
Basic Conservation Laws 
 
Atmospheric motions are governed by three principals: 
 
- conservation of momentum 
- conservation of mass 
- conservation of energy 
 
These conservation laws can be applied to a control volume of the 
atmosphere at a fixed location (Eulerian) or to a control volume of the 
atmosphere that is moving with the flow (Lagrangian) 
 
What are the independent variables for the atmospheric field variables in 
Eulerian and Lagrangian frames of reference? 
 
Total Differentiation 
 

Total, substantial, or material derivative:  

 
This derivative is the time derivative following the motion (Lagrangian) 
 
It will often be easiest to derive our conservation laws in a Lagrangian 
frame. 
 

Local or partial derivative:  

 
This derivative is the time derivative at a fixed location (Eulerian) 
 
How can we relate the time derivative in a Lagrangian frame to the time 
derivative in an Eulerian frame? 
 
Consider the field variable temperature [T(x,y,z,t)] 
 
The position of an air parcel is given by (x,y,z) and is a function of time so, 
 
x = x(t), y = y(t), and z = z(t) 
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Following the air parcel the rate of change of temperature is given by  

 
We can relate the total change in temperature (dT) to changes at a fixed 
location and as a function of position: 
 

 

 
Dividing by dt and taking the limit as dt goes to zero gives: 
 

 

 

where  

 

Also: , , , so 

 

  

 
or 
 

, where 

 

 and  

 
The local rate of temperature change is thus given by: 
 

 

 
What does each term in this equation represent? 
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Advection – the change in properties at a fixed location due to the 
replacement of the original air parcel at that location with a new air parcel 
with different properties 
 
Temperature advection:  
 
When will  be positive and negative? 
 

 
 
Warm air advection – warmer air is replacing cooler air at a given location 
Cold air advection – cooler air is replacing warmer air at a given location 
 
What determines the magnitude of the temperature advection? 
 
Example: Calculate temperature advection from a surface weather map 
 
We can write similar equations for other variables: 
 

 

 

For a dry adiabatic process what is the value of ? 

 
In this case what can cause q to vary at a fixed location? 
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Total Differentiation of a Vector in a Rotating Coordinate System 
 
Newton’s second law can be used to derive an equation that describes 
conservation of momentum (one of the basic principles of atmospheric 
dynamics), but this law applies to motion in an inertial reference frame. 
 
In order to apply this law in a non-inertial reference frame we either need to 
consider apparent forces that arise due to the motion of the non-inertial 
reference frame or we need to relate the acceleration vector in an inertial 
reference frame to the acceleration vector in a non-inertial reference frame. 
 
Consider vector : 
 

 in an inertial reference frame 
 

 in a reference frame rotating with angular velocity W. 
 

Let  be the total derivative in the inertial reference frame, then 

 

 

 
This can also be written in terms of the components of  in the non-inertial 
reference frame as: 
 

 

 

What do the terms  represent? 

 
The total derivative in the non-inertial reference frame is given by: 
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In the rotating reference frame the change of  ( ) is given by: 
 

 

 
This expression relates  to changes in longitude (l), latitude (f), and 
height (z). 
 
For solid body rotation , df = 0, and dz = 0, so 
 

 

 

Dividing by dt, taking the limit as , and noting that  gives: 

 

 

 

 

From this figure we note that the 

direction of  is towards the center of 

rotation as  
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As shown in this figure the vector 

 has components parallel to 

unit vectors  and . 
 
 

 

Noting that  has a magnitude equal to W gives: 

 

 

 
Since : 
 

 

 

Similarly  and  

 
This then gives: 
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Vectorial Form of the Momentum Equation in Rotating 
Coordinates 
 

From Newton’s second law . 

 
Applied in an inertial reference frame this gives: 
 

 

 
As seen in Chapter 1 we needed to include apparent forces in this 
expression when applying Newton’s second law in a non-inertial reference 
frame. 
 

We can arrive at the same result by using the relationship between  

and  derived above: 

 

 

 
First, apply this relationship to the position vector  to get: 
 

 

 
What does each term above represent? 
 

We can also apply the relationship between  and  to  to get: 
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Replacing  with  on the RHS of this equation gives: 
 

 

 
where we have used the vector identity:  
 
What do each of the terms in this equation represent? 
 
Using this with Newton’s second law gives: 
 

 

 
What do each of the terms in this equation represent? 
 
Rearranging terms gives: 
 

 

 
This equation is the momentum equation and represents the conservation 
of momentum in the atmosphere in a rotating reference frame. 
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Component Equations in Spherical Coordinates 
 
It is often preferable to work with the equation of motion in component form 
rather than in vectorial form. 
 
The coordinate system that is typically used is a spherical coordinate 
system with axes given by longitude (l), latitude (f), and vertical distance 
above sea level (z). 
 
The unit vectors in this coordinate system point towards the east ( ), north 
( ) and up ( ). 
 
The three dimensional wind vector is given by:  
 

, with  

 
The distances (Dx and Dy) can be expressed as: 
 

    
 
Where a = radius of the Earth 
 
The direction of the unit vectors , , and  in this coordinate system are 
not constant and vary with position. 
 
The acceleration of  is then given by: 
 

 

 

The terms  represent the change in direction of the unit 

vectors as the air parcel moves and are given by: 
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The acceleration can be written in component form as: 
 

 

 
The forces acting on the air can be written in component form as: 
 
Coriolis force: 
 

 
 
Pressure gradient force: 
 

 

 
Gravity: 
 

 
 
Friction (viscous) force: 
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The component form of the momentum equation is given by: 
 

 

 

 

 

 

 
Curvature terms –terms that arise due to the curvature of the Earth. These 
terms are proportional to  
 
These terms take into account the changing direction of the unit vectors as 
the air moves through the spherical coordinate system. 
 
These terms are nonlinear (i.e. they include products of the dependent 
variables) and make it difficult to handle these equations for theoretical 
analysis. 
 
What other terms in these equations are nonlinear? 
 
 
 
 
 
Scale Analysis of the Equations of Motion 
 
Scale analysis allows us to estimate the magnitude of the terms in our 
equations and determine which terms may be neglected. 
 
Not only can this simplify our equations by removing unimportant terms, but 
it can also allow us to filter certain types of motion from the equations. 
 
The typical magnitude of the dependent variables can be specified based 
on observations. 
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For mid-latitude weather systems we find: 
 

Scale Symbol Magnitude 
Horizontal wind scale U 10 ms-1 
Vertical wind scale W 10-2ms-1 
Horizontal length scale L 106 m 
Vertical length scale  
(depth of troposphere) 

H 104 m 

Time scale (L/U) T 105 s 
Kinematic viscosity n 10-5 m2s-1 
Dynamic pressure scale  103 m2s-2 
Total pressure scale  105 m2s-2 
Gravity g 10 ms-2 
Density variation scale  10-2 

 
The variation in pressure (dp) is normalized by density (r) such that dp/r is 
approximately constant with height in the atmosphere despite the large 
change in p and r in the vertical direction. 
 
The time scale (L/U) is an advective time scale and represents the time 
required for a weather system to move distance L assuming that the 
system is moving at the same speed as the wind (U). 
 
The vertical wind scale (W) is difficult to measure for mid-latitude weather 
systems, but can be estimated based on the horizontal winds. 
 
For mid-latitudes f = 45º and f0 = 2Wsinf = 2Wcosf ~ 10-4 s-1 
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Applying this scaling to the horizontal components of the equations of 
motion gives: 
 

 
 
The friction terms are many orders of magnitude smaller than all of the 
other terms in the equations and can be neglected with minimal error. 
 
The two largest terms are the pressure gradient force and the Coriolis 
force. 
 
These terms are in approximate balance, within an error of ~10%. 
 
Geostrophic relationship 
 

     

 
This relationship is a diagnostic relationship – it cannot be used to predict 
changes over time (i.e. it is not a prognostic relationship) 
 
Geostrophic wind ( ) – the wind that exactly satisfies the geostrophic 
relationship 
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Note that  can be evaluated for any pressure field, but will most closely 
approximate the actual wind for mid-latitude synoptic weather systems. 
 
In this case  will be within 10-15% of the actual wind. 
 
What is the direction of the geostrophic wind relative to the pressure field? 
 

 
 
Since upper air weather maps are often presented as constant pressure 
maps it is useful to rewrite the equations for the geostrophic wind 
expressed on a constant pressure surface. 
 

 

 
Example: Calculation of the geostrophic wind from a weather map 
 
Why do mid-latitude weather systems tend to move from west to east? 
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Why does the wind blow in a counterclockwise direction around areas of 
low pressure in the Northern hemisphere? 
 

 
 
Approximate Prognostic Equations – the Rossby number 
 
In order for the momentum equations to be used as prognostic equations 
we must retain the acceleration term (D/Dt). 
 
This gives: 
 

    

 
The acceleration term is one order of magnitude smaller than the pressure 
gradient force or the Coriolis force. 
 
The ratio of the magnitude of the acceleration term (Du/Dt ~ U2/L) to the 
magnitude of the Coriolis force (~f0U) is known as the Rossby number: 
 

 

 
The geostrophic approximation is most valid for small Ro (~0.1) 
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Hydrostatic approximation 
 
Scale analysis of the vertical momentum equation gives: 
 

 
 
The two largest terms are the vertical pressure gradient force and gravity. 
 
All other terms are at least 3 orders of magnitude smaller, and thus the 
balance between the vertical pressure gradient force and gravity (the 
hydrostatic approximation) is accurate to O(10-3). 
 
This gives: 
 

 

 
It is also necessary to show that the horizontally varying pressure is also in 
hydrostatic balance. 
 
To do this we will define a standard pressure [p0(z)], which is the 
horizontally averaged pressure at each height and a standard density 
[r0(z)], such that p0(z) and r0(z) are in hydrostatic balance. 
 

 

 
With these definitions the total pressure and density are given by: 
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Substituting this into the hydrostatic approximation  gives: 

 

 

 

For << 1 . This gives: 

 

 

 
The sum of the first and last terms on the LHS of this equation is zero from 
the hydrostatic approximation for the standard state, leaving: 
 

 

 
Scale analysis of this equation indicates that the last term on the LHS of 
this equation is two orders of magnitude smaller than the other terms, so: 
 

 

 

Using  to substitute into the last term on the LHS gives: 

 

, 

 
which indicates that the horizontally varying pressure is also in the 
approximate hydrostatic balance. 
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What does the approximate hydrostatic balance that exists in mid-latitude 
weather system imply about our ability to use the vertical momentum 
equation to predict changes in the vertical velocity? 
 
The Continuity Equation 
 
The second principal governing atmospheric motions is conservation of 
mass, which is expressed by the continuity equation. 
 
Eulerian derivation 
 

 

Consider a volume 
(dxdydz) that is fixed in 
space. 
 
Atmospheric mass can 
flow into and out of this 
volume due to the 
wind. 
 
 

 
From this figure the mass flux into the left face is given by: 
 

 

 
and the mass flux out of the right face is given by: 
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The rate of mass change in the volume due to these fluxes is: 
 

 

 
Considering all three faces of this volume gives: 
 

 

 
Dividing by the volume (dxdydz) gives the rate of change of density: 
 

 

 
What conditions will cause  to be positive or negative? 
 
This equation is referred to as the mass divergence form of the continuity 
equation, and states that the local rate of change of density is equal to 
minus the mass divergence. 
 
This equation can also be expressed as: 
 

 

 
This is the velocity divergence form of the continuity equation, and states 
that the fractional rate of density change following the motion is equal to 
minus the velocity divergence. 
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When will  (the velocity divergence) be positive or negative? 
 
How does the volume of our control box change for each of these cases? 
 
Lagrangian Derivation of the Continuity Equation 
 
This derivation is an alternate method of deriving the velocity divergence 
form of the continuity equation. 
 
Consider a fixed mass of air (dM = rdV = rdxdydz). 
 
Since dM is constant rdxdydz is also constant and changes in r are 
balanced by changes in dxdydz. 
 

 

 
Noting that: 
 

 

 

 

The faces of the box move at the 
speed of the wind. 
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Similarly,  and  

 

This gives:  

 
In the limit : 
 

, 

 
which is the velocity divergence form of the continuity equation. 
 
Scale Analysis of the Continuity Equation 
 
We will use the same method as was applied for the scale analysis of the 
hydrostatic equation: 
 
Use  
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Substituting this into the velocity divergence form of the continuity equation 
gives: 
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The expanded velocity divergence form of the equation is then: 
 

 

 
Scale analysis of this equation indicates: 
 

 

 

 

 

 

 

 

 

Why did we use  instead of  to estimate the scale of ? 
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Keeping the largest terms from this scale analysis gives: 
 

 

 
This can also be written as: 
 

 
 
This indicates that for synoptic scale motions the mass flux calculated 
using the basic state density (r0) is nondivergent. 
 

i.e. changes in  exactly balance 

 
This is similar to the idea of an incompressible fluid, but for an 
incompressible fluid: 
 

 (r does not change following the motion)  

 

and the continuity equation  reduces to  

 
This result indicates that in an incompressible fluid the flow is nondivergent 

and changes in  exactly balance. 
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In the atmosphere  (r can change following the motion), 

 
but for purely horizontal flow (w = 0) the synoptically scaled continuity 
equation reduces to: 
 

 

 

and the horizontal flow is nondivergent (i.e.  exactly balance) 

 
The compressibility of the atmosphere only needs to be considered when 

there is vertical motion, and then  must be accounted for. 

 
Thermodynamic Energy Equation 
 
The third fundamental principal of atmospheric dynamics is the 
conservation of energy. 
 
First Law of Thermodynamics – the heat added to a system is equal to the 
change in internal energy plus the work done by the system 
 
This law applies to a system that is in thermodynamic equilibrium (i.e. a 
system at rest). 
 
Can this law be applied to the atmosphere that is in motion? 
 
We will consider a fixed mass of air that we will follow through the 
atmosphere (a Lagrangian control volume) as our thermodynamic system, 
but this system will not be in thermodynamic equilibrium because it is in 
motion. 
 
For this system the total energy is equal to the sum of the internal energy 
(the energy associated with molecular properties) and the kinetic energy 
due to the macroscopic motion (movement) of the system. 
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For this system the heat added (diabatic heating) is equal to the change in 
the total energy plus the work done by the system. 
 
This can also be expressed as the diabatic heating rate (J) is equal to the 
rate of change of the total energy plus the rate at which work is done on the 
system. 
 
Using: 
 
e = internal energy per unit mass 
 

 = kinetic energy per unit mass 

 
The total energy in the Lagrangian control volume, with density r and 
volume dV, is given by: 
 

 

 
The rate at which a force does work is equal to the dot product of the force 
and velocity vectors. 
 
What forces act on the atmosphere? 
 
Rate of work done by the pressure gradient force: 
 

 

Rate of work =  
 
Since p = F/A then F = pA  
 
The rate at which work is done by 
the pressure in the x-direction is 
given by:  
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For the control volume the rate at which pressure does work on the volume 
is given by: 
 

 
 
Noting that (pu)B can be expressed as: 
 

 

 
The rate of work done by the pressure in the x-direction is: 
 

 

 
Similarly the work done by the pressure in the y- and z-directions is: 
 

 

 
and the total rate of work done by the pressure is: 
 

 
 
Rate of work done by the friction force: 
 
We will neglect the work done by the friction force based on synoptic 
scaling arguments. 
 
Rate of work done by the Coriolis force: 
 
The Coriolis force is given by:  
 
This force is perpendicular to and thus , so the Coriolis 
force does no work on the atmosphere. 
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Rate of work done by gravity: 
 

 
 
Conservation of energy for the Lagrangian control volume gives: 
 

 

 
Use of the chain rule on the term expressing the rate of total energy 
change gives: 
 

 

 
Dividing by dV and noting that  gives: 
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Take the dot product of  with the momentum equation (and neglecting the 
friction term) gives: 
 

 

 
This equation represents the balance of mechanical energy due to the 
motion of the fluid (rate of change of kinetic energy following the motion). 
 
Subtracting this from the conservation of energy equation gives: 
 

 

 
This equation represents the thermal energy balance (the rate of change of 
internal energy following the motion). 
 
The mechanical energy balance can be rewritten using the definition of 
geopotential: 
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This equation is known as the mechanical energy equation. 
 
The sum of the kinetic energy and the gravitational potential energy 
(geopotential) is the mechanical energy. 
 
This equation states that the rate of change of mechanical energy, 
following the air parcel, is equal to the rate at which the pressure gradient 
force does work on the air parcel. 
 
The thermal energy equation can be rewritten by noting that: 
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where we have used the continuity equation to replace . 
 
Then: 
 

 

 
Note that e = cvT, so: 
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Thermodynamics of the Dry Atmosphere 
 
Comparison of thermodynamic equations from Holton and Hakim and 
Wallace and Hobbs: 
 
Holton and Hakim Wallace and Hobbs 
 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Scale Analysis of the Thermodynamic Energy Equation 
 

 

 
Define , where  is the basic state potential 
temperature and  is the deviation from the basic state. 
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This gives: 
 

 

 

Since q0 = q0(z)  and 

 

 

 

We will assume that , so we can neglect : 

 

 

 
In the absence of clouds/precipitation and away from the surface of the 

Earth  1 deg C day-1 in the troposphere. 

 
Why would the heating rate given above differ in the presence of 
clouds/precipitation or near the surface of the Earth? 
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Noting that : 

 

 

 
What are typical values for G and Gd in the troposphere? 
 

 
 

Since  is less than the other terms in the thermodynamic energy 

equation: 
 

 

 
According to this equation what physical processes can cause local time 
variations of ? 
 

What is the typical sign of  in the atmosphere? 

 
What does this imply about the impact of vertical motion on local changes 
in ? 
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