
Atmospheric Thermodynamics 
 
Atmospheric Composition 
 
What is the composition of the Earth’s atmosphere? 
 
Gaseous Constituents of the Earth’s atmosphere (dry air) 
 

 
 

Constituent 

 
 

Molecular Weight 

Fractional 
Concentration by 
Volume of Dry Air 

Nitrogen (N2) 28.013 78.08% 
Oxygen (O2) 32.000 20.95% 
Argon (Ar) 39.95 0.93% 

Carbon Dioxide (CO2) 44.01 380 ppm 
Neon (Ne) 20.18 18 ppm 

Helium (He) 4.00 5 ppm 
Methane (CH4) 16.04 1.75 ppm 

Krypton (Kr) 83.80 1 ppm 
Hydrogen (H2) 2.02 0.5 ppm 

Nitrous oxide (N2O) 44.013 0.3 ppm 
Ozone (O3) 48.00 0-0.1 ppm 

 
Water vapor is present in the atmosphere in varying concentrations from 0 
to 5%. 
 
Aerosols – solid and liquid material suspended in the air 
 
What are some examples of aerosols? 
 
The particles that make up clouds (ice crystals, rain drops, etc.) are also 
considered aerosols, but are more typically referred to as hydrometeors. 
 
We will consider the atmosphere to be a mixture of two ideal gases, dry air 
and water vapor, called moist air. 



Gas Laws 
 
Equation of state – an equation that relates properties of state (pressure, 
volume, and temperature) to one another 
 
Ideal gas equation – the equation of state for gases 
 

 
 
p – pressure (Pa) 
V – volume (m3) 
m – mass (kg) 
R – gas constant (value depends on gas) (J kg-1 K-1) 
T – absolute temperature (K) 
 
This can be rewritten as: 
 

 

 
r - density (kg m-3) 
 
or as: 
 

 

 
a - specific volume (volume occupied by 1 kg of gas) (m3 kg-1) 
 
Boyle’s Law – for a fixed mass of gas at constant temperature  
 
Charles’ Laws: 
 
For a fixed mass of gas at constant pressure  
 
For a fixed mass of gas at constant volume  
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Mole (mol) – gram-molecular weight of a substance 
 
The mass of 1 mol of a substance is equal to the molecular weight of the 
substance in grams. 
 

 

 
n – number of moles 
m – mass of substance (g) 
M – molecular weight (g mol-1) 
 
Avogadro’s number (NA) – number of molecules in 1 mol of any substance 
 
NA = 6.022x1023 mol-1 
 
Avogadro’s hypothesis – gases containing the same number of molecules 
(or moles) occupy the same volume at the same temperature and pressure 
 
Using the ideal gas law and the definition of a mole gives: 
 

 
 
Using this form of the ideal gas law with Avogadro’s hypothesis indicates 
that MR is constant for all gases. This constant is known as the universal 
gas constant (R*). 
 

 = 8.3145 J K-1 mol-1 
 
With the universal gas constant the ideal gas law becomes: 
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Application of the ideal gas law to dry air 
 

  or   
 
pd – pressure exerted by dry air 
rd – density of dry air 
Rd – gas constant for dry air 
ad – specific volume for dry air 
 

, where 

 
Md – apparent molecular weight of dry air (=28.97 g mol-1) 
 

 

 
mi – mass of ith constituent of dry air 
ni – number of moles of ith constituent of dry air 
 
Example: Calculate the gas constant for dry air 
 
 
 
 
 
 
 
 
Example: Calculate the density of air at SEEC. 
 
 
 
 
 
Why is the density calculated here not exactly correct? 
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Application of the ideal gas law to individual components of air 
 
Each gas that makes up the atmosphere obeys the ideal gas law: 
 

 
 
For water vapor the ideal gas law is: 
 

  or   
 
e – pressure exerted by water vapor (vapor pressure) 
rv – density of water vapor 
av – specific volume of water vapor 
Rv – gas constant for water vapor 
 
Example: Calculate the gas constant for water vapor 
 
Dalton’s law of partial pressure – the total pressure exerted by a mixture of 
gases that do not interact chemically is equal to the sum of the partial 
pressure of the gases 
 

 

 
Partial pressure – pressure exerted by a gas at the same temperature as a 
mixture of gases if it alone occupied all of the volume that the mixture 
occupies 
 
Example: The pressure in a hurricane is observed to be 950 mb. At this 
time the temperature is 88 deg F and the vapor pressure is 25 mb. 
Determine the density of dry air alone and the density of water vapor alone. 
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Virtual Temperature 
 
How does the gas constant vary as the molecular weight of the gas being 
considered changes? 
 
The molecular weight of dry air is greater than the molecular weight of 
moist air (i.e. one mole of dry air has a larger mass than one mole of moist 
air) 
 
What does this imply about the gas constant for moist air compared to dry 
air? 
 
For dry and moist air at the same temperature and pressure which will have 
the smaller density? 
 
As the amount of moisture in the air changes the molecular weight of the 
moist air will also change causing the gas constant for the moist air to vary. 
 
The density of moist air is given by: 
 

, where 

 
r - density of moist air 
md - mass of dry air 
mv - mass of moist air 
V - volume  

 - density that mass md of dry air would have if it occupied volume V 
 - density that mass mv of water vapor would have if it occupied volume V 

 
 and  can be considered partial densities (analogous to partial 

pressures) 
 
Using the ideal gas law the partial pressure of dry air (pd) and water vapor 
(e) can be calculated as: 
 

   and    
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From Dalton’s law the total pressure exerted by the moist air is: 
 

 

 
Rewriting in terms of the density of moist air (r) gives: 
 

 

 

where  

 
This equation can be rewritten in terms of the virtual temperature (Tv) as: 
 

   or    

 
where 
 

 

 
The virtual temperature is the temperature dry air would need to have if it 
were to have the same density as a sample of moist air at the same 
pressure 
 
How does the magnitude of Tv compare to the magnitude of T? 
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Example: The pressure in a hurricane is observed to be 950 mb. At this 
time the temperature is 88 deg F and the vapor pressure is 25 mb. 
 
Calculate the virtual temperature in the hurricane. 
 
 
 
 
 
How does the observed temperature compare to the virtual temperature? 
 
 
 
Calculate the density of dry air, with a pressure of 950 mb, and the actual 
density of the moist air in the hurricane.  
 
 
 
 
 
 
 
 
 
Which density is greater? 
 
 
 



The Hydrostatic Equation 
 
At any point in the atmosphere the atmospheric pressure is equal to the 
weight per unit area of all of the air lying above that point. 
 
Therefore, atmospheric pressure decreases with increasing height in the 
atmosphere. 
 
This results in an upward directed pressure gradient force. 
 
For any mass of atmosphere there is downward directed gravitational force. 
 

 

Hydrostatic balance - the upward 
directed pressure gradient force is 
exactly balanced by the downward 
directed gravitational force. 
 

What would happen if the vertical pressure gradient force and gravitational 
force were not in balance? 
 
Derivation of the hydrostatic equation 
 
Consider a thin slab of the atmosphere, with depth dz and unit cross-
sectional area (1 m2). 
 
If the density of this air is r then the mass of the slab is given by: 
 
m = rdz(1 m2) 
 
The gravitational force acting on this slab of air is: 
 
mg = grdz(1 m2) 
 
where g is the acceleration due to gravity (=9.81 m s-2) 



The change in pressure between height z and z+dz is dp.  
 
What is the sign of dp? 
 
The upward directed pressure gradient force, due to the decrease of 
pressure with height, is given by -dp 
 
For hydrostatic balance: 
 
-dp = grdz 
 
and in the limit as dz ® 0 
 

, which is the hydrostatic equation 

 
This can also be written as  and integrated from height z to the 
top of the atmosphere to give: 
 

 

 
What is the pressure at a height of z = ∞? 
 
This is the mathematical expression that indicates that the pressure at any 
height in the atmosphere is equal to the weight per unit area of all of the 
overlying air. 
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Geopotential 
 
Geopotential (F) – the work that must be done against the Earth’s 
gravitational field to raise a mass of 1 kg from sea level to a height z (i.e. 
the gravitational potential per unit mass) 
 
The force acting on a unit mass of the atmosphere at height z is g. 
 
The work required to raise this mass from z to z+dz is gdz and 
 
𝑑Φ ≡ 𝑔𝑑𝑧 
 
What are the units of geopotential? 
 
Integrating this equation gives the geopotential (F(z)) at height z: 
 

 

 
By convention F(0) = 0 m2 s-2 
 
Since the equation for F(z) is an integral of an exact differential the value of 
F(z) does not depend on the path taken to get to height z. 
 
Geopotential height (Z) 
 

 

 
where g0 is the globally averaged acceleration due to gravity at the Earth’s 
surface (=9.81 m s-2). 
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Since g ≈ g0 in the lower atmosphere Z ≈ z, as shown below. 
 
z (km) Z (km) g (m s-2) 

0 0 9.81 
1 1.00 9.80 

10 9.99 9.77 
100 98.47 9.50 
500 463.6 8.43 

 
Thickness 
 
Using the ideal gas law we can eliminate r in the hydrostatic equation: 
 

 

 
Using the definition of dF gives 
 

 

 
Integrating this between geopotentials F1 and F2 gives: 
 

 

 
Dividing by g0 gives 
 

 

 
The difference Z2 – Z1 is referred to as the thickness between pressure 
levels p1 and p2. 
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Hypsometric Equation 
 
In an isothermal atmosphere the thickness equation reduces to 
 

 

 
where H is the scale height defined by 
 

 

 
The scale height is the e-folding depth for pressure – the depth over which 
the pressure decreases by a factor of 1/e. 
 
Example: Calculate the scale height for the Earth’s atmosphere.  
 
 
 
 
Rearranging the thickness equation gives 
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Example: Calculate the pressure in Boulder (Elevation = 1660 m) for an 
isothermal atmosphere with a temperature of 250 K if the sea level 
pressure is 1013 mb. 
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In a non-isothermal atmosphere the thickness equation can be integrated 
by using a mean virtual temperature ( ) 
 

 

 

 

 

 

This gives the hypsometric equation:  

 
Example: Calculate the thickness between the 1000 and 500 mb levels for 
an atmosphere with  = 250 K. 
 
 
 
 
 
 
How will the thickness of this layer change if  increases? 
 
Example: What is the thickness of the 1000 to 500 mb layer in the tropics 
with  = 280 K and in the polar regions with  = 230 K? 
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Upper Level Weather Maps 
 
Since pressure always decreases with height in the atmosphere, and 
above any given spot on the earth each height has a unique pressure, we 
can use pressure as a vertical coordinate. 
 
Weather data on upper level weather maps are plotted on constant 
pressure surfaces rather than constant height surfaces (such as a sea level 
pressure map). 
 
Pressure surface – an imaginary surface where the pressure has a 
constant value 
 
One of the key properties meteorologists are interested in when looking at 
a constant pressure map is the geopotential height of the constant pressure 
surface. 
 
Consider a layer of the atmosphere between sea level and the 700 mb 
constant pressure surface: 
 

 

The thickness of this 
layer, and thus 
geopotential height of 
the 700 mb surface, 
varies with the 
temperature of the 
column of air below 
700 mb surface. 
 
Lower heights 
correspond to a 
colder column 
temperature.  
 
Therefore, we expect 
(and do) find lower 
constant pressure 
heights near the 
poles and higher 
heights in the tropics. 



Commonly Used Constant Pressure Maps 
Pressure 

Level 
Approximate 
Altitude (ft) 

Approximate 
Altitude (km) 

850 mb About 5,000 ft About 1.5 km 
700 mb About 10,000 ft About 3.0 km 
500 mb About 18,000 ft About 5.5 km 
300 mb About 30,000 ft About 9.0 km 
250 mb About 35,000 ft About 10.5 km 
200 mb About 39,000 ft About 12.0 km 

 
Upper Air Station Model 
 

 
 
What are the differences between surface and upper air station models? 
 
Some upper air weather map terms: 
 
Trough – region of low heights on a constant pressure map 
Ridge – region of high heights on a constant pressure map 
Shortwave – a small ripple in the height field 
Longwave – a large ripple in the height field 



Example: Real-time constant pressure weather maps 
 
How does the height of the 500 mb surface vary from south to north?  
 
What is the relationship between winds and height contours on an upper 
level constant pressure map? 
 
Does this relationship vary between the Northern and Southern 
hemispheres? 
 
What wind direction should we expect to find in the mid-latitudes if lower 
constant pressure surface heights are found near the poles and higher 
heights are found in the tropics? 
 
Reduction of Pressure to Sea Level 
 
Since pressure decreases with altitude, the pressure measured by a 
weather station in the mountains will be less than the pressure measured 
by a weather station at sea level. 
 
Because meteorologists are interested in horizontal changes in pressure, 
the pressures measured at weather stations across the Earth need to be 
interpolated to a common height, which is typically sea level. 
 
This interpolation can be done by solving the hypsometric equation for p1, 
the pressure at sea level, and noting that Z1 = 0 m: 

 

 
In this equation Z2 is the elevation of the weather station and p2 is the 
pressure measured by this weather station. 
 
Example: Calculate the sea level pressure based on the current weather 
observation from the ATOC weather station 
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