
Atmospheric Thermodynamics 
 
First Law of Thermodynamics 
 
A system possesses macroscopic kinetic and potential energy as well as 
internal energy (u) due to the kinetic and potential energy of its molecules 
or atoms. 
 
q - w = u2 - u1 
 
where 
 
q - thermal energy (heat) received by a system (J) 
w - external work done by the system (J) 
u1, u2 - internal energy of system before and after change (J) 
 
Changes in internal kinetic energy are manifested as changes in 
temperature. 
 
Changes in internal potential energy are caused by changes in the relative 
positions of molecules due to forces that act between the molecules. 
 
This relationship can be expressed in differential form as: 
 
dq - dw = du 
 
where 
 
dq - differential increment of heat added to the system 
dw - differential increment of work done by the system 
du - differential increase in internal energy of the system 
 
Both of these equations are statements of the first law of thermodynamics. 
 



Work done by a gas 
 
Consider a gas contained in a cylinder that is fitted with a piston: 

 

The volume (V) and 
pressure (p) exerted by 
the gas can be shown on 
a p-V diagram 
 
If the gas expands 
(increase in V) it will push 
the piston a distance dx 
and will do an amount of 
work (dW) given by: 
 
dW = Fdx 
 
The force exerted by the 
gas is equal to pA (where 
A is the cross-sectional 
area of the piston). 
 
dW = pAdx = pdV 

 
The work done by the gas (dW) is equal to the pressure (p) exerted by the 
gas multiplied by the change in volume (dV) of the gas, and is indicated by 
the shaded area under the curve on the p-V diagram 
 
When the gas passes from state A to state B the work done is given by: 
 

 

 
When V1 > V2 (the gas is compressed) work is done on the gas and W<0 
 
When V2 > V1 (the gas expands) work is done by the gas and W>0 
 
The work done in going from volume V1 to volume V2 depends on the path 
of integration and as such is not an exact differential. 
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Dividing by the mass of the gas gives the specific work: 
 

 or dw = pda 

 
and the first law of thermodynamics is then expressed as: 
 
dq = du + pda 
 
Specific Heats 
 
Specific heat: The ratio of the heat added to a system to the change in 
temperature of the system (=dq/dT) 
 
The units for specific heat are J kg-1 K-1 
 
The value of the specific heat depends on how the material (gas) changes 
as heat is added. 
 
Specific heat at constant volume (cv) 
 

 

 
At constant volume a gas does no work and the first law of 
thermodynamics reduces to dq = du 
 
Then cv can be expressed as: 
 

 and du = cvdT 

 
Using this expression for cv the first law of thermodynamics is: 
 
dq = cvdT + pda 
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Internal energy (u) is a function of state, and changes in internal energy 
depend only on the initial and final states and not on the path taken 
between these states. 
 

Therefore:  

 
Specific heat at constant pressure (cp) 
 

Defined as:  

 
In this case work is done by the gas, since as heat is added to the gas the 
gas expands (dW = pdV).  
 
Therefore some of the heat added to the gas goes into doing work, and for 
a given change in temperature more heat must be added to a gas for a 
constant pressure process than for a constant volume process, and cp>cv 
 
The relationship between cv and cp can be found by taking the first law of 
thermodynamics (dq = cvdT + pda) 
 
and rewriting it as 
 
dq = cvdT + d(pa) - adp 
 
Combining this with the derivative of the ideal gas law (pa = RT): 
 
d(pa) = d(RT) = RdT 
 
gives 
 
dq = cvdT + RdT - adp = (cv + R)dT - adp 
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For a constant pressure process adp = 0 and 
 

 

 
This can be used to express the first law of thermodynamics as 
 
dq = cpdT - adp 
 
The value of cp and cv for dry air are: 
 
cp = 1004 J kg-1 K-1 
 
cv = 717 J kg-1 K-1 
 
Enthalpy 
 
Enthalpy is a function of state defined by: 
 

 
 
Since u, p, and a are functions of state enthalpy is also a function of state. 
 
Differentiating the definition of h gives: 
 
dh = du + d(pa) 
 
Using  and dq = cvdT + d(pa) - adp gives 
 
dq = dh - adp  
 
which is another form of the first law of thermodynamics 
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From dq = cpdT - adp we see that 
 
dh = cpdT and in integrated form h = cpT 
 
From this equation we note that h corresponds to the heat required to raise 
the temperature of a material from 0 to T K at constant pressure. 
 
When heat is added to air at constant pressure 
 
dq = dh = cpdT 
 
and the enthalpy increases. Enthalpy is also commonly referred to as 
sensible heat. 
 
Special Processes 
 
Referring to the first law of thermodynamics expressed as: 
 
dq = cvdT + pda 
 
or 
 
dq = cpdT - adp 
 
we can consider a number of special processes. 
 
Isobaric process: dp = 0 
 

 

 
Isothermal process: dT = 0 
 

 
 
Isochoric process: da = 0 
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Adiabatic process: dq = 0 
 

 

 
An adiabatic process is one in which a material undergoes a change in its 
physical state (e.g. pressure, volume, or temperature) without any heat 
being added to it or withdrawn from it. 
 
Consider isothermal and adiabatic compression illustrated on a p-V 
diagram: 
 

 

For both processes V and a 
decrease 
 
For the isothermal process (shown by 
curve AB) this implies that p must 
increase 
 
For the adiabatic process (shown by 
curve AC) the internal energy, and 
thus temperature, increases. 
 
For the same mass of gas at the 
same volume (points B and C) the 
sample with the higher temperature 
(C) will also have a higher pressure, 
hence the adiabat (AC) on the p-V 
diagram is steeper than the isotherm 
(AB) 
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Air parcel – a small mass of air that is thermally insulated from its 
environment, such that its temperature changes adiabatically, and that has 
exactly the same pressure as its environment  
 
Dry Adiabatic Lapse Rate 
 
Consider an air parcel undergoing an adiabatic change in pressure, with no 
phase change of any water substance in the air parcel. 
 
For this air parcel the first law of thermodynamics can be written as: 
 

 

 
Since this change in pressure implies a change in elevation: 
 

 

 
From the hydrostatic equation: 
 

 

 
Combining these equations give: 
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This decrease in temperature with altitude is referred to as the dry adiabatic 
lapse rate (Gd) 
 

 

 
In general a lapse rate (G) always refers to the rate of decrease of 

temperature with height . 

 
The lapse rate in a column of air (referred to as the environmental lapse 
rate) need not be equal to the dry adiabatic lapse rate and typically 
averages 6-7 K km-1 in the troposphere. 
 
What is the sign of the lapse rate if: 
 
T decreases with height? 
 
T increases with height? 
 
T is constant with height? 
 
Potential Temperature (q) - the temperature an air parcel would have if it 
were expanded or compressed adiabatically from its existing pressure and 
temperature to a standard pressure p0 (=1000 hPa) 
 
An expression for potential temperature can be derived by considering the 
first law of thermodynamics for an adiabatic (dq = 0) process: 
 

 
 
Using the ideal gas law to replace a gives: 
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This expression can be integrated from p0, where T0 = q by definition, to p 
(and T): 
 

 

 
This equation for potential temperature is known as Poisson’s equation. 
 
For an adiabatic process the potential temperature of an air parcel is 
conserved (i.e. it remains constant).  
 
Typically this equation is applied to dry air, so R = Rd and cp = cpd.  
 
This gives: 
 

 

 
Example: What is the potential temperature at the ATOC weather station? 
 
 
How does the pressure, temperature, and potential temperature of an air 
parcel change if the air parcel is lifted adiabatically in the atmosphere? 
 
Adiabatic cooling and adiabatic warming 
 
Example: What would the temperature of an air parcel be if it were lifted 
from the ATOC weather station to Nederland by an adiabatic process? 
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Thermodynamic Diagrams 
 
Thermodynamic diagram - a chart whose coordinates are variables of state 
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Figure 5.3
Catalog of thermodynamic diagrams.  In all diagrams, thick 
dark-orange lines represent processes, and thin lines (green 
or blue) represent state.  Thick solid dark-orange lines are dry 
adiabats, and thick dashed dark-orange are moist adiabats.  Solid 
thin green horizontal or nearly-horizontal lines are pressure, 
and solid thin green vertical or diagonal straight lines are tem-
perature.  Isohumes are thin dotted blue lines.  In addition, the 
R-z diagram has height contours (z) as thin horizontal dashed 
grey lines.  

(a)
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Skew T - log P 

 
 

Information plotted on a dry skew T – log p diagram: 
 
Pressure: black horizontal lines (Units: hPa or mb) (logarithm of pressure is 
used as the vertical axis on this diagram) 
 
Temperature: Black lines that slope up and to the right (units: °C) 
 
Dry adiabat: Lines of constant potential temperature – curved yellow lines 
that slope up and to the left (Units: °C) 



Example: Plot weather observations from ATOC weather station on a skew 
T - log P diagram. 
 

 
 
Real-time example: Stüve and Skew T soundings 
 
 


