
by the physical constraints of the system (in this case the presence of 
turbulent momentum fluxes) and results in a slowing, known as spin down, 
of the primary circulation. 
 
How does the secondary circulation cause the primary circulation to spin 
down? 
 



What is the timescale for this spin down process? 
 
To determine the timescale for spin down we will assume a barotropic 
atmosphere for simplicity. 
 
The vorticity equation, scaled for mid-latitude synoptic scale motions is: 
 

,  

 
where the latitudinal changes in f have been neglected. 
 
Recall that in a barotropic atmosphere zg is independent of height. 
 
The above equation can be integrated from the top of the Ekman layer  
(z = De) to the tropopause (z = H). 
 

 

 
We will assume that w(H) = 0 and the H>>De. 
 

 

 
Substitution of the Ekman layer solution for w(De) into this equation gives: 
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This equation can be integrated in time to give: 
 

 

 

where  is the e-folding time scale for barotropic spin down. 

 
Example: What is the barotropic spin down time scale for H = 10 km,  
f = 10-4 s-1, and KM = 10 m2 s-1? 
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