
Atmospheric Thermodynamics 
 
The Second Law of Thermodynamics and Entropy 
 
The first law of thermodynamics is a statement of conservation of energy. 
 
The second law of thermodynamics is concerned with the maximum 
fraction of a quantity of heat that can be converted into work. 
 
The Carnot Cycle 
 
Cyclic process - a series of operations by which the state of a substance 
(called the working substance) changes but the substance is finally 
returned to its original state in all respects 
 
Work (w) is done by (or on) the working substance if its volume changes. 
 
The internal energy (u) of the working substance is unchanged by the cyclic 
process, since internal energy is a property of state and the initial and final 
state are the same. 
 
Then from the first law of thermodynamics: 
 

 
 
we find: 
 

 

 
The net heat absorbed (q) is equal to the work done (w) during the cyclic 
process (or cycle). 
 
Reversible transformation - each state of the system is in equilibrium so 
that a reversal in the direction of an infinitesimal change returns the 
working substance and the environment to their original states. 
 
Heat engine - a device that does work through the agency of heat. 
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Consider a cycle of a heat engine in which Q1 heat is absorbed and Q2 heat 
is rejected. 
 
The net heat absorbed is: 
 
q = Q1 - Q2 
 
and the work (w) done by the engine is: 
 

 
 
The efficiency of the engine (h) is defined as: 
 

 

 
Consider an ideal heat engine as illustrated below: 

 

Y - cylinder 
B - conducting base 
P - frictionless 
piston 
S - nonconducting 

stand 
H - infinite warm 

reservoir 
C - infinite cold 

reservoir 
T1 > T2 

 
Heat is supplied to the working substance when the cylinder (Y) is placed 
on the warm reservoir (H). 
 
Heat is extracted from the working substance when the cylinder (Y) is 
placed on the cold reservoir (C). 
 
Work is done by the working substance when it expands and the piston (P) 
is pushed outward. 
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Work is done on the working substance when the piston (P) pushes inward 
and the working substance contracts. 
Carnot Cycle 
 

 
 
i. Start at point A with T=T2 
 
The cylinder is placed on the stand and the working substance is 
compressed (move from A to B). 
 
Since the cylinder is on a nonconducting stand no heat is added to or 
extracted from the working substance, and the compression is adiabatic. 
 
During this adiabatic compression the temperature of the working 
substance increases to T1 
 
Why does the temperature increase during this step of the cycle? 
 
ii. The cylinder is placed on the warm reservoir and isothermally expands at 
temperature T1` (move from B to C). 
 
During this step the working substance does work (by expanding against 
the force of the piston) and extracts a quantity of heat (Q1) from the warm 
reservoir. 
 
How do we know that the working substance extracts heat during this step? 
 
iii. The cylinder is placed on the nonconducting stand and expands 
adiabatically (move from C to D). 



 
The temperature decreases from T1 to T2. 
The working substance does work during this expansion. 
 
How do we know that work is done by the working substance for this 
transformation? 
 
iv. The cylinder is placed on the cold reservoir and is compressed 
isothermally (at temperature T2) back to its original state (move from D to 
A) 
 
During this isothermal compression the working substance rejects a 
quantity of heat (Q2) to the cold reservoir. 
 
How do we know that heat is rejected to the cold reservoir during this step? 
 
The amount of work done during this Carnot cycle is given by: 
 

 

 
and is given by the area enclosed by ABCD on the p-V diagram. 
 
Since this is a cyclic process, the internal energy of the system is 
unchanged, and the work done is equal to net heat added to the system 
(Q1 - Q2). 
 
The efficiency of this heat engine is given by: 
 

 

 
In this process the heat engine did work by transferring heat from the warm 
reservoir to the cold reservoir. 
 
One statement of the second law of thermodynamics is “only by 
transferring heat from a warmer to a colder body can heat be converted 
into work in a cyclic process” 
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Carnot’s theorems 
 
For a given range of temperatures no engine can be more efficient than a 
reversible engine. 
 
All reversible engines, working between the same range of temperatures, 
have the same efficiency. 
 
For the Carnot cycle the ratio of heat absorbed (Q1) to heat rejected (Q2) is 
equal to the ratio of the temperature of the warm reservoir (T1) to the 
temperature of the cold reservoir (T2): 
 

 

 
What are some examples of real heat engines? 
 
What is an atmospheric example of a heat engine? 
 
If the Carnot cycle is run in reverse a quantity of heat (Q2) is taken from the 
cold reservoir and a quantity of heat (Q1) is transferred to the warm 
reservoir (Q1>Q2). 
 
In order for heat to be transferred from the cold to the warm reservoir 
mechanical work (=Q1 - Q2) must be done on the working substance. 
 
What is an example of a reversed heat engine? 
 
Another statement of the second law of thermodynamics is “heat cannot of 
itself (i.e. without the performance of work by some external agency) pass 
from a cooler to a warmer body in a cyclic process” 
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Entropy 

 

Is heat added to or extracted from 
the working substance for an 
isothermal transition from adiabat 
q1 to q2? 
 
The heat associated with this 
transition is Qrev. 
 
 

 
If we consider another isothermal transition from adiabat q1 to q2 at a 
different temperature the amount of heat associated with the transition will 
be different but the ratio  will be the same. 
 
We can then use  as a measure of the difference between the two 
adiabats, which is referred to as the difference in entropy. 
 
The change in entropy of a system is defined by: 
 

 

 
and the change in entropy for a unit mass of a substance is given by: 
 

 

 
Entropy is a function of state of the system and is independent of the path 
by which the system is brought to that state. 
 
For the transition of a system from state 1 to state 2: 
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Taking the first law of thermodynamics: 
 

 
 
and the definition of entropy gives: 
 

 
 
which is a form of the first law of thermodynamics that contains only 
functions of state. 
 
We can relate entropy and potential temperature by taking the first law of 
thermodynamics expressed as: 
 

 
 
and rewriting using the equation of state to give: 
 

 

 
Combining this with Poisson’s equation expressed as: 
 

 

 
gives 
 

 

 
Integrating this equation gives: 
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For an adiabatic process both the potential temperature and the entropy 
will be constant. This type of process can be referred to as being isentropic 
(constant entropy). 
 
Similarly, adiabats on a thermodynamic diagram are often referred to as 
isentropes. 
 
The Carnot cycle can be illustrated on a temperature-entropy diagram: 
 

 

The heat associated with any 
transition on this diagram is 
proportional to the area 
under the curve that 
represents the transition. 
 
During which steps of the 
Carnot cycle ABCDA is heat 
absorbed by (Q1) or 
extracted from (Q2) the 
working substance? 
 

 
The difference in heat added to and extracted from the working substance 
during the Carnot cycle (Q1-Q2) is given by the area ABCD and is equal to 
the work done. 
 
On a skew T – log p chart area is also proportional to net work. 
 



Clausius-Clapeyron Equation 
 
The Clausius-Clapeyron equation relates the change in saturation vapor 
pressure above a liquid surface to changes in temperature and is an 
essential equation in atmospheric science. 
 
Derivation of the Clausius-Clapeyron Equation 
 
Take the first law of thermodynamics expressed as: 
 
dq = du + pda 
 
Integrate this equation over the phase transition from liquid (phase 1) to 
vapor (phase 2): 
 

 

 
Latent heat of vaporization (Lv): The heat required to convert a unit mass of 
liquid to vapor at constant temperature and pressure 
 
The constant pressure over which this phase change occurs is the 
saturation vapor pressure (es). 
 

 
 
 
Since T is constant for this phase change we can also write: 
 

 

 
where we have used the definition of entropy (s). 
 
Equating these two expressions for Lv gives: 
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Gibbs function (G):  
 
For a phase change G1 = G2 
 
Differentiation of G gives: 
 

 
 
From the first law of thermodynamics and the definition of entropy: 
 

 
 
Using this expression in the equation for dG gives: 
 

 
 
Since G1 = G2 and dG1 = dG2 then 
 

 
 

 

 
Noting that: 
 

 

 
gives 
 

 

 
which is the Clausius-Clapeyron equation. 
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In the atmosphere a2 >> a1 (the specific volume of water vapor >> the 
specific volume of liquid water) and using the equation of state for water 
vapor allows us to write the Clausius-Clapeyron equation as: 
 

 

 
We can then use this equation to determine changes in es as T varies, by 
integrating this equation, while assuming that Lv is constant: 
 

 

 
where es0 is the known saturation vapor pressure at temperature T0. 
 
es0 can be determined experimentally, and for T0 = 0 deg C es0 = 611 Pa 
 
Also at T0 = 0 deg C = 273.15 K Lv = 2.50x106 J kg-1 
 
Using these values of Lv, T0, and es0 gives: 
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Example: Calculate the saturation vapor pressure at the ATOC weather 
station at SEEC. 
 
 
 
 
 
 
 
 
 
 
As the air temperature increases the amount of water vapor required for the 
air to become saturated increases at an exponential rate. 
 
Similarly, as air is cooled the amount of water vapor required for the air to 
become saturated decreases at an exponential rate. 
 
The derivation of the Clausius-Clapeyron equation given above assumed 
that Lv was constant, but in fact Lv varies with T. 
 
From our derivation of the Clausius-Clapeyron equation we know: 
 

 
 
and a2 >> a1, so 
 

 
 
Using the equation of state for water vapor (esa2 = RvT) gives: 
 

 
 
Taking the derivative of Lv with respect to T gives: 
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Noting that , so 

 

 

 
Specific heat of water vapor at constant volume: cvv = 1410 J kg-1 K-1 
 

  

 
Specific heat of water: c = 4187 J kg-1 K-1 
 
Also cpv = cvv + Rv = 1870 J kg-1 K-1, so: 
 

 

 
Taking cpv and c as constants we can integrate this equation to find Lv(T): 
 

 

 
This expression for Lv(T) can be used when integrating the Clausius-
Clapeyron equation to give a more accurate value for es. 
 
In addition, the specific heats of water vapor and liquid water are also 
functions of T, and this can also be taken into account when integrating the 
Clausius-Clapeyron equation. 
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These more exact values of es are given below: 
 

 
 
Example: Using the equation for Lv(T) calculate the latent heat of 
vaporization for T = 30 deg C 
 
 
 
 
An empirical formula fit to the saturation vapor pressure data in the table is: 
 

 (units: hPa) 

 
e0 = 6.112 hPa 
b = 17.67 
T1 = 273.15 K 
T2 = 29.65 K 
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The dew point temperature (Td) can be used with the Clausius-Clapeyron 
equation to calculate the vapor pressure (e) with: 
 

 (units: hPa) 

 
The constants e0, b, T1, and T2 are the same as those used when 
calculating es from T. 
 
Example: Calculate the vapor pressure, saturation vapor pressure, and 
relative humidity from the observed T, Td, and p at the ATOC weather 
station. 
 
 
 
 
 
 
 
Using the Clausius-Clapeyron equation and the relationship between the 
humidity variables discussed earlier we can convert between any of the 
following variables: 
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Saturation vapor pressure over an ice surface (esi) 
 
The saturation vapor pressure over an ice surface can be calculated from 
the Clausius-Clapeyron equation by replacing Lv, the latent heat of 
vaporization, with Ls, the latent heat of sublimation. 
 
Latent heat of sublimation (Ls): The heat required to convert a unit mass of 
ice to vapor at constant temperature and pressure (= 2.85x106 J kg-1 K-1) 
 
The saturation vapor pressure over an ice surface is given by: 
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where 
 

 

 
Combining the expressions for es and esi gives: 
 

 

 
where Lf is the latent heat of fusion (=3.34x105 J kg-1) 
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Generalized Statement of the Second Law of Thermodynamics 
 
The first part of the second law of thermodynamics states: 
 
for a reversible transformation there is no change in the entropy of the 
universe (where universe refers to a system and its surroundings). 
 
Therefore if a system receives heat reversibly the increase in its entropy is 
exactly equal to the decrease in entropy of the surroundings. 
 
In reality all natural transformations are irreversible to some extent. 
 
For an irreversible transformation: 
 

 

 
and there is no simple relationship between the change in entropy of the 
system and the change in entropy of its surroundings. 
 
The second part of the second law of thermodynamics states: 
 
the entropy of the universe increases as a result of irreversible 
transformations 
 
The second law of thermodynamics can then be summarized by: 
 
DSuniverse = DSsystem + DSsurroundings 
 
DSuniverse = 0 for reversible (equilibrium) transformations 
 
DSuniverse > 0 for irreversible (spontaneous) transformations 
 
In general entropy is a measure of the degree of disorder (randomness) of 
a system. 
 
Therefore irreversible transformations increase the randomness of the 
universe. 
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