
Dynamic Meteorology - Introduction 
 
Atmospheric dynamics – the study of atmospheric motions that are 
associated with weather and climate 
 
We will consider the atmosphere to be a continuous fluid medium, or 
continuum. 
 
Each “point” in the atmosphere will be made up of a large number of 
molecules, with certain properties. 
 
These properties are assumed to be continuous functions of position and 
time. 
 
The basic laws of thermodynamics and fluid mechanics can be expressed 
in terms of partial differential equations, with space and time as 
independent variables and the atmospheric properties as dependent 
variables. 
 
Physical Dimensions and Units 
 
Dimensional homogeneity – all terms in the equations that describe the 
atmosphere must have the same physical dimensions (units) 
 
The four base units we will use are: 
 

 
 



From these we will also use the following derived units: 
 

 
 
Fundamental Forces 
 
Newton’s Second Law: F=ma 
 
In atmospheric science it is typical to consider the force per unit mass 
acting on the atmosphere: 
 

 

 
In order to understand atmospheric motion (accelerations) we need to 
know what forces act on the atmosphere. 
 
What are the fundamental forces of interest in atmospheric science? 
 
 
 
 
 
Body (or volume) force – a force that acts on the center of mass of a fluid 
parcel  
 
Surface force – a force that acts across the boundary separating a fluid 
parcel from its surroundings. The magnitude of surface forces are 
independent of the mass of the parcel. 
 
What are examples of body and surface forces? 
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Pressure Gradient Force 
 
Example: Real-time weather map 
 

 
 
The force exerted on the left face of this air parcel due to pressure is: 
 

 
 
The force exerted on the right face of this air parcel due to pressure is: 
 

 

 
The net force exerted by pressure on this air parcel is the sum of these 
forces and is equal to: 
 

 

 
By dividing by the mass of the air parcel ( ) we get the force per unit 
mass due to changes in pressure (i.e. the pressure gradient force): 
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We can write all three components of the pressure gradient force as: 
 

 

 
In vector form this can be expressed as: 
 

 

 

where  

 
In what direction does this force act relative to locations with high and low 
pressure? 
 
Example: Direction and magnitude of the pressure gradient force from a 
weather map 
 
Gravitational Force 
 
Newton’s law of universal gravitation – any two elements of mass in the 
universe attract each other with a force proportional to their masses and 
inversely proportional to the square of the distance separating them 
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G – gravitational constant (= 6.673x10-11 N m2 kg-2) 
M – mass of Earth (=5.988x1024 kg) 
m – mass of air parcel 
r – distance between objects 
 
The gravitational force exerted on a unit mass of the atmosphere is: 
 

 

 
The distance r is given by: 
 
r = a + z, where 
 
a = mean radius of the earth (= 6.37x106 m) 
z = distance above sea level 
 
The gravitational force per unit mass of atmosphere at sea level is: 
 

 and  = 9.85 m s-2 

 
At height z  is given by 
 

 

 
For meteorological applications z « a and  
 
Therefore we can treat the gravitational force as a constant. 
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Viscous Force 
 
Viscosity – internal friction which causes a fluid to resist the tendency to 
flow 
 
Consider the fluid illustrated below, confined between two plates: 

 
 
The fluid in contact with the plates moves at the speed of the plate. 
 
The force required to keep the upper plate moving is: 
 

, where 

 
µ = dynamic viscosity coefficient (a constant of proportionality) 
A = area of the plate 
u0 = speed of upper plate 
l = distance between the plates 
 
In a steady state the force exerted on the plate is exactly equal to the force 
that the plate exerts on the fluid in contact with the plate and exactly 
opposite the force exerted by the fluid on the plate. 
 
Each layer of fluid exerts the same force on the layer of fluid below. 
 
The force can also be expressed as: 
 

, where 

 

 and dz is the layer of fluid being considered. 
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The shearing stress (tzx), defined as the viscous force per unit area is: 
 

 

 
The subscript zx indicates that this is the shearing stress in the x direction 
due to the vertical (z) shear of the x velocity component (u) of the flow. 
 
What is the physical interpretation of the shearing stress? 
 
Now, consider the more general case where tzx varies in the vertical: 
 

 
 
The shear stress acting across the top boundary, on the fluid below, is: 
 

 

 
while the shear stress acting across the bottom boundary, on the fluid 
above, is: 
 

 

 
and the viscous force at each boundary is equal to the shear stress 
multiplied by the surface area of the boundary (dxdy). 
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Then the net viscous force acting on this volume in the x-direction is: 
 

 

 
The viscous force per unit mass is: 
 

 

 
Assuming that µ is constant gives: 
 

, where 

 

 is the kinematic viscosity coefficient (=1.46x10-5 m2 s-1 for standard 

atmospheric conditions at sea level) 
 
The total viscous force due to shear stresses in all three directions for all 
three components of the flow, and commonly referred to as the frictional 
force, is given by: 
 

 

 
Since  n is small in the atmosphere, this force is negligible in the 
atmosphere, except where the vertical shear is large. 
 
Where in the atmosphere is the vertical shear large enough that this force 
non-negligible? 
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Noninertial Reference Frames and “Apparent” Forces 
 
Newton’s first law states that a mass in uniform motion relative to a fixed 
frame of reference will remain in uniform motion in the absence of any net 
force acting on the mass. 
 
This type of motion is referred to as inertial motion. 
 
Inertial reference frame – a frame of reference fixed in space 
 
Is a frame of reference which is fixed relative to the earth an inertial 
reference frame? 
 
Noninertial reference frame – a frame of reference which is undergoing an 
acceleration 
 
Newton’s laws of motion can only be applied in a noninertial reference 
frame if the acceleration of the reference frame is taken into account. 
 
One way to do this is to introduce apparent forces that are due to the 
acceleration of the reference frame. 
 
For a reference frame in uniform rotation the two apparent forces are: 
 

• Centrifugal force 
• Coriolis force 

 



Centripetal and Centrifugal Forces 
 
Thought experiment: The rotating table experiment 

 
 
What happens to the object when it is placed on the rotating table? 
 
In order to keep the object stationary on the rotating table observer s1 must 
exert a force equal to  on a string attached to the object, where w is 
the angular velocity of the table. 
 
Centripetal force – inward radial force 
 
From a fixed frame of reference (observer s2) this object is experiencing a 
centripetal acceleration. 
 
From this frame of reference a single force (the centripetal force) acts on 
the object and causes a centripetal acceleration. 
 
For a unit mass object this can be expressed as: 
 

 

 
From a frame of reference on the rotating table (observer s1) is the object 
experiencing an acceleration? 
 
What forces are acting on the object in this frame of reference? 
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Centrifugal force – outward radial force 
 
The centrifugal force arises only in observations taken in a rotating frame of 
reference and is due to the acceleration of the frame of reference. 
 
For a unit mass object the centrifugal force is  
 
Gravity Force 
 
Angular velocity of rotation of the Earth: 
 

 

 
Is an object at rest on the surface of the earth at rest in an inertial reference 
frame? 
 
What is the direction and magnitude of the acceleration experienced by this 
object? 
 
As was found for the rotating table experiment, to an observer on the earth 
(a noninertial reference frame) an object of unit mass experiences a 
centrifugal force equal to  directed radially outward from the axis of 
rotation. 
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This centrifugal force is a body force and can be combined with the gravity 
force to give an effective gravity, . 
 

 
 
Effective gravity: g = 9.81 m s-2 at sea level 
 
Gravity can be represented as the gradient of a potential function known as 
geopotential (F): 
 

 
 

Since  then F = F(z) and  or  

 
The addition of the centrifugal force to the gravity force results in the 
effective gravity force not being directed towards the center of the Earth. 
 
In reality the Earth is not a perfect sphere and the effective gravity is 
exactly normal to the surface of the Earth at all locations (neglecting 
topography). Therefore, the effective gravity force acts only in the z-
direction. 
 
Further, from the definition of geopotential, the gravity force is exactly 
normal to geopotential surfaces, and the surface of the earth, neglecting 
topography, is a geopotential surface. 
 
This discussion has only considered an object at rest in a rotating frame of 
reference. 
 
What happens when an object is in motion relative to a rotating frame of 
reference? 
 

  

€ 

 g 

  

€ 

 g ≡ −g
 
k ≡  g * +Ω2R

  

€ 

 g = −∇Φ

  

€ 

 g ≡ −g
 
k 

€ 

g =
dΦ
dz

€ 

dΦ = gdz



The Coriolis Force and the Curvature Effect 
 
For an object in motion relative to a rotating frame of reference we need to 
consider: 
 

- changes in the relative angular momentum of the object 
 
- an additional centrifugal force 
 

Conservation of angular momentum 
 
For a rotating object of unit mass the angular momentum of the object is 
given by:  
 

 
 
and will remain constant in the absence of a torque (force) acting on the 
object. 
 

For an air parcel the angular velocity w will be given by , where: 

 
W is the angular velocity associated with the rotation of the earth and  
 

 is the angular velocity associated with zonal motion relative to the earth. 

 

Then the angular momentum of this air parcel is given by  

 
If this air parcel is displaced such that R changes by dR then the angular 
momentum will be given by: 
 

 

 
and must be equal to the initial angular momentum. 
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This equality gives: 
 

 

 
What will the sign of dR be for an air parcel moving towards the North Pole 
(a meridional displacement)? 
 
What does this imply about the sign of du? 
 
In solving for du in this equation we will neglect all squared d terms. 
 

 

 
Multiplying by  gives 
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Noting that  and  for a meridional displacement we 
get: 
 

 

 
Dividing by dt gives 
 

 

 
Taking the limit as  we then have: 
 

, 

where we have used . 

 
This equation indicates that conservation of angular momentum results in a 
zonal acceleration ( ) for objects moving in a meridional (north/south) 
direction. 
 
For a vertical displacement of an air parcel  and 
 

 

 
Again, dividing by dt and taking the limit as  we get 
 

, where we have used . 

 
This equation indicates that conservation of angular momentum also 
results in a zonal acceleration for objects moving in the vertical direction. 
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Conservation of angular momentum does not result in an acceleration for 
objects moving in a purely zonal direction. Why? 
 
These apparent forces that arise due to conservation of angular momentum 
are part of the Coriolis force. 
 
What is the centrifugal force acting on an object of unit mass moving 
towards the east? 
 

The angular velocity due to the zonal (u) motion is given by  and the total 

centrifugal force acting on this mass is: 
 

 

 
The first term on the RHS of this equation is the same as the centrifugal 
force for an object at rest, and is incorporated into the effective gravity. 
 
The remaining terms on the RHS of this equation can be partitioned into 
meridional and vertical components that lead to an acceleration of the v 
and w components of the wind. 
 
For the second term on the RHS of 
this equation, this partitioning is: 
 

Meridional:  

 

Vertical:  

 
 
These terms represent the Coriolis force for zonal motion. 
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Similarly the last term, which represents curvature effects, can be 
partitioned into: 
 

Meridional:  

 

Vertical:  

 
These terms arise due to the curvature of the earth. 
 
The Coriolis force terms from conservation of angular momentum and the 
centrifugal force due to the motion of an air parcel can be combined to give: 
 

 

 
Using vector notation, and noting that  the Coriolis 
force can also be expressed as: 
 

 

 
Considering the components of the Coriolis force that arise from the 
horizontal wind (u and v) and that give rise to horizontal accelerations 

 we have: 

 

, 

 
where  is the Coriolis parameter. 
 
In what direction is a zonal wind accelerated by the Coriolis force? 
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In what direction is a meridional wind accelerated by the Coriolis force? 
What is the direction of acceleration due to the Coriolis force relative to the 
wind direction? 
 
The x and y components of the Coriolis force can also be written as: 
 

, 

 
where  
 
What is the direction of ? 
 
Physical interpretation of the Coriolis force: Why does conservation of 
angular momentum and the centrifugal force lead to this direction of the 
Coriolis force relative to the wind? 
 
The Coriolis force is negligible for motions with time scales that are very 
short compared to the period of the Earth’s rotation. 
 
Example: Calculate the deflection of a dart thrown due east at a latitude of 
40°N at a speed of 30 m s-1. The distance to the dart board is 2.4 m. 
 
Example: The Coriolis force on the roof of Duane Physics 
 
Note: The horizontal components of the wind can be calculated from: 
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Constant Angular Momentum Oscillations 
 
Consider an air parcel initially propelled in the positive x direction with a 
speed of V that is acted upon only by the Coriolis force. 
 
The equations that describe this motion are: 
 

 

 
Example: Use these equations to calculate the position (x,y) of this air 
parcel as a function of time. 
 
Start by combining these equations into a single differential equation. 
 

Using  substitute into  to get 

 

 

 
The solution for this differential equation is: 
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This solution can now be substituted into the original equations to give: 
 

    

 

where we have used  and  

 
These equations can now be integrated in time to give the position (x,y) as 
a function of time: 
 

    

 
These equations describe a circle with: 
 

Center at  

 

and radius  

 
How long does it take for this air parcel to complete one revolution around 
this circular path? 
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Pressure as a Vertical Coordinate 
 
From the hydrostatic equation: 
 

 
 
we see that there is a monotonic relationship between pressure and height 
in any column of the atmosphere (i.e. there is a unique value of pressure at 
each height in the atmosphere, and that the pressure decreases with 
increasing height). 
 
Therefore we can use pressure as our vertical coordinate rather than 
height. 
 

Similarly, since  we could also use pressure as a 

vertical coordinate rather than geopotential height. 
 
With pressure as the vertical coordinate the properties of the atmosphere 
will then depend on horizontal position (x,y), pressure p, and time t: 
 
T(x,y,p,t), u(x,y,p,t), v(x,y,p,t), F(x,y,p,t), etc. 
 
Consider the horizontal pressure gradient force in the x-direction, given by: 
 

 

 
When height (z) is used as a vertical coordinate this horizontal derivative is 
evaluated by holding z constant. 
 
When we use pressure as a vertical coordinate we now need to evaluate 
this derivative along a constant pressure surface. 
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From the geometry in this diagram we note: 
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In the limit as  we get 
 

 

 

The hydrostatic equation can be used to replace  to give 

 

 

This equation indicates that the 
horizontal pressure gradient (at 
constant height) is equivalent to the 
horizontal geopotential gradient at 
constant pressure. 
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Similarly  

 
Note that in constant pressure coordinates (isobaric coordinates) the 
pressure gradient force term no longer includes density. 
 
Example: Compare the pressure gradient force calculated from a constant 
pressure and a constant height map 
 
A Generalized Vertical Coordinate 
 
We can use any single-valued monotonic function of pressure or height as 
a vertical coordinate. 
 
Numerical weather prediction models often use  as a 
vertical coordinate since s = 1 by definition at the surface of the earth and 
thus this coordinate is terrain following. 
 

 
 
From this figure: 
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In the limit as  we get 
 

 

 

Noting that  this can be rewritten as 

 

 

 
This equation can be used to transform the atmospheric governing 
equations expressed using z as a vertical coordinate to any other vertical 
coordinate. 
 

Example: Use this equation to show that  when 

converting from a height vertical coordinate to a pressure vertical 
coordinate 
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