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ABSTRACT

A practical step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Nifio—
Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an
appropriate wavelet basis function, edge effects due to finite-length time series, and the relationship between wavelet
scaleand Fourier frequency. New statistical significancetestsfor wavel et power spectraare developed by deriving theo-
retical wavelet spectrafor white and red noise processes and using these to establish significance levels and confidence
intervals. It is shown that smoothing in time or scale can be used to increase the confidence of the wavelet spectrum.
Empirical formulas are given for the effect of smoothing on significance levels and confidence intervals. Extensionsto
wavelet analysis such asfiltering, the power Hovmaller, cross-wavel et spectra, and coherence are described.

The statistical significancetests are used to give aquantitative measure of changesin ENSO variance on interdecadal
timescales. Using new datasets that extend back to 1871, the Nifio3 sea surface temperature and the Southern Oscilla-
tion index show significantly higher power during 1880-1920 and 196090, and lower power during 1920-60, as well
as apossible 15-yr modulation of variance. The power Hovmdller of sealevel pressure shows significant variationsin

2-8-yr wavelet power in both longitude and time.

1. Introduction

Wavelet analysis is becoming a common tool for
analyzing localized variations of power within atime
series. By decomposing a time series into time—fre-
quency space, oneis ableto determine both the domi-
nant modes of variability and how those modes vary
in time. The wavelet transform has been used for nu-
merous studiesin geophysics, including tropical con-
vection (Weng and Lau 1994), the El Nifio-Southern
Oscillation (ENSO; Gu and Philander 1995; Wang and
Wang 1996), atmospheric cold fronts (Gamage and
Blumen 1993), central England temperature (Baiunas
et al. 1997), the dispersion of ocean waves (Meyerset
a. 1993), wave growth and breaking (Liu 1994), and
coherent structuresin turbulent flows (Farge 1992). A
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compl ete description of geophysical applications can
be found in Foufoula-Georgiou and Kumar (1995),
while a theoretical treatment of wavelet analysisis
given in Daubechies (1992).

Unfortunately, many studies using wavelet analy-
sis have suffered from an apparent lack of quantita-
tiveresults. The wavel et transform has been regarded
by many asan interesting diversion that produces col -
orful pictures, yet purely qualitative results. Thismis-
conceptionisin some sensethe fault of wavel et analy-
sisitsalf, asit involvesatransform from aone-dimen-
sional time series (or frequency spectrum) to adiffuse
two-dimensional time—frequency image. Thisdiffuse-
ness has been exacerbated by the use of arbitrary nor-
malizationsand thelack of statistical significancetests.

In Lau and Weng (1995), an excellent introduction
towavelet analysisisprovided. Their paper, however,
did not provide al of the essential details necessary
for wavelet analysis and avoided the issue of statisti-
cal significance.

The purpose of this paper isto provide an easy-to-
use wavelet analysis toolkit, including statistical sig-
nificance testing. The consistent use of examples of
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the choice of a wavelet basis function,
edge effectsdueto finite-length time se-
ries, the relationship between wavelet
scaleand Fourier period, and time series
reconstruction. Section 4 presents the
theoretical wavelet spectra for both
white-noise and red-noise processes.
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Thesetheoretical spectraare compared to
Monte Carlo results and are used to es-
tablish significance levels and confi-
dence intervals for the wavelet power
spectrum. Section 5 describes time or
scale averaging to increase significance
levels and confidence intervals. Section
6 describes other wavelet applications
such as filtering, the power Hovmaller,
cross-wavelet spectra, and wavelet co-
herence. The summary contains a step-
by-step guide to wavelet analysis.

2. Data

Several time series will be used for examples of
wavelet analysis. Theseincludethe Nifio3 seasurface
temperature (SST) used asameasure of the amplitude
of the El Nifio—Southern Oscillation (ENSO). The
Nifio3 SST index is defined as the seasonal SST av-
eraged over the central Pacific (5°S-5°N, 90°-
150°W). Datafor 1871-1996 are from an area aver-
age of the U.K. Meteorological Office GISST2.3
(Rayner et al. 1996), while datafor January—June 1997
are from the Climate Prediction Center (CPC) opti-
mally interpolated Nifio3 SST index (courtesy of D.
Garrett at CPC, NOAA). The seasona means for the
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Fic. 1. (@) The Nifio3 SST time series used for the wavelet analysis. (b) The
local wavelet power spectrum of (@) using the Morlet wavelet, normalized by 1/
o® (0® = 0.54°C?). Theleft axisis the Fourier period (in yr) corresponding to the
wavelet scale on theright axis. The bottom axisistime (yr). The shaded contours
areat normalized variances of 1, 2, 5, and 10. The thick contour encloses regions
of greater than 95% confidence for ared-noise processwith alag-1 coefficient of
0.72. Cross-hatched regions on either end indicate the “ cone of influence,” where
edge effects becomeimportant. (c) Sameas (b) but using the real-valued Mexican
hat wavelet (derivative of a Gaussian; DOG m = 2). The shaded contour is at
normalized variance of 2.0.

entire record have been removed to define an anomaly
time series. The Nifio3 SST is shown in the top plot
of Fig. 1la.

Gridded sea level pressure (SLP) datais from the
UKMO/CSIRO historical GM SLP2.1f (courtesy of D.
Parker and T. Basnett, Hadley Centrefor Climate Pre-
diction and Research, UKMO). The data is on a 5°
global grid, with monthly resolution from January
1871 to December 1994. Anomaly time series have
been constructed by removing thefirst three harmon-
icsof theannual cycle (periodsof 365.25, 182.625, and
121.75 days) using aleast-squaresfit.

The Southern Oscillation index is derived from the
GMSLP2.1f and is defined asthe seasonally averaged
pressure difference between the eastern Pacific (20°S,
150°W) and the western Pacific (10°S, 130°E).
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3. Wavelet analysis

This section describes the method of wavel et analy-
sis, includes a discussion of different wavelet func-
tions, and gives detailsfor the analysis of the wavelet
power spectrum. Resultsin this section are adapted to
discrete notation from the continuous formulas given
in Daubechies (1990). Practical details in applying
wavelet analysis are taken from Farge (1992), Weng
and Lau (1994), and Meyers et al. (1993). Each sec-
tionisillustrated with examples using the Nifio3 SST.
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Fic. 2. Four different wavelet bases, from Table 1. The plots
on the left give the real part (solid) and imaginary part (dashed)
for the wavelets in the time domain. The plots on the right give
the corresponding wavel etsin the frequency domain. For plotting
purposes, the scale was chosen to bes=106t. (a) Morlet, (b) Paul
(m=4), (c) Mexican hat (DOG m=2), and (d) DOG (m= 6).
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a. Windowed Fourier transform

The WFT represents one analysis tool for extract-
ing local-frequency information from a signal. The
Fourier transform is performed on a dliding segment
of length T from atime series of time step 6t and total
length Nét, thus returning frequencies from T to
(20t)* at each time step. The segments can be win-
dowed with an arbitrary function such asaboxcar (no
smoothing) or a Gaussian window (Kaiser 1994).

Asdiscussed by Kaiser (1994), the WFT represents
an inaccurate and inefficient method of time—fre-
guency localization, asit imposes ascale or “response
interval” T into the analysis. The inaccuracy arises
from the aliasing of high- and low-frequency compo-
nentsthat do not fall within the frequency range of the
window. Theinefficiency comesfrom the T/(26t) fre-
guencies, which must be analyzed at each time step,
regardless of the window size or the dominant frequen-
cies present. In addition, several window lengths must
usually be analyzed to determine the most appropri-
ate choice. For analyses where a predetermined scal-
ing may not be appropriate because of awide range
of dominant frequencies, amethod of time-frequency
localization that is scale independent, such as wave-
let analysis, should be employed.

b. Wavel et transform

The wavel et transform can be used to analyzetime
series that contain nonstationary power at many dif-
ferent frequencies (Daubechies 1990). Assume that
one has atime series, x , with equal time spacing dt
andn=0... N- 1. Also assume that one has a wave-
let function, y,(n), that depends on anondimensional
“time” parameter 1. To be*admissible” asawavelet,
thisfunction must have zero mean and be localized in
both time and frequency space (Farge 1992). An ex-
ample is the Morlet wavelet, consisting of a plane
wave modulated by a Gaussian:

)

o) =7+,

where @, isthe nondimensional frequency, heretaken
to be 6 to satisfy the admissibility condition (Farge
1992). Thiswavelet isshown in Fig. 2a.

Theterm “wavelet function” isused generically to
refer to either orthogonal or nonorthogonal wavelets.
The term “wavelet basis’ refers only to an orthogo-
nal set of functions. The use of an orthogonal basis
implies the use of the discrete wavelet transform,
while a nonorthogonal wavelet function can be used
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with either the discrete or the continuous wavel et
transform (Farge 1992). In this paper, only the con-
tinuous transform is used, although all of the results
for significance testing, smoothing in time and scale,
and crosswavel ets are applicableto the discrete wave-
let transform.

The continuous wavel et transform of adiscrete se-
quence X is defined as the convolution of x with a
scaled and translated version of v (n):

W(9)= Y xw[(”_T”)&] @

where the (*) indicates the complex conjugate. By
varying the wavelet scale s and trandlating along the
localized time index n, one can construct a picture
showing both the amplitude of any features versusthe
scale and how this amplitude varies with time. The
subscript 0 on y has been dropped to indicate that this
v has aso been normalized (see next section). Al-
thoughit ispossibleto calculate the wavel et transform
using (2), it is considerably faster to do the calcula-
tionsin Fourier space.

To approximate the continuous wavel et transform,
the convolution (2) should be done N times for each
scale, where N isthe number of pointsin thetime se-
ries (Kaiser 1994). (The choice of doing all N convo-
lutions is arbitrary, and one could choose a smaller
number, say by skipping every other point in n.) By
choosing N points, the convolution theorem allows us
do all N convolutions simultaneously in Fourier space
using a discrete Fourier transform (DFT). The DFT
of X is

~ 1 ;
R, = NZ Xne—2mkn/N ’ 3)

where k =0 ... N— 1 isthe frequency index. In the
continuous limit, the Fourier transform of afunction
y(t/s) isgiven by 7 (sw). By the convolution theorem,
thewavelet transformistheinverse Fourier transform
of the product:

N-1

W, (s)= Z Xy *(S‘c"k)eWkWSt ,

k=0

(4)

where the angular frequency is defined as
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Using (4) and astandard Fourier transform routine, one
can calcul ate the continuous wavel et transform (for a
given s) at al n simultaneously and efficiently.

¢. Normalization

To ensure that the wavelet transforms (4) at each
scalesaredirectly comparableto each other and to the
transforms of other time series, the wavel et function
at each scale sisnormalized to have unit energy:

o) 2] s, @

3

Examples of different wavelet functions are givenin
Table 1 andillustrated in Fig. 2. Each of the unscaled
iy, are defined in Table 1 to have

oo
.[ —oo

that is, they have been normalized to have unit energy.
Using these normalizations, at each scale sone has

~

wo(a)’)zda)’ =1;

()

where N is the number of points. Thus, the wavelet
transform is weighted only by the amplitude of the
Fourier coefficients % _and not by thewavelet function.
If one is using the convolution formula (2), the nor-
malizationis

b,

where y (1) is normalized to have unit energy.

d. Wavel et power spectrum

Because the wavelet function y(n) isin general
complex, thewavelet transform W (s) isalso complex.
The transform can then be divided into the real part,
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TasLE 1. Three wavelet basis functions and their properties. Constant factorsfor y, and v, ensureatotal energy of unity.

efolding Fourier
Name v, (1) V,(sw) timer, wavelength A
4rs
L\/Iorle; ) -Vagioongn?/2 7 V4 H()e ) /2 \2s g2+ 02
, = frequency
2mi mm! . \—(m+l) 2m m_— 4rs
Paul (1-in) —————H(o)(sw)"e :
(:1U= order) Jm(2m) Jm(2m-1)! ¥v2 2m+1
m+1 m i 5
( 1) - dd,Tﬂ(e_n /2) Iil(sw)me—(sw) /2 27rs1
DOG fl"(m+—) /F(m+) N2s m+=
(m=derivative) \ 2 \ 2 \ 2

H(w) = Heaviside step function, H(w) = 1 if @ > 0, H(w) = 0 otherwise.
DOG = derivative of a Gaussian; m= 2 isthe Marr or Mexican hat wavel et.

R{W (s)}, and imaginary part, S{W ()}, or ampli-
tude, W (s)|, and phase, tan ' [S{ W ()} /R{W,(s)}]. Fi-
nally, one can define the wavelet power spectrum as
|W. (s)|°. For real-valued wavelet functions such asthe
DOGs (derivatives of a Gaussian) theimaginary part
is zero and the phase is undefined.

To make it easier to compare different wavelet
power spectra, it is desirable to find a common nor-
malization for the wavelet spectrum. Using the nor-
malizationin (6), and referring to (4), the expectation
value for |W (s)|? is equal to N times the expectation
value for |% |°. For awhite-noise time series, this ex-
pectation valueis 6%/N, where o2 isthe variance. Thus,
for awhite-noise process, the expectation valuefor the
wavelet transformis|W (s))? = o?at al nand s.

Figure 1b shows the normalized wavelet power
spectrum, |W (s)|/o?, for the Nifio3 SST time series.
The normalization by 1/6? gives a measure of the
power relative to white noise. In Fig. 1b, most of the
power is concentrated within the ENSO band of 2-8
yr, athough thereis appreciable power at longer peri-
ods. The 2-8-yr band for ENSO agreeswith other stud-
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ies (Trenberth 1976) and is aso seen in the Fourier
spectrumin Fig. 3. With wavelet analysis, one can see
variations in the frequency of occurrence and ampli-
tude of El Nifio (warm) and La Nifia (cold) events.
During 1875-1920 and 196090 there were many
warm and cold events of large amplitude, while dur-
ing 192060 there were few events (Torrence and
Webster 1997). From 18751910, there was a slight
shift from aperiod near 4 yr to aperiod closer to 2 yr,
whilefrom 196090 the shift isfrom shorter to longer
periods.

These results are similar to those of Wang and
Wang (1996), who used both wavelet and waveform
analysis on ENSO indices derived from the Compre-
hensive Ocean—Atmosphere Data Set (COADS)
dataset. Wang and Wang's analysis showed reduced
wavelet power before 1950, especidly 1875-1920. The
reduced power is possibly dueto the sparsenessand de-
creased reliability of the pre-1950 COADS data (Folland
et al. 1984). Withthe GISST2.3 data, thewavel et trans-
form of Nifio3 SST in Fig. 1b showsthat the pre-1920
period has equal power to the post-1960 period.
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Fic. 3. Fourier power spectrum of Nifio3 SST (solid),
normalized by N/(26?). The lower dashed line is the mean red-
noi se spectrum from (16) assuming alag-1 of oc=0.72. The upper
dashed line is the 95% confidence spectrum.

e. Wavel et functions

One criticism of wavelet analysis is the arbitrary
choice of the wavelet function, (7). (It should be
noted that the same arbitrary choice is made in using
oneof the moretraditional transforms such asthe Fou-
rier, Bessel, Legendre, etc.) In choosing the wavelet
function, there are several factors which should be
considered (for more discussion see Farge 1992).

1) Orthogonal or nonorthogonal. In orthogonal
wavelet analysis, the number of convolutions at
each scaleis proportional to the width of the wave-
let basisat that scale. This producesawavel et spec-
trum that contains discrete “blocks’ of wavelet
power and isuseful for signal processing asit gives
the most compact representation of thesignal. Un-
fortunately for time series analysis, an aperiodic
shift in the time series produces a different wave-
let spectrum. Conversely, anonorthogonal analy-
sis(such asused in this study) ishighly redundant
at large scales, where the wavel et spectrum at ad-
jacent times is highly correlated. The nonorthog-
onal transform is useful for time series analysis,
where smooth, continuous variations in wavel et
amplitude are expected.

2) Complexor real. A complex wavel et function will
return information about both amplitude and phase
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and is better adapted for capturing oscillatory be-
havior. A real wavelet function returns only a
single component and can be used to isol ate peaks
or discontinuities.

3) Width. For concreteness, the width of a wavelet
function isdefined here asthe e-folding time of the
wavelet amplitude. The resolution of a wavelet
function is determined by the balance between the
widthinreal space and thewidthin Fourier space.
A narrow (in time) function will have good time
resolution but poor frequency resolution, while a
broad function will have poor time resolution, yet
good frequency resolution.

4) Shape. Thewave et function should reflect thetype
of features present in the time series. For time se-
ries with sharp jumps or steps, one would choose
aboxcar-like function such as the Harr, while for
smoothly varying time series one would choose a
smooth function such as a damped cosine. If one
is primarily interested in wavelet power spectra,
then the choice of wavelet function is not critical,
and one function will give the same qualitative
results as another (see discussion of Fig. 1 below).

Four common nonorthogonal wavelet functionsare
given in Table 1. The Morlet and Paul wavelets are
both complex, while the DOGs are real valued. Pic-
tures of these wavelet in both the time and frequency
domain areshowninFig. 2. Many other types of wave-
lets exist, such as the Haar and Daubechies, most of
which are used for orthogonal wavelet analysis (e.g.,
Weng and Lau 1994; Mak 1995; Lindsay et a. 1996).
For more examples of wavel et basesand functions, see
Kaiser (1994).

For comparison, Fig. 1c shows the same analysis
asin 1b but using the Mexican hat wavelet (DOG,
m = 2) rather than the Morlet. The most noticeable dif-
ference is the fine scale structure using the Mexican
hat. Thisis becausethe Mexican hat isreal valued and
captures both the positive and negative oscill ations of
thetime series as separate peaksin wavel et power. The
Morlet wavelet is both complex and contains more
oscillations than the M exican hat, and hencethewave-
let power combines both positive and negative peaks
into asingle broad peak. A plot of the real or imagi-
nary part of W (s) using the Morlet would produce a
plot similar to Fig. 1c. Overall, the same features ap-
pear in both plots, approximately at the samelocations,
and with the same power. Comparing Figs. 2aand 2c,
the Mexican hat isnarrower in time-space, yet broader
in spectral-space than the Morlet. Thus, in Fig. 1c, the
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peaks appear very sharp in thetime direction, yet are
more elongated in the scale direction. Finally, there-
lationship between wavelet scale and Fourier period
isvery different for the two functions (see section 3h).

f. Choice of scales

Once awavelet function is chosen, it is necessary
to choose a set of scales sto usein the wavelet trans-
form (4). For an orthogonal wavelet, oneislimited to
adiscrete set of scales as given by Farge (1992). For
nonorthogonal wavelet analysis, one can use an arbi-
trary set of scalesto build up amore complete picture.
It is convenient to write the scales as fractional pow-
ersof two:

5, =%27, j=01..,3J (9)

J=38j"10g,(Ndt/s,). (10
where s, is the smallest resolvable scale and J deter-
minesthelargest scale. The s, should be chosen so that
the equivalent Fourier period (see section 3h) is ap-
proximately 26t. The choice of asufficiently small Jj
depends on the width in spectral -space of the wavel et
function. For the Morlet wavelet, a 6] of about 0.5is
the largest value that still gives adequate sampling in
scale, while for the other wavelet functions, alarger
va ue can beused. Smaller valuesof 9j givefiner reso-
lution.

InFig. 1b, N=506, 6t = /4 yr, s = 26t, 6j = 0.125,
and J = 56, giving atotal of 57 scales ranging from
0.5yr upto 64 yr. Thisvalue of dj appears adequate
to provide a smooth picture of wavelet power.

g. Cone of influence

Because one is dealing with finite-length time se-
ries, errors will occur at the beginning and end of the
wavelet power spectrum, as the Fourier transform in
(4) assumes the datais cyclic. One solution is to pad
the end of thetime serieswith zeroes before doing the
wavelet transform and then remove them afterward
[for other possibilities such as cosine damping, see
Meyerset a. (1993)]. In this study, the time seriesis
padded with sufficient zeroesto bring the total length
N up to the next-higher power of two, thus limiting
the edge effectsand speeding up the Fourier transform.

Padding with zeroes introduces discontinuities at
the endpoints and, as one goes to larger scales, de-
creases the amplitude near the edges as more zeroes
enter the analysis. The cone of influence (COI) isthe
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TasLE 2. Empirically derived factors for four wavel et bases.

Name C, Y dj, v,(0)
Morlet (, = 6) 0776  2.32 060 "
Paul (M= 4) 1132 117 15 1.079
Marr (DOGm=2) 3541 143 14 0.867
DOG (m= 6) 1966  1.37 097 0.884

C,= reconstruction factor.
v = decorrelation factor for time averaging.
0j,= factor for scale averaging.

region of the wavelet spectrum in which edge effects
become important and is defined here as the e-fold-
ing time for the autocorrelation of wavelet power at
each scale (see Table 1). This e-folding time is cho-
sen so that the wavel et power for adiscontinuity at the
edge drops by a factor e and ensures that the edge
effects are negligible beyond this point. For cyclic
series (such asalongitudinal strip at afixed latitude),
thereisno need to pad with zeroes, and thereisno COI.

Thesize of the COI at each scale also givesamea:
sure of the decorrelation timefor asingle spikein the
time series. By comparing the width of a peak in the
wavel et power spectrum with this decorrelation time,
one can distinguish between a spike in the data (pos-
sibly dueto random noise) and aharmonic component
at the equivalent Fourier frequency.

TheCOl isindicated in Figs. 1b and 1c by the cross-
hatched regions. The peakswithin these regions have
presumably been reduced in magnitude dueto the zero
padding. Thus, it isunclear whether the decreasein 2—
8-yr power after 1990 isatrue decreasein variance or
an artifact of the padding. Note that the much narrower
Mexican hat wavelet in Fig. 1c has a much smaller
COl and isthusless affected by edge effects.

h. Wavelet scale and Fourier frequency

An examination of thewaveletsin Fig. 2 showsthat
the peak in yr (sw) does not necessarily occur at afre-
guency of s. Following the method of Meyerset al.
(1993), the relationship between the equivalent Fou-
rier period and the wavel et scale can be derived ana-
Iytically for aparticular wavel et function by substitut-
ing a cosine wave of aknown frequency into (4) and
computing the scale sat which the wavel et power spec-

67



trum reaches its maximum. For the Morlet wavelet
with @, =6, thisgivesavalueof 1 =1.03s, where Ais
the Fourier period, indicating that for the Morlet wave-
let the wavelet scale is almost equal to the Fourier
period. Formulasfor other wavel et functionsare given
inTablel, whileFig. 2 givesagraphical representation.

InFigs. 1b,c, theratio of Fourier period to wavel et
scale can be seen by acomparison of theleft and right
axes. For the Morlet, thetwo are nearly identical, while
for the Mexican hat, the Fourier period is four times
larger than the scale. Thisratio has no specia signifi-
cance and is due solely to the functional form of each
wavel et function. However, one should certainly con-
vert from scale to Fourier period before plotting, as
presumably one is interested in equating wavelet
power at acertaintimeand scalewith a(possibly short-
lived) Fourier mode at the equivalent Fourier period.

i. Reconstruction

Sincethewavel et transform isabandpassfilter with
aknown response function (the wavel et function), it
is possible to reconstruct the original time series us-
ing either deconvolution or the inverse filter. Thisis
straightforward for the orthogonal wavel et transform
(which has an orthogonal basis), but for the continu-
ouswavelet transform it is complicated by the redun-
dancy in time and scale. However, this redundancy
also makes it possible to reconstruct the time series
using acompletely different wavel et function, the easi-
est of which is a delta (6) function (Farge 1992). In
this case, the reconstructed time seriesisjust the sum
of thereal part of thewavelet transform over al scales:

(11)

Thefactor y(0) removesthe energy scaling, whilethe
s"2 converts the wavel et transform to an energy den-
sity. Thefactor C;comesfrom the reconstruction of a
¢ function from itswavel et transform using the func-
tion y(17). ThisC;isaconstant for each wavelet func-
tion and isgivenin Table 2. Note that if the original
time series were complex, then the sum of the com-
plex W (s) would be used instead.

To derive C, for anew wavelet function, first as-
sumeatime serieswithadfunctionat timen=0, given
by x = 6 .. Thistime series has a Fourier transform
R =N, constant for all k. Substituting %_into (4), at
time n =0 (the peak), the wavel et transform becomes
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(12)
k=0
Thereconstruction (11) then gives
51&”2 2 W (s )}
gX - ®

s/

J=0

The C;isscaleindependent and isaconstant for each
wavel et function.

The total energy is conserved under the wavelet
transform, and the equivalent of Parseval’s theorem
for wavelet anaysisis

Q’)
Z
o

(14)

O

where o? isthe variance and a 6 function has been as-
sumed for reconstruction. Both (11) and (14) should
be used to check wavelet routines for accuracy and to
ensure that sufficiently small values of s and ) have
been chosen.

For the Nifio3 SST, the reconstruction of the time
series from the wavelet transform has a mean square
error of 1.4% or 0.087°C.

4. Theoretical spectrum and significance
levels

To determine significance levelsfor either Fourier
or wavel et spectra, onefirst needsto choose an appro-
priate background spectrum. It is then assumed that
different realizations of the geophysical process will
be randomly distributed about this mean or expected
background, and the actual spectrum can be compared
against this random distribution. For many geophysi-
cal phenomena, an appropriate background spectrum
is either white noise (with aflat Fourier spectrum) or
red noise (increasing power with decreasing frequency).

A previous study by Qiu and Er (1995) derived the
mean and variance of the local wavelet power spec-
trum. In this section, the theoretical white- and red-
noise wavel et power spectraare derived and compared
to Monte Carlo results. These spectra are used to es-
tablish anull hypothesisfor the significance of apeak
in the wavelet power spectrum.

Vol. 79, No. 1, January 1998



a. Fourier red noise spectrum
Many geophysical time series can be modeled as
either white noise or red noise. A simple model! for red
noiseistheunivariate lag-1 autoregressive[AR(1), or
Markov] process:
X, = 0X, 4 + Z,, (15)
where o is the assumed lag-1 autocorrelation, x, = 0,
and z, istaken from Gaussian white noise. Following

Gilman et a. (1963), the discrete Fourier power spec-
trum of (15), after normalizing, is

1- o2

P =
" 1+a?-20co827k/N)’

(16)

wherek =0 ... N/2 isthe frequency index. Thus, by
choosing an appropriate lag-1 autocorrel ation, one can
use (16) to model ared-noise spectrum. Notethat o =0
in (16) gives awhite-noise spectrum.

The Fourier power spectrum for the Nifio3 SST is
shown by thethinlinein Fig. 3. The spectrum hasbeen
normalized by N/2 62, where N isthe number of points,
and o? is the variance of the time series. Using this
normalization, white noise would have an expectation
valueof 1 at al frequencies. The red-noise background
spectrum for o = 0.72 is shown by the lower dashed
curveinFig. 3. Thisred-noise was estimated from (o,
+ y/a,)/2, where o, and o, are the lag-1 and lag-2
autocorrelations of the Nifio3 SST. One can see the
broad set of ENSO peaks between 2 and 8 yr, well
above the background spectrum.

b. Wavelet red noise spectrum

Thewavelet transformin (4) isaseries of bandpass
filters of the time series. If this time series can be
modeled asalag-1 AR process, then it seems reason-
able that the local wavelet power spectrum, defined
asavertical dicethrough Fig. 1b, isgiven by (16). To
test this hypothesis, 100 000 Gaussian white-noise
time series and 100 000 AR(1) time series were con-
structed, along with their corresponding wavel et power
spectra. Examples of these white- and red-noise wave-
let spectraare shownin Fig. 4. Theloca wavel et spec-
trawere constructed by taking vertical dlices at time
n = 256. The lower smooth curvesin Figs. 5aand 5b
show thetheoretical spectrafrom (16). The dots show
the results from the Monte Carlo simulation. On av-
erage, the local wavelet power spectrum is identical
to the Fourier power spectrum given by (16).
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Fic. 4. (8) The local wavelet power spectrum for a Gaussian
white noise process of 512 points, one of the 100 000 used for
the Monte Carlo simulation. The power isnormalized by /62, and
contoursareat 1, 2, and 3. Thethick contour isthe 95% confidence
level for white noise. (b) Same as (a) but for a red-noise AR(1)
process with lag-1 of 0.70. The contoursare at 1, 5, and 10. The
thick contour is the 95% confidence level for the corresponding
red-noise spectrum.

Therefore, the lower dashed curve in Fig. 3 aso
corresponds to the red-noise local wavelet spectrum.
A random vertical slicein Fig. 1b would be expected
to have aspectrum given by (16). Aswill be shownin
section 5a, the average of all thelocal wavel et spectra
tendsto approach the (smoothed) Fourier spectrum of
the time series.

c. Sgnificance levels

Thenull hypothesisisdefined for thewavel et power
spectrum asfollows: It isassumed that thetime series
has a mean power spectrum, possibly given by (16);
if apeak inthewavelet power spectrumissignificantly
above this background spectrum, then it can be as-
sumed to be atrue feature with a certain percent con-
fidence. For definitions, “significant at the 5% level”
is equivalent to “the 95% confidence level,” and im-
plies atest against a certain background level, while
the “95% confidence interval” refers to the range of
confidence about agiven value.

The normalized Fourier power spectrum in Fig. 3
isgiven by N|R |/20?, where N isthe number of points,
% isfrom (3), and 6% isthe variance of thetime series.
If x isanormally distributed random variable, then
both the rea and imaginary parts of % _are normally
distributed (Chatfield 1989). Since the sguare of a
normally distributed variableis chi-square distributed
with one degree of freedom (DOF), then | |* is chi-
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square distributed with two DOFs, denoted by x3
(Jenkins and Watts 1968). To determine the 95% con-
fidence level (significant at 5%), one multiplies the
background spectrum (16) by the 95th percentile value
for 2 (Gilman et a. 1963). The 95% Fourier confi-
dence spectrum for the Nifio3 SST isthe upper dashed
curvein Fig. 3. Note that only afew frequencies now
have power above the 95% line.

In the previous section, it was shown that the local
wavel et spectrum followsthe mean Fourier spectrum.
If the original Fourier components are normally dis-
tributed, then the wavel et coefficients (the bandpassed
inverse Fourier components) should also be normally
distributed. If thisistrue, then the wavel et power spec-
trum, |W (s)], should be yx; distributed. The upper
curvesin Figs. 5a and 5b show the 95% Fourier red-
noise confidence level versusthe 95% level from the
Monte Carlo results of the previous section. Thus, at
each point (n, s) in Fig. 1b, assuming ared-noise pro-
cess, the distribution is ;@. Note that for a wavelet
transform using a real-valued function, such as the
Mexican hat shown in Fig. 1c, there is only one de-
gree of freedom at each point, and the distribution is
2

' In summary, assuming a mean background spec-
trum, possibly red noise[(16)], thedistribution for the
Fourier power spectrumis

NI | 1
\4;2' :Epklg

(17)

at each frequency index k, and “=" indicates“isdis-
tributed as.” The corresponding distribution for the
local wavelet power spectrumis

Ws2 1
| 2:2)| :Epkxg

(18)

at each time n and scale s. The 1/2 removes the DOF
factor from the y? distribution. (For areal wavelet the
distribution on the right-hand sidewould beP, x2.) The
value of P, in (18) isthe mean spectrum at the Fourier
frequency k that correspondsto thewavel et scale s (see
section 3h). Aside from the relation between k and s,
(18) isindependent of thewavel et function. After find-
ing an appropriate background spectrum and choos-
ing aparticular confidencefor y? such as 95%, one can
then calculate (18) at each scale and construct 95%
confidence contour lines.
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Fic. 5. () Monte Carlo resultsfor local wavel et spectraof white
noise (o= 0.0). Thelower thin lineisthe theoretical mean white-
noise spectrum, while the black dots are the mean at each scale
of 100 000 local wavelet spectra. Thelocal wavelet spectrawere
dlices taken at time n = 256 out of N = 512 points. The top thin
lineisthe 95% confidencelevel, equal to x2(95%) timesthe mean
spectrum. The black dots are the 95% level from the Monte Carlo
runs. (b) Same as (a) but for red noise of or = 0.70.

As with Fourier analysis, smoothing the wavel et
power spectrum can be used to increase the DOF and
enhance confidence in regions of significant power.
Unlike Fourier, smoothing can be performed in either
the time or scale domain. Significance levels and
DOFsfor smoothing intime or scale are discussed in
section 5.
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Insidethe COlI, thedistributionisstill 2, but if the
time series has been padded with zeroes, then the mean
spectrum isreduced by afactor of (1— ¥2e2%), where
7.isfrom Table 1, and t isthe distance (in time) from
either the beginning or end of the wavel et power spec-
trum.

The 95% confidence level for the Nifio3 SST is
shown by the thick contours on Figs. 1b and 1c. Dur-
ing 1875-1910 and 196090, the variancein the 2-8-
yr band is significantly above the 95% confidence for
red noise. During 192060, there are a few isolated
significant regions, primarily around 2 yr, and at the
edge of the usua 2-8 yr ENSO band. The 95% confi-
denceimpliesthat 5% of the wavel et power should be
abovethislevel. In Fig. 4b, approximately 5% of the
points are contai ned within the 95% contours. For the
Nifio3 wavel et spectrum, 4.9% of the pointsare above
95%, implying that for the Nifio3 time series atest of
enclosed area cannot distinguish between noise and
signal. However, the spatial distribution of variance
can also be examined for randomness. In Fig. 4b, the
variance shows a gradual increase with period, with
random distributions of high and low variance about
thismean spectrum. In Figs. 1b and 1c, the significant
regions are clustered together in both period and time,
indicating less randomness of the underlying process.

d. Confidence interval

The confidence interval is defined as the probabil-
ity that the true wavelet power at a certain time and
scalelieswithin acertain interval about the estimated
wavelet power. Rewriting (18) as

W(s)® | 23
—_— i ===

62 Pk 2 ’ (19)
one can then replace the theoretical wavel et power 6°P,
with the true wavelet power, defined as 1/(s). The

confidenceinterval for 1/%(s) isthen

2 2 2 2 2
— < W< U —o|W
x%(p/2)| ©) © 251 |O/2)| ©)

(20)

where p is the desired significance (p = 0.05 for the
95% confidence interval) and x3(p/2) represents the
value of y? at p/2. Note that for real-valued wavelet
functions, the right-hand side of (19) becomes x?, and
thefactor of 2 isremoved from the top of (20). Using
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(20) one can then find confidence intervals for the
peaksin awavelet power spectrum to compare agai nst
either the mean background or against other peaks.

e. Sationarity

It has been argued that wavel et analysisrequiresthe
use of nonstationary significance tests (Lau and Weng
1995). In defense of the use of stationary testssuch as
those given above, the following points are noted.

1) A nonarbitrary test is needed. The assumption of
stationary statistics provides a standard by which
any nonstationarity can be detected.

2) The test should be robust. It should not depend
upon the wavelet function or upon the actual dis-
tribution of the time series, other than the assump-
tion of a background spectrum.

3) A nor—Monte Carlo method is preferred. In addi-
tion to the savings in computation, the chi-square
test simplifies comparing one wavelet transform
with another.

4) Many wavelet transforms of real dataappear simi-
lar to transforms of red-noise processes (compare
Figs. 1b and 4b). It is therefore difficult to argue
that large variations in wavelet power imply
nonstationarity.

5) One needs to ask what is being tested. Is it
nonstationarity? Or low-variance versus high-vari-
ance periods? Or changesin amplitude of Fourier
modes? The chi-square test gives a standard mea-
surefor any of these possibilities.

In short, it appears wiser to assume stationarity and
designthe statistical testsaccordingly. If thetests show
large deviations, such as the changes in ENSO vari-
ance seen in Figs. 1b and 1c, then further tests can be
devised for the particular time series.

5. Smoothing in time and scale

a. Averaging in time (global wavelet spectrum)

If avertical dlice through awavelet plot isamea
sure of the local spectrum, then the time-averaged
wavel et spectrumover acertain periodis

_ 1 &
WE(s)=— > Wh(s)",
a n=n

(21)

where the new index n is arbitrarily assigned to the
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Fic. 6. Fourier power spectrum from Fig. 3, smoothed with a
five-point running average (thin solid ling). Thethick solid lineis
the global wavelet spectrum for the Nifio3 SST. Thelower dashed
line is the mean red-noise spectrum, while the upper dashed line
is the 95% confidence level for the global wavelet spectrum,
assuming o = 0.72.

midpoint of n andn,, andn_=n,—-n, + 1isthe num-
ber of pointsaveraged over. By repeating (21) at each
time step, one creates a wavelet plot smoothed by a
certain window.

Theextreme caseof (21) iswhentheaverageisover
al the local wavelet spectra, which gives the global
wavelet spectrum

(22)

In Fig. 6, the thick solid line shows the normalized
global wavelet spectrum, W2(s)/o?, for the Nifio3 SST.
Thethin solid linein Fig. 6 shows the same spectrum
asin Fig. 3, but smoothed with a five-point running
average. Notethat asthe Fourier spectrum is smoothed,
it approaches the globa wavelet spectrum more and
more closely, with the amount of necessary smooth-
ing decreasing with increasing scale. A comparison of
Fourier spectra and wavelet spectra can be found in
Hudgins et al. (1993), while a theoretical discussion
isgivenin Perrier et a. (1995). Percival (1995) shows
that the global wavel et spectrum provides an unbiased
and consistent estimation of the true power spectrum
of atime series. Finally, it has been suggested that the
global wavel et spectrum could provide a useful mea-
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sure of the background spectrum, against which peaks
in the local wavelet spectra could be tested (Kestin et
al. 1998).

By smoothing the wavel et spectrum using (21), one
can increase the degrees of freedom of each point and
increase the significance of peaksin wavelet power.
To determine the DOFs, one needs the number of in-
dependent points. For the Fourier spectrum (Fig. 3),
the power at each frequency isindependent of the oth-
ers, and the average of the power at M frequencies,
each with two DOF, is 2 distributed with 2M degrees
of freedom (Spiegel 1975). For the time-averaged
wavel et spectrum, oneisalso averaging pointsthat are
x5 distributed, yet Figs. 1b and 4 suggest that these
pointsare no longer independent but are correlated in
both time and scale. Furthermore, the correlation in
time appears to lengthen as scale increases and the
wavel et function broadens. Designating v asthe DOFs,
one expects ve< n_and v < s, The simplest formula
to consider isto define a decorrelation length 7 = 95,
such that v = 2na6t/ 7. However, Monte Carlo results
show that this Tistoo abrupt at smal n_ or large scales;
even though one is averaging points that are highly
correlated, some additional information is gained.

The Monte Carlo resultsaregivenin Fig. 7, which
showsthe mean and 95% levelsfor various n,. These
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Fic. 7. Monte Carlo results for the time-averaged wavelet
spectra (21) of white noise using the Morlet wavelet. The numbers
to theright of each curveindicaten,, the number of timesthat were
averaged, while the black dots are the 95% level for the Monte
Carlo runs. Thetop thin lines are the 95% confidence from (23).
The lower thin line is the mean white-noise spectrum, while the
black dots are the means of the Monte Carlo runs (all of the means
areidentical).
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curves are best described by the distribution P, x%/v,
where P, isthe original assumed background spectrum
and y2isthe chi-square distribution with v degrees of
freedom, where

2
v=2\/1+(na5t) )
Ys

Notethat for areal-valued function such asthe Mexi-
can hat, each point only has one DOF, and the factor
of 2in (23) isremoved. The decorrelation factor yis
determined empirically by an iterative fit of absolute
error to the 95% Monte Carlo level and
isgivenin Table 2 for the four wavelet
functions. The relative error (or percent

(23)

1)
]

Comparing (24) and (14), the scale-averaged wavel et
power isatime series of theaveragevariancein acer-
tain band. Thus, the scal e-averaged wavel et power can
be used to examine modulation of onetime series by
another, or modulation of one frequency by another
within the same time series.

Asan example of averaging over scale, Fig. 8 shows
the average of Fig. 1b over all scales between 2 and 8
yr (actually 2—7.34 yr), which gives a measure of the
average ENSO variance versustime. Thevariance plot
showsadistinct period between 1920 and 1960 when
ENSO variance was low. Also shown in Fig. 8 isthe
variance in the Southern Oscillation index (SOI),
which correlates well with the changesin Nifio3 SST
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thin lines in Fig. 7 show the results of
(23) using the Morlet wavelet. Note that
even the white noise process has more
stringent 95% confidence levelsat large
scalescompared to small. Asafinal note,
if the points going into the average are
withinthe cone of influence, thenn_ isre-
duced by approximately one-half of the number within
the COl toreflect the decreased amplitude (and infor-
mation) within that region.

A different definition of the global wavelet spec-
trum, involving the discrete wavelet transform and
including adiscussion of confidenceintervals, isgiven
by Percival (1995). An example using Percival’ s defi-
nition can be found in Lindsay et a. (1996).

The 95% confidence line for the Nifio3 global
wavelet spectrum is the upper dashed linein Fig. 6.
Only the broad ENSO peak remains significant, al-
though notethat power at other periodscan belessthan
significant globally but still show significant peaksin
local wavelet power.

1880

b. Averaging in scale

To examine fluctuations in power over a range of
scales (a band), one can define the scale-averaged
wavelet power as the weighted sum of the wavelet
power spectrum over scaless, tos,:

2 W(s )
— 9Ot <& [V >
W72 = 2
Cs 15 S &9
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Fic. 8. Scale-averaged wavel et power (24) over the 2-8-yr band for the Nifio3
SST (solid) and the SOI (dashed). Thethin solid lineisthe 95% confidence level
from (26) for Nifio3 SST (assuming red noise o = 0.72), while the thin dashed
lineisthe 95% level for the SOI (red noise o = 0.61).

variance (0.72 correlation). Both time series show
consistent interdecadal changes, including a possible
modulation in ENSO variance with a15-yr period. To
examine more closaly the rel ation between Nifio3 SST
and the SOI, one could usethe cross-wavel et spectrum
(see section 6¢).

Aswith time-averaged wavel et spectrum, the DOFs
areincreased by smoothing in scale, and an analytical
relationship for significance levelsfor the scale-aver-
aged wavelet power is desirable. Again, it is conve-
nient to normalize the wavel et power by the expecta-
tion valuefor awhite-noisetime series. From (24), this
expectation valueis(gj ot 0?)/(C,S, ), where o2 isthe
time-seriesvarianceand S, is defined as

i 1 )
Sa\/gz(z,s_j] .

The black dotsin Fig. 9 show the Monte Carlo re-
sults for both the mean and the 95% level of scale-
averaged wavelet power as a function of various n,,
wheren_=j,—|, + 1isthe number of scalesaveraged.

(25)
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Fic. 9. Monte Carlo results for the wavelet spectra averaged
over n,_ scalesfrom (24), using white noise. The average from (24)
is centered on scale s = 166t for convenience, but the results are
independent of the center scale. To make the graph independent
of the choicefor §j, the x axis has been compressed by the Monte
Carlo 9j of 0.25. The top black dots are the 95% level for the
Monte Carlo runs, while the lower black dots are the means. The
means for al four wavelet bases are al the same, while the 95%
level depends on the width of the basisin Fourier space, with the
Morlet being the most narrow. The top thin lines are the 95%
confidence from (28). Thelower thin lineisthe mean white-noise
spectrum.

Using the normalization factor for white noise, the
distribution can be modeled as

CSS_NQ —,
—W
dote? " : (26)

where the scal e-averaged theoretical spectrumisnow
given by

(27)

N
=ZS_

Note that for white noise this spectrum is still unity
(due to the normalization). The degrees of freedom v
in (26) is modeled as

1%

2 2
_ ZaSg 1+(”a5’) , (29)

Sua | Udlo
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whereS | =5 2°%:%29. Thefactor S, /S |, correctsfor
theloss of DOF that arisesfrom dIVIdI ng the wavel et
power spectrum by scalein (24) andisobservedin the
Monte Carlo results. Note that for areal-valued func-
tion such as the Mexican hat, each point only has one
DOF, and the factor of 2 in (28) is removed. The
decorrel ation distance dj  is determined empirically by
an iterative fit of absolute error between (28) and the
95% level of the Monte Carlo resultsand isgivenin
Table 2. The thin lines in Fig. 9 show the results of
(28) for the Morlet, Paul (m=4), DOG2, and DOG6
wavel et functions. For these wavel ets, therelative er-
ror between the y2 distribution using (28) and the
Monte Carlo results is less than 1.5%. It should be
noted that (28) is valid only for confidences of 95%
or less. At higher confidence levels, the distribution
beginsto deviate significantly from x2 and (28) isno
longer valid.

In Fig. 8, the thin solid and dashed lines show the
95% confidence levelsfor the Nifio3 SST and the SOI
using (25)—(28). Inthiscase, 9j = 0.125, the sum was
between Fourier periods 2 and 8 yr (actualy 2.1-7.6
yr), n, =16, Savg =0.221yr, S, =3.83yr, §j,=0.60,
and v = 6.44. Since the two time series do not have
the same variance or the same red-noise background,
the 95% lines are not equal.

6. Extensions to wavelet analysis

a. Filtering

As discussed in section 3i, the wavelet transform
(4) isessentialy abandpassfilter of uniform shapeand
varying location and width. By summing over a sub-
set of the scalesin (11), one can construct a wavel et-
filtered time series:

(s )}

—. (29)

o o &K
Cﬁ‘/’o(o)j:j1

| =

Thisfilter has a response function given by the sum
of the wavelet functions between scalesj, and j.,.
Thisfiltering can a so be done on both the scaleand
time simultaneously by defining athreshold of wave-
let power. This*denoising” removes any low-ampli-
tude regions of the wavelet transform, which are pre-
sumably due to noise. This technique has the advan-
tage over traditional filtering in that it removes noise
at all frequencies and can be used to isolate single
events that have a broad power spectrum or multiple
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eventsthat have varying frequency. A more complete
description including examples is given in Donoho
and Johnstone (1994).

Another filtering technique involves the use of the
two-dimensional wavelet transform. An example can
befoundin Fargeet d. (1992), wheretwo-dimensional
turbulent flows are “compressed” using an orthonor-
mal wavelet packet. This compression removes the
low-amplitude “passive’” components of the flow,
while retaining the high-amplitude “dynamically ac-
tive” components.

b. Power Hovmaller

By scale-averaging the wavelet power spectra at
multiple locations, one can assess the spatial and tem-
poral variability of afield of data. Figure 10ashowsa
power Hovméller (time-longitude diagram) of the
wavel et variancefor sealevel pressure (SLP) anoma
liesinthe 2—8-yr band at each longitude. The original
time series at each longitude is the average SLP be-
tween 5° and 15°S. At each longitude, the wavelet
power spectrum is computed using the Morlet wave-
let, and the scal e-averaged wavel et power over the 2—
8-yr band is calculated from (24). The average wave-
let-power time series are combined into atwo-dimen-
sional contour plot as shown in Fig. 10a. The 95%
confidence level is computed using the lag-1 auto-
correlation at each longitude and (26).

Several features of Fig. 10 demonstrate the useful-
ness of wavelet analysis. Fig. 10c showsthetime-av-
eraged 2-8-yr power asafunction of longitude. Broad
local maxima at 130°E and 130°W reflect the power
associated with the Southern Oscillation. Thislongi-
tudinal distribution of power is also observed in the
2-8-yr band for Fourier spectraat each longitude (not
shown). The zonal average of the power Hovmaller
(Fig. 10b) gives a measure of global 2-8-yr variance
inthislatitude band. Comparing thisto Fig. 8, one can
see that the peaks in zonal -average power are associ-
ated with the peaksin Nifio3 SST variance, and, hence,
the 2-8-yr power isdominated in thislatitude band by
ENSO.

With the power Hovmdller in Fig. 10a, the tempo-
ral variations in ENSO-associated SLP fluctuations
can be seen. While the low power near the date line
region is apparent throughout the record, the high
power regions fluctuate on interdecadal timescales.
From the 1870sto the 1920s, strong decadal fluctua-
tionsin the 2-8-yr power are observed in the Austra-
lian region. In contrast, the eastern Pacific fluctuations
are strong only through 1910 and appear to havelittle
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Fic. 10. (a) Power Hovmoller of 2-8-yr averaged wavelet
power in SLP. The original time series at each longitude is the
average SLP between 5° and 15°S. The contour interval is0.1 mb?*
The thick contour is the 95% confidence level, using the
corresponding red-noise spectrum at each longitude; (b) the
average of (a) over al longitudes; (c) the average of (a) over all
times.

power inthe 1915-30 period. The generally low power
observed in Figs. 1 and 8 between 1930 and 1950
mainly reflects alack of power in the Australian re-
gion, with the eastern Pacific having some significant
fluctuations in the 1940s. The large zonal-scale fluc-
tuations in both regions return in the 1950s, with the
strongest amplitudes after 1970. The diminished
power after 1990 is within the COI, yet may reflect
the changesin ENSO structure and evolution seenin
recent years (Wang 1995).

c. Cross-wavel et spectrum

Giventwotime series X and Y, with wavel et trans-
formsW(s) and WY(s), one can definethe cross-wave-
let spectrumas WXY(s) = WX(S)W (s), where WY’ (s) is
the complex conjugate of W(s). The cross-wavelet
spectrum is complex, and hence one can define the
cross-wavelet power as|WX(s)|.

Confidencelevelsfor the cross-wavel et power can
be derived from the square root of the product of two
chi-sguare distributions (Jenkins and Watts 1968).
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Assuming both wavel et spectraare 2 distributed with
v DOFs, the probability distribution is given by

2-v

umﬁ@

where zistherandom variable, I'isthe Gammafunc-
tion, and K (2) is the modified Bessel function of or-
der zero. The cumulativedistribution functionisgiven
by theintegral p= ®f (2) dz, where Z (p) isthe con-
fidence level associated with probability p. Given a
probability p, thisintegral can be inverted to find the
confidencelevel Z (p).

If the two time series have theoretical Fourier spec-
tra P and P, say from (16), then the cross-wavelet
distribution is

2"7'K,(2), (30)

WOW (s -
W)L 200) oy,

O0xOvy

where o, and o, are the respective standard deviations.
For v=1(rea wavelets), Z, (95%) = 2.182, whilefor
v =2 (complex wavelets), Z, (95%) = 3.999.

Figure 11a shows the wavelet power spectrum of
Nifio3 SST using the Paul (m= 4) wavelet, while Fig.
11b shows the wavelet power for the SOI. Note that
the narrow width in time of the Paul gives better time
localization than the Morlet but poorer frequency lo-
calization. Finally, Fig. 11c shows the cross-wavel et
power for the Nifio3 SST and the SOI and indicates
large covariance between the time series at all scales
between 2 and 8 yr. The 95% confidence level was
derived using (31) and assuming red-noise spectra
(16) with & = 0.72 for Nifio3 SST and o = 0.61 for
the SOI.

d. Wavel et coherence and phase

Another useful quantity from Fourier analysisisthe
coherence, defined asthe square of the cross-spectrum
normalized by the individual power spectra. This
gives a quantity between 0 and 1, and measures the
cross-correlation between two time series as a func-
tion of frequency. Unfortunately, as noted by Liu
(1994), this coherence isidentically one at all times
and scales. In Fourier analysis, thisproblemiscircum-
vented by smoothing the cross-spectrum before nor-
malizing. For wavelet analysis, it isunclear what sort
of smoothing (presumably in time) should be doneto
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give auseful measure of coherence. This smoothing
would also seem to defeat the purpose of wavelet
analysis by decreasing the localization in time. Liu
(1994) suggests plotting the real and imaginary parts
(the co- and quadrature-wavelet spectra) separately,
and also plotting the coherence phase, defined as
tan [S{W(S}H FW(9}H.

The co- and quadrature-wavelet spectra for the
Nifio3 SST and the SOI (not shown) do not appear to
give any additional information, especialy in conjunc-
tion with the coherence phase shown in Fig. 11d. The
shaded region in Fig. 11d showswhere the phase dif-
ference between Nifio3 SST and the SOI is between
160° and 200°. It is well known that the Nifio3 SST
and the SOI are out of phase, yet this shows that the
time seriesare within £20° of being 180° out of phase
over al periods between 2 and 8 yr. Furthermore, this
out-of -phase behavior is consistent with changesin the
cross-wavel et power, with periods of low variance, say
between 1920 and 1960, associ ated with more random
phase differences.

7. Summary

Wavelet analysisisauseful tool for analyzing time
series with many different timescales or changes in
variance. The stepsinvolved in using wavelet analy-
sisareasfollows:!

1) Findthe Fourier transform of the (possibly padded)
time series.

2) Choose a wavelet function and a set of scales to
anayze.

3) For each scale, construct the normalized wavel et
function using (6).

4) Findthewavelet transform at that scale using (4);

5) Determine the cone of influence and the Fourier
wavelength at that scale.

6) After repeating steps3-5for all scales, removeany
padding and contour plot the wavelet power
spectrum.

7) Assume a background Fourier power spectrum
(e.g., white or red noise) at each scale, then usethe
chi-squared distribution to find the 95% confidence
(5% significance) contour.

For other methods of wavelet analysis, such asthe

1Software and examples are available from the authors at URL :
http://paos.col orado.edu/research/wavel ets/.
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orthogonal wavel et transform, see Farge

. NINO3 SST

(1992). The results presented in section
4 on dtatistical significance testing are
presumably valid for higher-dimensional
wavelet analysis (assuming an appropri-

Period (years)

T

ate background spectrum can be chosen),
but this has not been tested and is | eft to
future research. More research is also

o

1940
Time (year)

1920

needed on the properties and usefulness
of the cross-wavel et, wavel et coherence,
and co- and quadrature spectra.

In the wavelet analysis of Nifio3 sea
surface temperature, the Southern Oscil-

Period (years)

A S B e S s R e X -

lation index, and the sea level pressure,
it was found that the variance of the El

o

1880

1900 1920 1940 1960
Time (year)

1980 2000

NINO3 SST X GMSLP SOI

Nifio—Southern Oscillation changed on

interdecadal timescales, withaperiodof @ ||
low variance from 1920 to 1960. Using & 4/
both thefiltered 2-8-yr varianceandthe 3 M
cross-wavelet power, the changes in 5 2421 ]

Nifio3 SST variance appear to be well
correlated with changesin the SOI. The
SLP power Hovmdller suggests that

o

1920 1940
Time (year)

these changes are planetary in scale,
while Torrence and Webster (1997) use
wavelet analysis to show that inter-
decadal changesin ENSO arealsorelated
to changes in Indian monsoon variance.

Period (years)

Further studies are necessary to deter-
mine the extent and possible causes of
theseinterdecadal changes.

It is hoped that the analysis presented
here will prove useful in studies of
nonstationarity in time series, and the
addition of statistical significance tests
will improve the quantitative nature of
wavelet analysis. Future studies using
wavel et analysis can then concentrate on
theresultsrather than smply the method.
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Fic. 11. (8) The wavelet spectrum for the Nifio3 SST using the Paul (m = 4)
wavelet. The contours are at normalized variances of 2, 5, and 10, while the thick
contour is the 95% confidence level (red noise oc = 0.72). (b) same as (&) but for
the GMSLP SOI (red noise o = 0.61); (c) the cross-wavelet power for the Nifio3

SOI. Contoursare at 2, 5, and 10, while the thick contour isthe 95%

confidence from (31), with the red noise given in (a) and (b); (d) the phase
difference between Nifio3 SST and the SOI, with the filled contour enclosing
regions between 160° and 200°.
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